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MiR-192, miR-200c and miR-17 are fibroblast-mediated 
inhibitors of colorectal cancer invasion

SUPPLEMENTARY MATERIALS

1 COMPUTATIONAL METHODS

1.1 The piecewise linear model

Using the miRNA expression values across all 
samples (K) we first defined q1, q2, q3, q4, q5 and q6 as the 
respective 0%, 20%, 40%, 60%, 80% and 100% quantiles. 
For every miRNA expression value (expk) of sample (k), 
the index of the next lowest quantile was determined as:
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Next, parameters (z) were defined as:
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These z parameters form a special ordered set of 
type 2 (SOS2) [1], where at most two adjacent members 
can be non-zero and the sum of all members equal one. For 
every quantile, an additional parameter (β) was introduced 
to define the term (eff):
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The z parameters are scalar and can be determined 
directly from the experimental data, whereas the β 
parameters are optimized by the solver. The term effk 
represents the predicted gene expression of sample k. 
Monotony is enforced by introducing a binary auxiliary 
variable (x) defined as:
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Enforced model monotony was achieved by 
introducing additional constraints for the β parameters by 
means of a constant, M:
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with M = 1000 always fulfilling both inequalities in 
the corresponding dataset.

The optimization criterion of the model was to 
minimize the absolute difference between the measured 
gene expression (gk)and the predicted gene expression 
(effk):
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As this model is a minimization problem, the 
absolute value term can be solved by introducing 
an auxiliary variable (ek) and transferring into two 
inequalities:
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The MILP solver Gurobi (http://www.gurobi.com) 

minimizes the sum of error terms across all samples by 
optimizing the β parameters within the constraints defined 
by equations 3 to 6. For each defined quantile of miRNA 
expression, a corresponding β coefficient is fitted against 
the measured gene expression for the target gene under 
investigation, yielding a step-wise approximation of target 
gene expression depending on miRNA expression.

Gene- and miRNA expression profiles were 
pre-processed and miRNA - target gene pairs were 
extracted from TarBase [2]. The piecewise linear model 
was established for every miRNA - target gene pair 
individually. The sample set was split into 5 equally 
sized partitions for 5-fold cross-validation, in which the 
parameters β and x were optimized in the model using 
samples from only 4 partitions (training partitions). The 
5 β parameters were subsequently utilized to predict 
gene expression for the samples in the remaining fifth 
partition (validation partition). Predictive performance 
was estimated by calculating Pearson’s correlation of 
measured and predicted gene expression across the 
validation partitions from all cross-validations. The 
binary parameter, x, indicates whether the model fit is 
strictly monotonically increasing or decreasing in the 
training partitions used. Only miRNA - target gene pairs 

http://www.oncotarget.com
http://www.gurobi.com


with predictive performances of r ≥ 0.25 and a strictly 
monotonically decreasing model fit for the majority of 
partitions (at least 3 out of 5) were considered for further 
analysis.

1.2 The linear model

In the linear model, the predicted expression (effk) of 
a gene in sample (k) was defined as:

β βeff expk k0= + ∗  � (Equation 8)

in which the variable β and the offset variable β0 
were the optimization parameters and the variable expk 
represented the miRNA expression in sample k. The 
optimization criterion for the linear model was analogous 
to the piecewise linear model as described in the previous 
section. Gene- and miRNA expression data as well as 
miRNA - target gene pairs were utilized as described for 
the piecewise linear model. We performed 5-fold cross-
validation by splitting the sample set in 5 equally sized 
partitions, ran the linear model using the samples of 4 
partitions and evaluated the optimized parameters β0 and 
β. Subsequently the parameters β0 and β were utilized to 
predict the gene expression for the samples of the left-out 
fifth partition. The predictive performance was estimated 
by calculating Pearson’s correlation of measured and 
predicted gene expression across validation samples of all 
cross-validations. Only miRNA - target gene pairs with 
predictive performances of r ≥ 0.25 were considered for 
further analysis.

