Synthesis of Benzannulated Medium-ring Lactams via a Tandem Oxidative Dearomatization–Ring Expansion Reaction

Tezcan Guney,^{a,†} Todd A. Wenderski,^{a,†} Matthew W. Boudreau,^b Derek S. Tan^{*,a, c}

^aChemical Biology Program, Sloan Kettering Institute; ^bSummer Undergraduate Research Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences; ^cTri-Institutional Research Program Memorial Sloan Kettering Cancer Center 1275 York Avenue, Box 422, New York, New York 10065

Supplementary Information

A.	Supplementary Figures 1–10	S2
В.	Principal component analysis	S18
С.	Materials and methods	S23
D.	Synthesis of olefin-containing benzannulated medium ring lactams	S24
E.	Synthesis of bicyclic ketone precursors	S33
F.	Synthesis of ketone-containing benzannulated medium-ring lactams	S40
G.	Downstream modifications of ODRE scaffolds	S70
H.	X-Ray crystallographic analysis of <i>anti</i> - α -methyl- β -hydroxylactam 54	S78
I.	¹ H-NMR and ¹³ C-NMR spectra	S95

A. SUPPLEMENTARY FIGURES 1–10

Supplementary Figure 1. (a) Treatment of 6-methoxytetralin **16** with PIFA in nitromethane results in a complex mixture from which 9-membered medium-ring lactam **17** and cyclohexadienone **S2** were recovered. The observation of **S2** in the crude mixture indicates the instability of intermediate **S1**, which hinders formation of desired product **17**. (b) Treatment of 6-methoxytetralin **16** with PIFA in methanol- d_4 affords lactam **17** in 85% yield. In the proposed mechanism of methanol-facilitated ODRE, treatment of **16** with PIFA generates the *O*-methyloxocarbenium intermediate **S1**, which can undergo either a 1,2- or 1,4-addition in the presence of the nucleophilic solvent methanol- d_4 . Although either path A or path B can ultimately lead to the formation of lactam **17** through a nucleophilic addition/ring-expanding rearomatization sequence, conceivably only path A can circumvent deuterium incorporation in **17** as path B is more likely to generate a mixture of deuterated and non-deuterated medium-ring products **17** and **S3**, respectively. Notably, the crude ¹H-NMR spectrum of the overall reaction as shown above did not show the deuterium-incorporated product **S3**, suggesting that path A is favored over path B in the ODRE cascade. PIFA = (bis(trifluoroacetoxy)iodo)benzene.

Supplementary Figure 2. Principal component analysis (PCA) of ODRE-derived libraries. (a) PCA plot of PC1 vs. PC2 (b) PCA plot of PC1 vs. PC3. (c) PCA plot of PC3 vs. PC2. PCA of 41 tandem ODRE benzannulated medium rings (ODRE-2nd Gen), 47 stepwise ODRE benzannulated medium rings¹ (ODRE-1st Gen), 20 benzannulated medium ring natural products (MedRingNPs), established reference sets of 40 top-selling brand-name drugs (Drugs), 60 diverse natural products (NPs), and 20 ChemBridge and ChemDiv commercial drug-like library compounds using 20 structural and physicochemical descriptors.^{1,2} The hypothetical average structure for each series (-AVG) is also shown. The original 20-dimensional data set is plotted onto two dimensional unitless, orthogonal axes (principal components) that represent linear combinations of the original 20 parameters where PC1–PC3 represents 75% of the total variation. See **Supplementary Data Set 1** for complete data processing.

¹ Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2013, 9, 21-29.

² Wenderski, T. A.; Stratton, C. F.; Bauer, R. A.; Kopp, F.; Tan, D. S. *Methods Mol. Biol.* 2015, *1263*, 225-242.

