optica

Bio-inspired imager improves sensitivity in nearinfrared fluorescence image-guided surgery: supplementary material

1

MISSAEL GARCIA¹, CHRISTOPHER EDMISTON¹, TIMOTHY YORK², RADOSLAV MARINOV^{1,3}, SUMAN MONDAL^{4,5}, NAN ZHU⁶, GAIL P. SUDLOW⁴, WALTER J. AKERS⁴, JULIE MARGENTHALER⁷, SAMUEL ACHILEFU^{4,5,10}, RONGGUANG LIANG⁶, MOHAMED A. ZAYED^{8,9}, MARTA Y. PEPINO¹¹ AND VIKTOR GRUEV^{12,13*}

¹Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, Missouri, USA

²Southern Illinois University at Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, USA

³Washington University in St. Louis, Institute for Materials Science, St. Louis, Missouri, USA

⁴Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, USA

- ⁵Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, USA
- ⁶University of Arizona, College of Optical Sciences, Tucson, Arizona, USA

⁷Washington University School of Medicine, Department of Surgery, Barnes-Jewish Hospital and the Alvin J. Siteman Cancer Center, St. Louis, Missouri, USA

⁸Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, Missouri, USA

⁹Veterans Affairs St. Louis Health Care System, Department of Surgery, St. Louis, Missouri, USA

¹⁰Washington University School of Medicine, Department of Medicine, St. Louis, Missouri, USA

¹¹University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, Urbana, Illinois, USA

¹²University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA

¹³University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, USA

*Corresponding author: vgruev@illinois.edu

Published 5 April 2018

This document provides supplementary information to "Bio-inspired imager improves sensitivity in nearinfrared fluorescence image-guided surgery," https://doi.org/10.1364/OPTICA.5.000413. Figures for the imaging sensor block and timing diagram and the microfabrication procedure for the pixelated spectral filters are presented here.

Fig S1. Block diagram of the bio-inspired color-near infrared (NIR) scientific complementary metal-oxide semiconductor imaging sensor. An array of photo detectors and pixelated interference spectral filters are monolithically integrated. The two exposure control registers enable individual control of the times the NIR and red, green, blue photodiodes are collecting photons.

Fig S2. Timing diagram of two neighboring pixels with different spectral filters. Top, Photodiode voltage on the near infrared (NIR) pixel. Bottom, Photodiode voltage on the visible (red, green, blue) pixels. Because of the difference in the photon flux between the NIR fluorescence and reflected visible-spectrum light under surgical light illumination, the exposure time is adjusted accordingly to capture high-SNR and high-contrast images. The photodiode signal is sampled at the end of the exposure time, which is 0.1 ms for the visible spectrum pixel and 40 ms for the NIR pixels.

Fig. S3. Microfabrication procedure for fabricating pixelated spectral filters.