1.3 Enrichment analysis in miRNA transfection 
experiments

We used normalized miRNA expression data as 
provided by the authors of the original studies. If miRNA 
transfection experiments were performed in replicates, 
we combined the expression values by using the median 
expression value per gene. If not directly provided in the 
dataset, we calculated the log ratio of gene expression of 
the test conditions (transfection with miRNA mimics or 
antagomiRs) and control conditions (mock or miRNA 
scrambled control) to observe differential gene expression. 
Enrichment tests were performed using the “geneSetTest” 
method from the limma package [3] depending on the 
experimental design: negative enrichment in case of 
miRNA over-expression (when using miRNA mimics) 
and positive enrichment in case of miRNA inhibition 
(when using antagomiRs). Due to the small number of 
experiments (n=41 for colon cancer, n=36 for prostate 
cancer), we refrained from multiple testing correction 
and treated p-values of the enrichment tests smaller or 
equal to 0.05 as significant. It is to note that a pre-miRNA 
measured in the transfection experiments under different 
experimental conditions could have been assigned to more 
than one stem-loop identifier in the TCGA datasets.

These stem-loop identifiers may show distinct 
expression profiles and share a highly overlapping, 
yet different set of target genes and therefore may have 
yielded different prediction results from the models. For 
instance, the pre-miRNA hsa-miR-7 matches 3 stem-
loop identifiers used in the TCGA dataset: hsa-mir-7-1, 
hsa-mir-7-2 and hsa-mir-7-3. Therefore, we evaluated 
individual combinations of pre-miRNA and experimental 
condition from the transfection experiments and modeling 
data of the corresponding stem-loop miRNAs yielding 60 
combinations for the colon- and 42 combinations for the 
prostate adenocarcinoma dataset.

1.4 Differential expression and gene set 
enrichment analysis of the predicted target genes

Identifying differentially expressed miRNA and genes

We tested all miRNAs and genes for differential 
expression in each molecular colorectal subgroup by a 
pairwise comparison to each of all other subgroups using 
a two-sided Student’s t-test followed by multiple testing 
correction with the Benjamini-Hochberg method [4]. Any 
tested gene or miRNA with an adjusted p-value of at most 
0.05 was considered to be differentially expressed. For 
each of the 4 subgroups, we selected genes and miRNAs 
which were differentially expressed between the subgroup 
under investigation and at least two other subgroups.
Gene set enrichment analysis

To elucidate the biological relevance of the 
predicted target genes in general and specifically in the 
molecular subgroups of colorectal cancer defined by 
Guinney et al. [5], we performed gene set enrichment 
analysis using TopGO [6]. TopGO functions as a wrapper 
package to facilitate enrichment analysis using gene set 
definitions from Gene Ontology (GO) [7]. We restrained 
our analysis to GO terms related to “biological process” 
and performed enrichment tests on the set of target 
genes predicted by the combined model for each miRNA 
individually. As global background we included all 
miRNA target genes provided by the TarBase database 
and chose “elim” as algorithm, “fisher” as the test 
statistics and tested only GO terms with a minimum 
number of 5 assigned genes neglecting very specific 
gene sets. Because multiple testing correction of p-values 
using standard techniques would come up with only 
very few significant gene sets and the tests performed 
by the “elim” method are not independent as described 
in the TopGO vignette (https://www.bioconductor.org/
packages/release/bioc/vignettes/topGO/inst/doc/topGO.
pdf, section 6.2), we set the significance threshold to a 
rather low value of 0.005 to reduce the false positive rate 
but did not correct for multiple testing. Typically, such 
enrichment tests yield large, difficult to manage list of 
gene sets. To overcome this, redundant GO terms were 
filtered using linear optimization. Redundancy between 
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two GO terms was quantified using Jaccard similarity 
coefficients. First, GO term-pairs with a high degree of 
overlap were included in the model. In the end, at most 
one GO term from a pair was chosen in such a way that 
the overall number of non-redundant GO terms was 
maximized. In addition, we assigned each term to one 
out of 18 broader categories according to their biological 
function: “angiogenesis”, “apoptosis”, “cell adhesion”, 
“cell cycle”, “cell differentiation”, “cell migration”, 
“developmental process”, “DNA repair”, “extracellular 
matrix process”, “immune system process”, “localization/
transport”, “metabolic process”, “nervous system 
process”, “receptor signaling”, “response to stimuli”, 
“transcription” and “translation”. Terms that did not fit 
in any of those categories were assigned to the category 
“miscellaneous”. To identify subgroup specific miRNAs 
and enriched gene sets, we filtered the identified gene 
sets having at least 3 genes being either up-regulated in 
the respective subgroup and the corresponding miRNA 
being down-regulated in the same molecular subgroup 
or vice versa.