Supplementary Figure 3. Biplots and component loadings for PCA of tandem and stepwise ODRE libraries with benzannulated medium ring natural products and established reference sets. The biplots for (a) PC1 vs. PC2 (b) PC1 vs. PC3 (c) PC3 vs. PC2. (d) Component loadings of the 20 structural and physicochemical descriptors for the first three principal components that show the relative influence of each descriptor in the PCA plots. The top five most influential descriptors are highlighted in yellow.

Supplementary Figure 4. Structures of the 40 highest-selling brand-name drugs for PCA.

Supplementary Figure 4. Structures of the 40 highest-selling brand-name drugs for PCA (continued).

Supplementary Figure 5. Structures of 10 commercial drug-like library compounds from ChemBridge used in PCA. (PubChem³ Compound ID numbers are indicated.)

³ For the PubChem database, see: https://pubchem.ncbi.nlm.nih.gov/search/

Supplementary Figure 6. Structures of 10 commercial drug-like library compounds from ChemDiv used in PCA. (PubChem³ Compound ID numbers are indicated.)

Supplementary Figure 7. Structures of 60 diverse natural products used in PCA.

Supplementary Figure 7. Structures of 60 diverse natural products used in PCA (continued).

Supplementary Figure 7. Structures of 60 diverse natural products used in PCA (continued).

Supplementary Figure 7. Structures of 60 diverse natural products used in PCA (continued).

Supplementary Figure 8. Structures of 20 benzannulated medium ring natural products used in PCA.

Supplementary Information

TfO-ten-biaryl-diol

TfO-ten-ester

TfO-ten-ester-exo

TfO-ten-ester-diol

Supplementary Figure 9. Structures of 47 synthetic benzannulated medium rings derived from stepwise ODRE (1st Gen)¹ used in PCA.

Supplementary Figure 9. Structures of 47 synthetic benzannulated medium rings derived from stepwise ODRE (1st Gen)¹ used in PCA (continued).

Supplementary Figure 10. Structures of 41 synthetic benzannulated medium rings derived from tandem ODRE (2nd Gen) used in PCA.

Supplementary Figure 10. Structures of 41 synthetic benzannulated medium rings derived from tandem ODRE (2nd Gen) used in PCA (continued).

B. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis was conducted following the detailed protocols described in the literature.^{1,2,4,5,6} The analysis compared the tandem ODRE library members to our original stepwise ODRE products as well as to our previously established reference set of drugs, commercial drug-like library memberes, and natural products.

1. PCA COMPOUND PROFILES

A total of 228 compounds were analyzed by PCA (Supplementary Fig. 4-10):

- 40 top-selling brand-name, small-molecule drugs by revenue in 2006^5
- 10 drug-like pyrrazolecarboxamides in the MLSMR from ChemBridge
- 10 drug-like dihydrotriazolopyrimidines in the MLSMR from ChemDiv
- 60 natural products with diverse structures and biological activities
- 20 benzannulated medium ring natural products
- 47 synthetic benzannulated medium rings derived from stepwise ODRE¹
- 41 synthetic benzannulated medium ring lactams derived from tandem ODRE (this work)

Average values for each parameter were calculated using Excel within each compound series. These seven hypothetical average molecules for each compound series were also included in the PCA.

Series	Compounds							
Top Selling	abilify	crestor	lipitor	topamax				
Brand-Name	aciphex	cymbalta	nexium	toprol				
Small-Molecule	actos	diovan	norvasc	tricor				
Drugs	adderall	effexor	plavix	valtrex				
(40 entries)	ambien	flonase	prevacid	wellbutrin				
· · · ·	avandia	fosamax	protonix	zetia				
	benazepril	imitrex	risperdal	zocor				
	celebrex	lamictal	serevent	zoloft				
	concerta	levaquin	seroquel	zyprexa				
	coreg	lexapro	singulair	zyrtec				
ChemBridge	PubChem CIDs:	5771429	5309975	5308431				
Library		5771374	5309772	5309246				
(10 entries)	5771496	5771371	5309762	5309020				
ChemDiv	PubChem CIDs:	2529482	2474145	2490046				
Library		2474174	1340935	2490068				
(10 entries)	2529498	2471337	2490059	1342784				
Natural	actinonin	colchicine	lactacystin	spergualin				
Products	adriamycin	compactin	lipstatin	spongistatin1				
(60 entries)	amphotericinb	cyclosporina	midecamycina1	sq26180				
	apoptolidin	cytochalasinb	mizoribine	staurosporine				
	arglabin	daptomycin	monensin	streptomycin				
	artemisinin	discodermolide	mycobactins	talaromycinb				

Supplementary Table 1. Compounds analyzed by PCA.

