SUPPLEMENTARY INFORMATION FOR:

Genetic engineering a large animal model of human hypophosphatasia in sheep

Authors: Diarra K. Williams^{1#}, Carlos Pinzón^{1#}, Shannon Huggins¹, Jane H. Pryor¹, Alyssa Falck², Forrest Herman¹, James Oldeschulte¹, Michael B. Chavez³, Brian L. Foster³, Sarah H White⁴, Mark E. Westhusin¹, Larry J. Suva¹, Charles R. Long¹, and Dana Gaddy^{*3}

Affiliations:

¹ Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843

² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843

³Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.

⁴Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843

* Corresponding author. Dr. Dana Gaddy, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; 979-862-9134; dgaddy@cvm.tamu.edu

[#] Authors contributed equally to this work.

Supplementary Information

Human	1	$\tt MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFLGDGMGVSTVTAARILKGQLHHN$	80
Sheep	1	$\tt MISPFLVLAIGTCLASSLVPEKEKDPKYWRDQAQQTLKNALRLQTLNTNVAKNVIMFLGDGMGVSTVTAARILKGQLHHN$	80
Mouse	1	$\tt MISPFLVLAIGTCLTNSFVPEKERDPSYWRQQAQETLKNALKLQKLNTNVAKNVIMFLGDGMGVSTVTAARILKGQLHHN$	80
Human	81	${\tt PGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKS$	160
Sheep	81	${\tt PGEETKLEMD} KFPYVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAATQRSQCNTTQGNEVTSILRWAKDAGKS$	160
Mouse	81	${\tt TGEETRLEMD} KFPFVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAATERTRCNTTQGNEVTSILRWAKDAGKS$	160
Human	161	VGIVTTTRVNHATPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDVEYESDE	240
Sheep	161	$\tt VGIVTTTRVNHATPSASYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNVKDIEVIMGGGRKYMFPKNRTDVEYELDE$	240
Mouse	161	VGIVTTTRVNHATPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIKDIDVIMGGGRKYMYPKNRTDVEYELDE	240
Human	241	KARGTRLDGLDLVDTWKSFKPRHKHSHFIWNRTELLTLDPHNVDYLLGLFEPGDMQYELNRNNVTDPSLSEMVVVAIQIL	320
Sheep	241	KARGTRLDGLNLVDIWKSFKPKHKHSHYVWNRTDLLALDPHTVDYLLGLFEPGDMQYELNRNNVTDPSLSEMVEMAIRIL	320
Mouse	241	KARGTRLDGLDLISIWKSFKPRHKHSHYVWNRTELLALDPSRVDYLLGLFEPGDMQYELNRNNLTDPSLSEMVEVALRIL	320
Human	321	RKNPKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAP	400
Sheep	321	NKNPKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDQAIGQAGAMTSVEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAP	400
Mouse	321	TKNLKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDQAIGKAGAMTSQKDTLTVVTADHSHVFTFGGYTPRGNSIFGLAP	400
Human	401	IIC/IVICL MLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYV	480
Sheep	401	MVSDTDKKPFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAVAVFAKGPMAHLLHGVHEQNYI	465
Mouse	401	MVSDTDKKPFTAILYGNGPGYKVVDGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFAKGPMAHLLHGVHEQNYI	480
Human	481	PHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSVLF 524	
Sheep	466	PHVMAYAACIGANRDHCASASSPLPargprkpksachppgSPLESSTAARSVAGLQppppppaapfwptg 534	
Mouse	481	PHVMAYASCIGANLDHCAWAGSGSAPSPGALLLPLAVLSLRTLF524	

Supplemental Fig. 1. Amino Acid sequence alignment of human, sheep and mouse **TNSALP protein sequences**. Conserved Exon 10 Ile342 > Met for targeted mutation is shown.

Supplemental Fig. 2 Longitudinal weight gain was similar across all genotypes. Weights were measured at birth and weekly during life. (A) Individual preweaning weekly body weights are plotted for all 9 animals, showing similar growth rates over the first 8 weeks of life. Average daily weight gain for each animal is plotted by genotype during (B) pre-weaning and (C) postweaning to 6 months of age. No significant difference in weight gain by genotype is observed.

Supplemental Fig. 3 MicroCT reconstructions and histology of *ALPL* c.1077C>G targeted sheep vertebrae (A). 3D renderings of individual caudal vertebrae from wild type, heterozygous and homozygote lambs. Images are sagitally cut to show the extent of mid-shaft cortical and trabecular bone in each vertebral body. (B) H&E stained histologic sections from the same wild type, heterozygous and homozygote vertebrae shows a similar sagittal cross-sectional view of the vertebrae representative of each genotype. Insets show developing bone formation, teams of osteoblasts lining trabecular spicules and osteons in the developing sheep cortical bone.

Supplemental Table 1. Minimal potential off-target sites using the ALPL c1077C>G guide #1 sequence.

Sequence	PAM	Score (%)	Gene	Chromosome	Strand	Position	bp Mis- match
GATGGACCAGGCCATCGGGC	AGG	100	ENSOARG0000008507	chr2	-1	244078281	0
GCTGGACCAGGCCATCGGGG	AGG	8.611956522		chr11	-1	33997742	2
GAAGAAGCAAGCCATCGGGC	AAG	0.924515551		chr1	-1	246604745	4
CAGGGACCACGCCATCGGGT	CGG	0.859266382		chr24	-1	41705814	4
CTGGGACCAGGACATCGGGC	AGG	0.796410829		chr11	1	13803103	4
CTGGGACCAGGACATCGGGC	AGG	0.796410829		chr11	1	13798153	4
GTTGGCGGAGGCCATCGGGC	TGG	0.595983173	ENSOARG0000001576	chr26	-1	32197030	4
TAGGGACCCGGCCATCGGGG	CGG	0.56287496		chr3	-1	219963922	4
GCTGGGCGAGCCCATCGGGC	AGG	0.526959664		JH924580.1	1	31944	4
GCTGGGCCCCGCCATCGGGC	CAG	0.525048121	ENSOARG0000018751	chr24	-1	24785660	4
GCTGAGCCAGCCCATCGGGC	AAG	0.522357396		chr11	-1	18680004	4

ENSOARG0000008507= ALPL gene