1.5 Functional grouping of genes related to 
extracellular matrix remodeling

According to their molecular function in the context 
of extracellular matrix (ECM) remodeling, candidate genes 
were grouped into one of the following categories: “ECM 
component”, “ECM degradation”, “ECM synthesis”, 
“ECM - cell signaling” and “Others”. Genes that code for 
proteins assembling essential parts of ECM structures like 
collagen, laminin or fibrillin were assigned to the category 
“ECM component”. “ECM degradation” summarizes 
candidate genes like matrix metallopeptidases that are 
directly or indirectly involved in ECM decay. Target genes 
that are involved in the synthesis of ECM structures or 
maintain its integrity like lysyl oxidase were assigned to 
the category “ECM synthesis”. Finally, all genes that are 
part of direct ECM - cell interactions like integrins or are 
involved in ECM - cell communication like TGF-β were 
assigned to the category “ECM - cell signaling”. Genes 
that did not clearly fit in one of the above categories were 
combined in the category “Others”. It is to note that even 
though genes could functionally belong to more than one 
group, we restricted their functional grouping to the most 
relevant category according to the literature.

1.6 Analysis of tumor- and stromal cell content

Based on the clinical data from the TCGA 
colon adenocarcinoma dataset provided by the TCGA 
consortium [8], we analyzed tumor- and stromal cell 
content among the defined molecular subgroups. In 
detail, we used the attributes “percent_stromal_cells_
BOTTOM”, “percent_stromal_cells_TOP”, “percent_
tumor_cells_BOTTOM” and “percent_tumor_cells_TOP”, 
all of which were determined by histopathologists after 
individual image analysis. “BOTTOM” and “TOP” refer 

to the bottom and top section of the tissue which has been 
imaged. We compared samples of one molecular colorectal 
subgroup with the combination of all samples from all 
other molecular subgroups and performed a significance 
test using a two-sided Student’s t-test.

1.7 Correlation analysis of miRNA expression 
and target gene protein expression

We tested the identified miRNA – target gene pairs 
for potential inverse correlation of miRNA expression 
and protein abundance. We employed a protein data set 
generated by the Clinical Proteomic Tumour Analysis 
Consortium (CPTAC) [9] comprising quantification of 
5561 proteins in 95 colon and rectal samples from the 
TCGA cohort whereof 49 samples were present in the 
TCGA colon miRNA expression data set. Normalized 
spectral counts were used for protein. We computed 
Pearson’s correlation of miRNA expression and protein 
spectral counts for all miRNA – target gene pairs where 
the data was available. Statistical significance for each 
miRNA – target gene pair was calculated using a rank-
based permutation test (n = 1,000,000). Briefly, for both 
data matrices the sample labels as well as the feature labels 
were shuffled and the Pearson’ correlation coefficient was 
calculated for each miRNA – target gene pair. This process 
was repeated 1,000,000 times.

2 RESULTS

2.1 Evaluating model predictions using miRNA 
transfection experiments

TCGA colon adenocarcinoma dataset

To confirm predictions and evaluate both models, we 
assembled expression data from 60 miRNA or antagomiR 
transfection experiments from the Gene Expression 
Omnibus (GEO), and tested for significant enrichment 
of the predicted target genes of the respective miRNA 
among the genes that were down-regulated by miRNA 
transfection (details in Supplementary 1.3 and workflow 
in Supplementary Figure 1). The piecewise linear 
model predicted miRNA target genes, which had better 
enrichment in experimental datasets from 26 transfection 
experiments, whereas the linear model predicted miRNA 
target genes, for which enrichment was only better in 20 
experimental datasets. Combining both the piecewise 
linear and linear models using the union of predicted target 
genes, improved enrichment in 43 experimental datasets 
above that achieved by either model alone. No miRNA 
targets predicted by either model or the combination 
of both were significantly enriched in datasets from 14 
experiments. Supplementary Table 7A gives an overview 
of these results together with the accession numbers 
from the datasets in the GEO database, used cell lines, 
transfected miRNAs, conditions and the p-values for each 
model and the combination of both models.