⁴ Kopp, F.; Stratton, C. F.; Akella, L. B.; Tan, D. S. Nat. Chem. Biol. 2012, 8, 358–365.

⁵ Moura-Letts, G.; DiBlasi, C. M.; Bauer, R. A.; Tan, D. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6745–6750.

⁶ Bauer, R. A.; Wurst, J. M.; Tan, D. S. Curr. Opin. Chem. Biol. 2010, 14, 308–314.

	avermectinb1a	duocarmycina	penicilling	taxol
	bestatin	echinocandinb	phorbolma	telomestatin
	bleomycin	epothilonea	plaunotol	thienamycin
	brefeldina	erythromycina	pseudomonicacida	trapoxinb
	brevetoxinb	fk506	quinine	trichostatin
	calicheamicing1	forskolin	radicicol	validamycin
	calyculina	fumagillin	rapamycin	vancomycin
	cepnamycinc	geidanamycin	ritamycinb	VINCRISTINE
Deverynulated	colormycin	ginkgolideb		zaragozicacida
Benzannulated	apicularenA		kurzichalcolacioneA	sporostatin
Medium Ring	aspercyclideA	coleophomoneB	pterocaryanino	steganacin
Natural	brazilone	chpowellinagiycon	pueroiA	
Products	citreoturan	nellannuolA	rnaziniiam	xestodecalactoneA
(20 entries)			schisandrolA	XestodecalactoneB
Benzannulated	HO-eleven-ester	MeO-eleven-		
Medium Ring	HO-alayan-	MoO-oloven-diol	MeO-nine-olefin-	TfO_ning_olofin_
Library Derived	olefin-58		MeO-mile-olemi- ΔrRr	
from Stepwise	HO-eleven-	MeO-eleven-	MeO-nine-olefin-	TfO-ten-biarvl
ODRE	olefin-67	epoxidation	ArMe	
(47 entries)	HO-eleven-	MeO-eleven-olefin	MeO-ten-MeOH	TfO-ten-biaryl-diol
	olefin-ArOAr			,
	HO-nine-diol-Ph	MeO-eleven-	MeO-ten-olefin	TfO-ten-ester
	HO-nine-olefin- Ph	MeO-nine-diol	MeO-ten-spiro	TfO-ten-ester-diol
	HO-seven-spiro	MeO-nine-diol- ArAr	TfO-eight-olefin	TfO-ten-ester-exo
	HO-ten-biaryl- diol	MeO-nine-diol- ArBr	TfO-eleven-ester	TfO-ten-olefin-57
	HO-ten-olefin	MeO-nine-diol- ArMe	TfO-eleven-olefin- 58	TfO-ten-olefin-66
	HO-twelve-ester	MeO-nine-	TfO-eleven-olefin-	TfO-twelve-ester
	HO-twelve-olefin	MeO-nine-ketone	TfO-nine-olefin	TfO-twelve-olefin
	lactate-eleven-	MeO-nine-olefin	TfO-nine-olefin-	
	olefin-S	· · · ·	ArAr	
Benzannulated	3a	11d	25	49
Medium Ring	30	13a	27	50
Library Derived	3C	13b	30	51
from Tandem	3d	13C	31	52
ODRE	9a	15a	33	53
(41 entries)	90	15b	35	54
	90	17	37	55
	9d	19	39	56
	11a	21a	41	
	11b	21b	47	
	11c	23	48	

Supplementary Table 2. Average structural and physicochemical parameters by compound series.

