Supplementary information

Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA

Léonard Jarzebowski^{1, 2}, Marie Le Bouteiller^{1, 2}, Sabrina Coqueran^{1, 2}, Aurélien Raveux^{1, 2}, Sandrine Vandormael-Pournin^{1, 2}, Alexandre David³, Ana Cumano⁴ and Michel Cohen-Tannoudji^{1, 2 #}

¹: Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France

- ²: CNRS UMR 3738, Institut Pasteur, Paris 75015, France.
- ³: IGF, CNRS, INSERM, Univ. Montpellier, 34094 Montpellier, France
- ⁴: Lymphocyte Development Unit, Institut Pasteur, Paris 75015, France

[#]Correspondence:

Michel Cohen-Tannoudji : Early Mammalian Development and Stem Cell Biology, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du docteur Roux, F-75015 Paris, France; E-mail: m-cohen@pasteur.fr; Phone: 33 1 45 68 84 86; Fax: 33 1 45 68 86 34; website: https://research.pasteur.fr/en/team/group-michel-cohen-tannoudji/.

Running title: Ribosome biogenesis in HSCs

Figure S1: Gating strategies for flow cytometry analyses

A. For all flow cytometry analyses, cell debris and doublets were eliminated using forward and side scatter plots as indicated. **B.** For analysis of the erythroid lineage, singlets (BM) were plotted using CD71 and Ter119 and the indicated gate were drawn to separate pro-erythroblasts (proE;), CD71⁺ Ter119^{low}), basophilic erythroblasts (basoE; CD71⁺ Ter119⁺), late basophilic and polychromatophilic erythroblasts (polyE; CD71^{low} Ter119⁺) and orthochromatophilic erythroblasts (orthoE; CD71⁻ Ter119⁺). **C.** For analyses on the immature hematopoietic populations, singlets (BM) were plotted using Lineage markers and forward-scatter to separate Lin⁺ and Lin⁻ cells. Lin- cells were then plotted using Sca1 and cKit to separate Lin⁻ Sca1⁻ cKit⁺ oligopotent progenitors. HSC and MPP were further isolated from the LSK population based on CD34 expression while CMP, GMP and MEP were isolated from the OPP population using FCγR-II/III and CD34 expression. **D.** For Flow-FISH experiments, FCγR-II/III couldn't be used and CMP, GMP and MEP populations were defined based on CD34 expression as indicated.

15 min EU

В

15min EU

Figure S2: CX-5461 treatment blocks processing of previously synthesized rRNA

A. Embryonic stem cells were incubated in the presence or absence of 10 μ M CX-5461 for 2h, and then incubated for 15 min in the presence or absence of 1 mM EU. Cells incubated with neither compound were used as controls. **B.** Embryonic stem cells were incubated in the presence of 1 mM EU for 15 min, and were then incubated in the presence or absence of 10 μ M CX-5461 up to 2h. Cells were analyzed at the indicated time-points after EU incubation. EU staining (green) was revealed using Click-iT chemistry, and nuclei were stained with Hoechst (white). Bar: 10 μ m.

Antibody information				
Antigen	Fluorochrome	Clone	Supplier	
CD71	Biotin	C2	BD Biosciences	
B220	Biotin	RA3-6B2	BioLegend	
Nk1.1	Biotin	PK136	BD Biosciences	
Gr-1	Biotin	RB6-8C5	BD Biosciences	
Ter119	Biotin	TER-119	BD Biosciences	
CD3ε	Biotin	145-2C11	BD Biosciences	
CD11c	Biotin	N418	BioLegend	
Mac1	Biotin	M1/70	BioLegend	
Sca-1	PeCy7	D7	BD Biosciences	
Sca-1	BV510	D7	DB	
cKit	APC	2B8	BioLegend	
cKit	PeCy7	2B8	BioLegend	
CD34	FITC	RAM34	eBioscience	
CD34	eFluor660	RAM34	eBioscience	
FCγR-II/III	PE	2.4G2	BD Biosciences	
Streptavidin	Pacific Blue	_	Invitrogen	
Puromycin	Alexa647	2A4	Seedhom et al., 2016	

Table S1: Antibodies

List of antibodies used for surface marker staining and intra-cellular puromycin staining.

	Volume per well	Comments
Solution A		
Formamide	5μL	
2X SSC	2,5μL	
tRNA (10mg/mL)	2,5μL	SIGMA R1753
H2O (<i>QS</i> 21,25μL)	8,75μL	
FISH probe (50ng/μL)	2,5μL	
	final vol. 21,25µL	
Solution B		
4X SSC, 20% dextran sulfate	25µL	
BSA 10mg/mL	1,25μL	
VRC 200mM	2,5μL	SIGMA R3380
	final vol. 28,75μL	
Solution (A+B)	final vol. 50µL	heat solution A 5min at 95°C before mixing

Table S2: FISH staining buffer preparation

For preparation of FISH staining buffer, solutions A and B were prepared separately as indicated. Solution A was heated for 5min at 95°C, and mixed with solution B for stainings.

Supplementary References

Seedhom, M. O., Hickman, H. D., Wei, J., David, A. and Yewdell, J. W. (2016). Protein Translation Activity: A New Measure of Host Immune Cell Activation. The Journal of Immunology 197, 1498–1506.