TCGA prostate adenocarcinoma dataset

We performed enrichment tests on target genes 
that were predicted by the linear model, the piecewise 
linear model and the combination of both using the 
TCGA prostate adenocarcinoma dataset. We investigated 
publicly available expression datasets of 42 miRNA 
transfection experiments which were performed using 
prostate cancer cell lines. When comparing the linear 
and the piecewise linear model, 10 experiments had 
better enrichments using the piecewise linear model, 
8 experiments had better enrichments using the linear 
model and no significant enrichments were observed in 
the remaining 24 experiments. The combination of both 
methods showed superiority over the linear and piecewise 
linear model: we observed better enrichment among 12 
experiments when combining the models whereas for 
the linear and the piecewise linear model we observed 
no respective 3 experiments with lower p-values than the 
model combination. There were 3 experiments with equal 
significance levels and 24 experiments with no significant 
enrichment in any model. Detailed results are given in 
Supplementary Table 7B.

2.2 Investigating the biological relevance of 
target gene predictions

To benchmark the model predictions for biological 
relevance, we performed gene set enrichment analysis 
using the predicted target genes for each miRNA from 
either the linear or the combined model, both performed 
using the TCGA colon adenocarcinoma dataset. Target 
gene predictions from the combined model identified 212 
significantly enriched gene sets beyond those identified 
using the linear model alone. Among these additionally 
identified gene sets were “transforming growth factor 
beta receptor signaling pathway”, “positive regulation of 
epithelial cell migration” and “endothelial cell migration” 
as potentially regulated by miR-29b-2 which has been 
shown in breast cancer [10], prostate cancer [11] and 
multiple myeloma [12].

2.3 Functional relevance of experimentally 
validated target genes

We briefly describe the results of our literature 
analysis concerning the functional relevance (in the 
context of extracellular matrix remodeling, tumor 
development and progression, metastasis and clinical 
outcome) of the experimentally validated target genes in 
colorectal cancer and other tumor entities.
2.3.1 Validated target genes of miR-192

FBN1 is an extracellular glycoprotein secreted by 
fibroblasts that forms long, elastic microfibrils as important 
components of the extracellular matrix. It has been shown 
to promote ovarian tumorigenesis and metastasis in mouse 
models [13]. When highly expressed, FBN1 indicates 
poor overall survival in ovarian cancer [13]. Inhibition 

of E-cadherin and β-catenin and stimulation of matrix 
metallopeptidase 2, 9 and 13 are further characteristics of 
FBN1 as described by Wang et al. [13]. PLOD1 is another 
important collagen crosslinking enzyme necessary for 
the biogenesis and stability of collagens [14]. Gilkes and 
colleagues reported an increased expression of PLOD1 
and another gene family member, PLOD2, in breast 
cancer tissue compared to normal breast tissue [14]. The 
cell surface peroxidase PXDN is, when secreted into 
the extracellular space, involved in ECM formation by 
crosslinking collagen IV. It has been shown that silencing 
of PXDN leads to significant reduction of cancer cell 
invasion in melanoma [15]. The growth factor FGF2 is 
part of many cellular processes and particularly known 
as an inducer of angiogenesis. Knuchel and co-workers 
identified fibroblast-bound FGF2 as part of the FGFR- 
SRC- ITGAV/ITGB5 cascade that induces tumor cell 
adhesion to fibroblasts and tumor cell motility which was 
shown in 2D and 3D models of colorectal cancer cells 
[16]. Interestingly, Musumeci and co-workers showed 
an direct relation between the down-regulation of miR-
15 and miR-16 and the up-regulation of their direct target 
genes FGF2 and FGFR1 in tumor-associated stroma 
cells of prostate cancer [17]. The linker protein DST is 
a component of hemidesmosomes [18] and connects 
intermediate filaments to the actin cytoskeleton and helps 
to form actin bundles around the nucleus.

