S5 Identification of essential feedback loops

Clamping regulations

Given a fitted parameter set, we analyze which loops in the network are es-
sential for the generation of rhythms. To this end we employ our clamping
strategy that was published earlier [1]: By setting combinations of regulatory
links in the network graph to a constant value we systematically test which
links are necessary for oscillations.

Let us assume that a regulatory link is part of an essential loop. Then
rhythms vanish if we set this regulation to a constant. We choose the mean
values of oscillations in the default state as a constant to preserve the basal
effect exerted by the clamped regulation.

Any combination of regulations can be clamped by setting the respective
parts in the differential equations constant.

Combinatorial exploration of the loop structure

To avoid excessive computation times, we do not test all combinations of
regulations (which are 27 = 131072). Instead we resort to a targeted clamping
strategy.

It is known that a negative feedback loop is necessary to generate oscilla-
tions [2]. Therefore, we list and test negative feedback loops in the network
specifically.

We start by testing each single loop individually: A negative feedback loop
is termed essential, if separate clamping of all regulations involved in the loop
(i.e. clamping one regulation at a time) leads to disruption of rhythmicity.
(Note, that in theory there might be a case where all edges of a negative
feedback loop are shared by other loops, making it impossible to attribute the
effect of clamping in that way, but this is not the case in our network.)

After testing single loops we proceed by testing combinations of loops. This
is of interest, since loops could mutually compensate for each other. Then
clamping just a single loop does not stop rhythms, because the other loop still
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Figure S5-1: Example for targeted clamping of loops. (A) A toy network
with two negative feedback loops ({1,2} and {3,4,5}). Assume that the model
represented by this network is rhythmic, then both loops are candidates for
the core mechanism generating these rhythms. The mechanism could involve
loop I, loop II or both. (B) On the left: Clamping of single loops. To test
whether e.g. loop II is essential, the model is simulated three times, with
regulations 3, 4, and 5 being clamped in one simulation each. If all three
simulations show disruption of rhythmicity loop II is regarded as essential.
On the right: Clamping the combination of loop I and II. If all six simulations
show disruption of rhythmicity the combination of loop I+II is regarded as
essential. If both single loops I and II are essential, we denote this as I v II,
i.e. interrupting any loop stops oscillations. If the combination of loop I and II
is essential, we denote it as I A II, i.e. interrupting both loops simultaneously
stops oscillations.

generates oscillations and vice versa. In analogy to the single loop case we
define a combination of loops as essential, if separate clamping of all pairwise
combinations of regulations from the two loops leads to disruption of circadian
rhythmicity. An example is given in Figure S5-1.

If two single loops were essential, then the combination of both loops is
also essential. Therefore we do not need to test the combinations of loops that
have already been identified as single essential loops. If a combination of loops



is essential, but not the single loops, these loops mutually compensate for loss
of one of the loops.
An overview over the procedure is shown as pseudocode in Algorithm 1.

Algorithm 1 targeted clamping

loop_list < list negative feedback loops > loop is a set of edges
essential_loops < empty_list()
for all ke 1...maz_level do D> combinations of up to max_level loops

for all comb € combinations of k loops do
if —any{el c comb | el € essential_loops,el #+ D} then
rhythmic <« FALSE
for all clamp_edges € cartesian_product(comb) do
time_series < simulate_model(clamp_edges)
rhythmic < rhythmicv is_rhythmic(time_series)

if rhythmic then
essential_loops.append(comb)

return essential_loops

Output notation and oscillators

The algorithm returns a list of feedback loops needed to be clamped to disrupt
rhythmicity. We denote this in the form of a logic function. For the example
in Figure S5-1A, we could have for instance I v I (see Figure caption).

Assuming a more complex network with 5 negative feedback loops, we
could also have:

systeMarrnythmic = 1V (II ANIIT) v (IV AV)

with I ...V being 1 if the corresponding loop is clamped and 0 otherwise.
It means that clamping loop I disrupts rhythms and also clamping the com-
bination of loops I and II1 as well as loops IV and V', while clamping loop
11 or V alone does not.

This condensed description in Disjunctive Normal Form (DNF) is useful to
see the different options of how to disrupt rhythms with a minimal amount of
clamped regulations.

If we want to see on the other hand, which minimal amount of loops is
necessary to generate rhythms, we can transform the function (by negating,
applying De Morgans law and converting back to DNF):
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—I...=V are 1 if the corresponding loop is active and 0 otherwise. The
expression now describes, which feedback loops need to be active in order for
the system to be rhythmic.

In other words: each combination of loops inside the brackets (e.g. I, I1
and IV') constitutes a minimal oscillator. Thus, all brackets contain minimal
sets of loops that can generate oscillations in synergy.

We identify minimal oscillators for all logic functions and verify them in
separate simulations. Thus, we are able to find necessary and sufficient con-
ditions for rhythms in an automated way in all fitted models.

Loop frequencies in different tissues

We used our clamping analysis to find essential loops in all fitted models.
Interestingly a large variety of loops and oscillators was found (see main text).
Figure S5-2 shows the relative frequencies of loops found in 10 tissues. To
keep the legend simple, essential loops were counted if they were present in
the logic function determined by our method (see above), regardless of their
position in this function.
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Figure S5-2: Relative loop frequencies in 10 tissues. In skeletal muscle and
heart no repressilator was found, but they have a large fraction of models with
essential Bmall-Rev-erb-a loop. In SCN the fraction of combinations with
Per2 and Cryl loops is particularly large and most repressilators were found
in liver.



