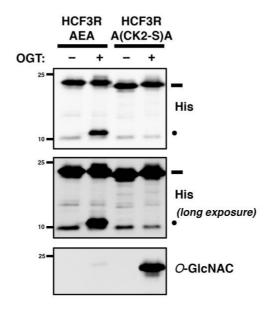

SUPPORTING INFORMATION

The conserved threonine-rich region of the HCF-1_{PRO} repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities

Vaibhav Kapuria¹, Ute F. Röhrig², Patrice Waridel³, Fabienne Lammers¹, Vladimir S. Borodkin⁴, Daan M. F. van Aalten⁴, Vincent Zoete^{2,5}, and Winship Herr¹

From the ¹ Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; ² Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; ³ Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; ⁴ Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.; ⁵ Department of Fundamental Oncology, University of Lausanne, Ludwig Institute for Cancer Research, 1066 Epalinges, Switzerland.


Supplementary Figure 1

<u>Supplementary Figure 1.</u> Kinetics of E10S peptide glycosylation by S_p - and R_p - αS -UDP-GIcNAc.

In vitro peptide glycosylation assay was performed using HCF-1_{PRO}-repeat 2 E10S peptide. by incubating with WT OGT and either S_p- α S-UDP-GlcNAc (green bar) or R_p- α S-UDP-GlcNAc (red bar) as indicated. Samples were withdrawn at indicated time intervals and peptide glycosylation was detected using LC-MS as described in materials and methods. O-GlcNAcylation of the E10S peptide at different time points was normalized to the O-GlcNAcylation levels at 120 minute time point.

Supplementary Figure 2

<u>Supplementary Figure 2.</u> OGT mediated cleavage and glycosylation of HCF3R substrates.

HCF3R-AEA or chimeric HCF3R-A(CK2-S)A protein were incubated with or without OGT for 6 hr. HCF3R protein cleavage and glycosylation was assayed by SDS-PAGE and immunoblotting using an anti-His antibody (for cleavage) and RL2 anti-O-GlcNAc antibody (glycosylation). Anti-OGT was used to detect levels of OGT protein. Chimeric HCF3R-A(CK2-S)A protein did not undergo any cleavage (lack of cleavage band in long exposure) but was heavily glycosylated as compared to native HCF3R-AEA substrate.

(■, un-cleaved HCF3R substrate; •, cleaved product.)

Supplementary Table 1

Glycosylation assay peptides

Peptide Name	Peptide Sequence	Purity
CK2 (17-mer)	KKKYPGGSTPV S SANMM	97%
E10S (26-mer)	${\tt VRVCSNPPC} {\bf S}{\tt THETGTTNTATTATSN}$	96%
Ch10 (28-mer)	KKKYPGGSTPV S THETGTTNTATTATSN	98%
Ch13 (28-mer)	KKKYPGGSTPV S SANTGTTNTATTATSN	96%
Ch13 T14A (28-mer)	kkkypggstpv \mathbf{S} san $\underline{\mathtt{A}}$ gttntattatsn	99%
Ch13 T14Y (28-mer)	kkkypggstpv \mathbf{S} san $\underline{ ext{y}}$ gttntattatsn	95%
Ch13 T(17-22)A (28-mer)	KKKYPGGSTPV S SANTGT <u>A</u> NAAAAATSN	99%

Cleavage assay peptides

Peptide Name	Peptide Sequence	Purity
HCF-SHORT (32-mer)	YVRVCSNPPC ${f E}$ THQTGTTNTATTATSNMAGQH -NH2	98%
CK2(S10) - Thr-rich+ (32-mer)	KKKPGGSTPV $oldsymbol{S}$ SANTGTTNTATTATSNMAGQH -NH2	98%
CK2(E10) - Thr-rich+ (32-mer)	KKKPGGSTPV ${f E}$ SANTGTTNTATTATSNMAGQH -NH2	99%
CK2(E10) - Thr-rich-(32-mer)	KKKPGGSTPV ${f E}$ SANTGT ${f A}$ N ${f A}$ A ${f A}$ ATSNMAGQH $-$ NH2	99%
CK2(E9S10)- Thr-rich+ (33-mer)	KKKPGGSTPVE \mathbf{S} SANTGTTNTATTATSNMAGQH -NH2	98%

Supplementary Table 2

HCF3R-AEA

 $\label{eq:potveloc} \begin{picture}{ll} PGTVTLVCSNPPC \raller{A}THETGTTNTATTTVVANLGGHPQPTQVQFVCDRQEAAASLVTST\\ VGQQNGSVVRVCSNPPC \raller{E}THETGTTNTATTATSNMAGQHGCSNPPC \raller{A}THETGTTNTA\\ TTAMSSVGAN\\ \end{picture}$

HCF3R-ASA

 $\label{eq:potven} \begin{picture}{ll} PGTVTLVCSNPPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTTVVANLGGHPQPTQVQFVCDRQEAAASLVTST \\ VGQQNGSVVRVCSNPPC \rabel{eq:potven} \begin{picture}{ll} STHETGTTNTATTATSNMAGQHGCSNPPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTATSNMAGQHGCSNPPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTATTATSNMAGQHGCSNPPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTATSNMAGQHGCSNPPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTATSNMAGQHGCSNPC \rabel{eq:potven} \begin{picture}{ll} ATHETGTTNTATTATSNMAGQHGCSNPC \rabel{eq:pot$

HCF3R-A(CK2-S)A

 ${\tt PGTVTLVCSNPPC} \textbf{A} \texttt{THETGTTNTATTTVVANLGGHPQPTQVQFVCDRQEAAASLVTST} \\ \texttt{VGQQNGSVVRPGGSTPV} \textbf{\underline{S}} \texttt{SANTGTTNTATTATSNMAGQHGCSNPPC} \textbf{A} \texttt{THETGTTNTATTAMSSVGAN} \\ \texttt{TTAMSSVGAN}$

HCF3R-A(CK2-E)A

 $\label{eq:potven} \begin{picture}{ll} PGTVTLVCSNPPC ATHETGTTNTATTTVVANLGGHPQPTQVQFVCDRQEAAASLVTST\\ VGQQNGSVVRPGGSTPV $\underline{\textbf{E}}$SANTGTTNTATTATSNMAGQHGCSNPPC $\underline{\textbf{A}}$THETGTTNTA\\ TTAMSSVGAN \end{picture}$