2.3.2 Validated target genes of miR-200c

In leiomyoma, a benign smooth muscle cell tumor 
occurring in the uterus, TIMP2 and FBLN5 were identified 
as direct targets of miR-200c [19]. The extracellular 
glycoprotein FBLN5 is involved in the formation of elastic 
fibers and antagonizes fibronectin-mediated signaling by 
binding to the same integrin receptors (reviewed in [20]). 
FBLN5 was found to be induced by TGF-β signaling in 
fibroblasts and endothelial cells [21] and plays a role 
in initiating and enhancing epithelial-to-mesenchymal 
transition in normal and malignant mammary epithelial 
cells [22]. In the same study, FBLN5 was shown to 
promote the expression and activity of MMP2 and MMP9 
and the growth of human 4T1 breast cancer cells in mice 
[22]. Contrary to its tumor promoting role, it was observed 
that FBLN5 can suppress the formation of metastasis in 
lung and liver [23]. The glycoprotein FN1 was found 
to be significantly down-regulated after re-expression 
of miR-200c in human Hec50 endometrial cancer cells 
[24]. By binding to the α5β1 integrin transmembrane 
receptor dimer, FN1 mediates cell-matrix adhesion and 
is directly involved in cell migration and invasion [25]. 
Overexpression of FN1 was observed in myofibroblasts 
and in epithelial cells in samples of colorectal cancer 
patients [26]. Elevated epithelial expression of FN1 can 
be an indicator of lymph node metastasis in primary 
colorectal cancers [27]. SERPINH1 (also referred as 
HSP47) is involved in the synthesis and deposition of 
collagen as a chaperone present in the endoplasmatic 
reticulum. SERPINH1 is linked to the progression of 



breast cancer [28], cell migration and invasion of cancer 
cells in cervical squamous cell carcinoma [29], and tumor 
growth and invasion in glioma [30]. The transcription 
factor ETS1 plays a role in numerous tumor types and 
is linked to tumor progression, invasion, metastasis and 
angiogenesis. It is active in cancer cells, cancer-associated 
fibroblasts and endothelial cells (reviewed in [31]). In 
particular in colorectal cancer, stromal protein levels of 
ETS1 were significantly associated with the formation of 
lung metastasis [32]. It was reported to be a direct target 
of miR-200c in mouse embryonic stem cells [33]. Of note, 
ETS1 is known to repress the transcription of the miR-
192 host gene [34] and can induce the expression of KDR, 
another potential target gene of miR-200c.
2.3.3 Validated target genes of miR-17

The cytokine transforming growth factor beta 1 
(TGFB1) is a well-known ligand and driver of TGF-β 
signaling which is central for tumor development and 
progression, angiogenesis, epithelial-to-mesenchymal 
transition and metastasis (reviewed in [35–37]). 
Tumor cell-derived TGF-β is actively promoting the 
transdifferentiation of fibroblasts to a myofibroblast- 
or tumor-associated fibroblast phenotype [38]. In the 
course of colorectal cancer progression, the interaction 
of tumor cells and tumor-associated fibroblasts leads to 
a hyperactivation of TGF-β signaling in tumor-associated 
fibroblasts and an elevated secretion of TGF-β into the 
extracellular space whereas TGF-β signaling is lost 
in most cancer cells [39]. Besides other known target 
genes, TGF-β is known to increase its own expression 
[39] and the expression of MMP2 [40]. LAMC1 is a 
member of a large family of extracellular glycoproteins 
which form large polymers with other laminin isoforms 
and form a major constituent of the basement membrane 
besides collagen. LAMC1 is essential during embryonic 
development [41]. In the context of tumor development, it 
is known that LAMC1 promotes cancer cell migration and 
invasion in prostate cancer [11] and enhances tumor cell 
motility and invasion in uterine and ovarian carcinomas 
[42]. Furthermore, it was shown that LAMC1 is a direct 
target of miR-22 and miR-29a/b/c in prostate cancer [11, 
43] and of miR-205 in receptor triple-negative breast 
cancer [44].
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Supplementary Figure 1: Workflow to set up and compare the piecewise linear model with the linear model. MiRNA-
target gene pairs were extracted from the database TarBase, gene- and miRNA expression data were taken from TCGA. For every selected 
miRNA-gene pair, a piecewise linear model and a linear model were set up and solved. To confirm the predicted target genes and to 
compare the performance of both models, we assembled expression data from miRNA transfection experiments and tested the predicted 
target genes from the models for significant enrichment among the down-regulated target genes from the transfection experiments. (TCGA 
= The Cancer Genome Atlas; PWL model = piecewise linear model; NCBI GEO = NCBI Gene expression Omnibus).



Supplementary Figure 2: Enriched gene sets of differentially expressed genes and miRNAs in the MSI immune-, the 
canonical- and the metabolic subgroup. Top 10 gene sets listed according to the number of regulating miRNAs (left) and the number 
of enriched target genes (right) are shown. The color indicates the assigned gene set category. (A) MSI immune subgroup, miRNAs down-
regulated, target genes up-regulated. (B) MSI immune subgroup, miRNAs up-regulated, target genes down-regulated.



Supplementary Figure 2: (Continued) Enriched gene sets of differentially expressed genes and miRNAs in the MSI 
immune-, the canonical- and the metabolic subgroup. (C) Canonical subgroup, miRNAs down-regulated, target genes up-
regulated. (D) Canonical subgroup, miRNAs up-regulated, target genes down-regulated. (E) Metabolic subgroup, miRNAs up-regulated, 
target genes down-regulated.



Supplementary Figure 3: Box-plots of expression values of tumor-associated fibroblast marker genes across molecular 
subgroups. ACTA2, FAP and PDGFRB are typical marker genes for tumor-associated fibroblasts. All of them were significantly up-
regulated in the stromal subgroup in the TCGA colon adenocarcinoma dataset. Significance values were determined with Student’s t-test 
and multiple testing corrected using the method by Benjamini-Hochberg, p=2.34e-32 for ACTA2, p=1.32e-11 for FAP and p=3.37e-21 for 
PDGFRB, (***) represents p-values below 0.001.



Supplementary Figure 4: Western blot analysis of MMP2 protein level in miRNA transfected fibroblasts. Western blot 
assays to detect the relative MMP2 protein abundance after transfection with miR-200c, miR-17 and miR-192 in (A) the supernatant of 
CCD-18Co cells (n=1) and (B) in the supernatant of MRC5 cells (n=1). In addition, MRC5 cells were also transfected with a specific 
siRNA targeting MMP2. We observed two bands in the western blots, indicating the detection of pro-MMP2 at ~72 kDa and an MMP2 
dimer complex at ~170 kDa. Known MMP2 protein isoforms are described in [45]. The signal intensity from the 170kDa band was used to 
calculate the relative abundances. After siRNA-mediated knockdown of MMP2 in MRC5 cells, we measured a relative protein abundance 
of 0.46 using a siRNA mimic control as a reference, which confirms the selected band and the specificity of the used antibody. We used a 
mimic control transfection as a reference and observed a relative MMP2 protein abundance of 0.57, 0.54 and 0.62 for miR-200c, miR-17 
and miR-192, respectively, in MRC5 cells (n=1). In CCD-18Co cells, we detected a relative protein abundance of 0.83, 0.68 and 0.29 for 
miR-192, miR-17 and miR-200c after transfection (n=1).



Supplementary Figure 5: Proliferation rates of HCT-116 under co-culture conditions. Proliferation rates are presented 
as optical density (OD) at 450 nm absorbance measured 24h post transfection. HCT-116 cells were co-cultured with the supernatant of 
CCD-18Co cells which were transfected with miR-192, miR-17, miR-200c and a mimic control beforehand. One-way ANOVA Dunnett‘s 
multiple comparison test using mimic control-1 as a reference revealed no significant differences in either condition.



Supplementary Figure 6: Transfection efficacy of CCD-18Co fibroblast cells. Transfection efficacy of CCD-18Co fibroblasts 
cells were tested using siRNA coupled to Cy-3 (siR-Cy3). Fibroblasts were transfected with 50 nM siR-Cy3 in 6 well plates using RNAiMax 
reagent. Three days post transfection cells were harvested and analyzed by flow cytometry. First, a gate was set on fibroblast cells based on 
forward scatter area (FSC-A) and side scatter area (SSC-A) with 50% of all events inside the fibroblast gate (A). Subsequently, doublets 
were excluded by gating on single cells using FSC area and FSC height with > 90% single cells from all fibroblast events (B). Dead cells 
were excluded by setting a gate on living cells based on fluorescence intensity of Pacific-Orange. Therefore, heat-killed cells were mixed 
1:1 with viable cells and the gate was set on Pacific-Orange negative subset resulting in live subset with 60% of all single cell events (C). 
Finally, the gate for Cy3 negative and positive cells was set using sample stained with an isotype control resulting in >99% Cy3 negative 
events (D). Cells transfected with 50 nM siR-Cy3 using RNAiMax transfection reagent showed a viability of 94 % and a transfection 
efficacy (Cy3 positive events) of 80% which is shown in (E).



Supplementary Table 1: Detailed information about gene- and miRNA expression datasets used for modeling.

See Supplementary File 1

Supplementary Table 2: Detailed information about miRNA transfection datasets used for model validation.

See Supplemenatry File 2



Supplementary Table 3: Analyzed cell-type specific gene- and miRNA expression datasets

ID Tissue 
type

Cell type Method Data type Platform num 
Samples

Reference

GSE30292 Colon 
cancer Tumor

laser 
micro-

dissection
Gene exp. Affymetrix HG U133 

Plus 2.0 MA 3 Christensen

GSE30292 Colon 
cancer TAF

primary 
cell 

culture
Gene exp. Affymetrix HG U133 

Plus 2.0 MA 3 Christensen

GSE39396 Colon 
cancer Epithelial FACS Gene exp. Affymetrix HT HG-

U133+ PM Array Plate 6 Calon

GSE39396 Colon 
cancer Fibroblast FACS Gene exp. Affymetrix HT HG-

U133+ PM Array Plate 6 Calon

GSE35602 Colon 
cancer Stroma

laser 
micro-

dissection
Gene exp. Agilent-014850 WHG 

MA 4x44K 13 Nishida

GSE35602
Normal 
colon 
tissue

Stroma
laser 

micro-
dissection

Gene exp. Agilent-014850 WHG 
MA 4x44K 4 Nishida

GSE35602 Colon 
cancer Epithelial

laser 
micro-

dissection
Gene exp. Agilent-014850 WHG 

MA 4x44K 13 Nishida

GSE35602
Normal 
colon 
tissue

Epithelial
laser 

micro-
dissection

Gene exp. Agilent-014850 WHG 
MA 4x44K 4 Nishida

GSE35602 Colon 
cancer Stroma

laser 
micro-

dissection

MiRNA 
exp.

Agilent-019118 
Human miRNA MA 

2.0 G4470B
13 Nishida

GSE35602
Normal 
colon 
tissue

Stroma
laser 

micro-
dissection

MiRNA 
exp.

Agilent-019118 
Human miRNA MA 

2.0 G4470B
4 Nishida

GSE35602 Colon 
cancer Epithelial

laser 
micro-

dissection

MiRNA 
exp.

Agilent-019118 
Human miRNA MA 

2.0 G4470B
4 Nishida

GSE35602
Normal 
colon 
tissue

Epithelial
laser 

micro-
dissection

MiRNA 
exp.

Agilent-019118 
Human miRNA MA 

2.0 G4470B
4 Nishida

E-MTAB-2479 Colon 
cancer Tumor micro-

dissection
MiRNA 

exp.
Agilent G13 human 
miRNA MA 8x15 55 Scarpati

E-MTAB-2479 Colon 
cancer Stroma micro-

dissection
MiRNA 

exp.
Agilent G13 human 
miRNA MA 8x15 49 Scarpati

TAF = tumor-associated fibroblasts, MA = microarray, FACS = fluorescence-activated cell scanning, exp. = expression, 
WHG = Whole Human Genome, HG = Human Genome.



Supplementary Table 4: Predicted miRNA binding sites of ECM target genes

MiRNA Target gene MirWalk Pictar PITA RNA_22 TargetScan 
(Conserved)

TargetScan 
(non-Conserved)

hsa-mir-17 DST Yes Yes Yes Yes Yes Yes

hsa-mir-17 ETS1 --- --- Yes Yes --- Yes

hsa-mir-17 FBN1 --- --- Yes Yes --- ---

hsa-mir-17 FGF2 Yes --- Yes Yes Yes Yes

hsa-mir-17 FN1 --- --- Yes --- --- ---

hsa-mir-17 ITGAV --- --- Yes Yes --- ---

hsa-mir-17 ITGB1 --- --- Yes Yes Yes ---

hsa-mir-17 PXDN --- --- Yes Yes Yes Yes

hsa-mir-17 TIMP2 --- Yes Yes Yes Yes ---

hsa-mir-192 FN1 --- --- --- Yes --- ---

hsa-mir-192 KDR --- --- Yes Yes --- ---

hsa-mir-192 MMP2 --- --- Yes Yes --- ---

hsa-mir-192 TGFB1 --- --- --- --- Yes ---

hsa-mir-200c DST --- --- Yes Yes Yes ---

hsa-mir-200c FGF2 --- --- Yes Yes Yes ---

hsa-mir-200c ITGAV Yes Yes Yes Yes Yes Yes

hsa-mir-200c ITGB1 --- --- Yes --- --- Yes

hsa-mir-200c PLOD1 --- --- --- Yes --- ---

hsa-mir-200c SPARC Yes --- --- Yes --- ---

Tested miRNA - target gene pairs are listed row-wise, used binding site prediction tools represent the columns. A pair was 
marked as predicted if at least one binding site was found with the respective tool.



Supplementary Table 5: Used gene-specific primer pairs for qPCR experiments.

See Supplementary File 3

Supplementary Table 6: Predicted or validated miRNA binding sites of candidate house-keeping genes.

See Supplementary File 4

Supplementary Table 7: Significance values of enrichment tests in miRNA transfection experiments.

See Supplementary File 5

Supplementary Table 8: Enriched gene sets per miRNA, grouped by colorectal cancer subgroups and expression 
direction.

See Supplemenatry File 6

Supplementary Table 9: Predicted miRNA - target gene pairs involved in extracellular matrix remodeling, grouped by 
the molecular function of the target genes.

See Supplementary File 7

Supplementary Table 10: Differentially expressed ECM-related genes.

See Supplementary File 8

Supplementary Table 11: Differentially expressed ECM-related miRNAs.

See Supplementary File 9

Supplementary Table 12: Expression fold changes of the identified candidate genes.

See Supplementary File 10



Supplementary Table 13: Correlation coefficients and significance levels of miRNA expression and protein 
abundance

Mirna Target Gene Correlation 
coefficient

P-value

hsa-mir-200c FN1 -0.46 2.94E-04

hsa-mir-17 ITGAV -0.44 5.08E-04

hsa-mir-17 FBN1 -0.41 1.26E-03

hsa-mir-17 FSCN1 -0.36 3.74E-03

hsa-mir-17 ITGB1 -0.36 4.17E-03

hsa-mir-17 LAMC1 -0.33 7.86E-03

hsa-mir-200c ITGAV -0.32 9.03E-03

hsa-mir-200c ITGB1 -0.30 1.26E-02

hsa-mir-17 MMP2 -0.26 2.60E-02

hsa-mir-192 SPARC -0.22 4.93E-02

hsa-mir-192 FN1 -0.22 5.49E-02

hsa-mir-192 MMP2 -0.22 5.56E-02

hsa-mir-200c SERPINH1 -0.21 5.86E-02

hsa-mir-192 FBN1 -0.20 7.47E-02

hsa-mir-192 ITGAV -0.18 8.96E-02

hsa-mir-192 ITGB1 -0.18 8.95E-02

hsa-mir-17 FN1 -0.16 1.22E-01

hsa-mir-200c PLOD1 -0.12 2.06E-01

hsa-mir-192 LOXL2 -0.08 2.91E-01

hsa-mir-200c SPARC -0.07 3.21E-01

hsa-mir-200c NCAM1 -0.05 4.01E-01

hsa-mir-17 DST -0.03 4.51E-01

hsa-mir-200c DST -0.02 4.83E-01

hsa-mir-200c FBLN5 0.00 5.37E-01

hsa-mir-17 PXDN 0.04 6.21E-01

hsa-mir-192 PLOD1 0.05 6.62E-01

hsa-mir-192 PXDN 0.06 6.77E-01

hsa-mir-192 DST 0.08 7.19E-01