AVGs	Drugs	NPs	ChemBridge	ChemDiv	MedRingNPs	ODRE_1st Gen	ODRE_2nd Gen
MW	361.0	629.0	381.5	446.5	385.7	319.6	319.7
Ν	2.2	2.6	4.3	4.7	0.2	0.0	1.2
0	2.9	9.7	3.1	3.4	6.8	3.7	3.5
HBD	1.5	4.9	1.1	1.9	2.7	0.7	0.1
HBA	5.4	10.8	5.9	7.7	6.8	3.0	3.5
RotB	6.3	9.7	5.3	6.1	2.7	1.9	1.7
nStereo	1.4	9.1	0.0	1.0	2.3	0.6	0.2
tPSA	68.9	183.2	102.9	93.6	106.7	49.7	55.9
Rings	2.9	3.8	3.2	4.2	3.6	2.4	2.4
RngAr	2.1	1.0	2.9	2.9	1.8	1.3	1.4
RngSys	2.1	2.0	3.1	3.1	1.5	1.1	1.3
RngLg	5.9	11.1	5.9	6.0	9.4	10.0	9.5
Fsp3	0.4	0.6	0.2	0.3	0.4	0.4	0.4
LogD	1.7	0.5	2.2	2.6	2.8	4.2	3.1
VWSA*	5.3	9.3	5.0	5.8	5.3	4.6	4.5
relPSA	0.1	0.2	0.2	0.2	0.2	0.1	0.1
ALOGPs	2.8	2.1	3.3	2.7	2.7	4.0	2.3
ALOGpS	-3.9	-3.8	-4.0	-3.8	-3.5	-4.3	-3.4
nStMW**	3.7	13.9	0.0	0.0	5.8	1.6	0.7
RRSys	1.4	2.3	1.0	1.4	2.9	2.2	1.9

Adjustments made for clarity:

* = VWSA ÷ 100

** = nStMW × 1000

2. PCA DESCRIPTORS

A set of 20 physicochemical descriptors (**Supplementary Table 3**) for all 228 compounds was obtained from PubChem and/or calculated using cheminformatics tools (Instant JChem⁷ and VCCLab^{8,9}) and ChemDraw. The resulting Excel spreadsheet (**Supplementary Data Set 1**) was used in the cheminformatic analysis of 228 compounds.

Parameter	Description	Method of Determination
MW	molecular weight	Instant JChem
Ν	number of nitrogens	Instant JChem
0	number of oxygens	Instant JChem
HBD	number of hydrogen bond donors	Instant JChem
HBA	number of hydrogen bond acceptors	Instant JChem
RotB	number of rotatable bonds	Instant JChem
nStereo	number of stereocenters	Instant JChem
tPSA	topological polar surface area	Instant JChem
Rings	number of rings	Instant JChem
RngAr	number of aromatic rings	Instant JChem
RngSys	number of ring systems	Instant JChem
RngLg	number of atoms in largest ring outline	Instant JChem
Fsp3	fraction of sp ³ -hybridized carbons	Instant JChem
LogD	calc n-octanol/water distribution coefficient	Instant JChem
VWSA	Van der Waals surface area	Instant JChem
reIPSA	relative polar surface area	Instant JChem
ALOGPs	calc <i>n</i> -octanol/water partition coeff (alt)	http://www.vcclab.org
ALOGpS	calculated aqueous solubility	http://www.vcclab.org
nStMW	nStereo ÷ MW (stereochemical density)	Microsoft Excel
RRSys	Rings ÷ RngSys (ring complexity)	Microsoft Excel

Supplementary	Table 3.	20 structural	and physicochemica	descriptors.

⁷ For Instant JChem; see: https://www.chemaxon.com/

⁸ Tetko, I.V. Virtual Computational Chemistry Laboratory; http://www.vcclab.org/lab/alogps/

⁹ Tetko, I.V.; Tanchuk, V.Y.; Kasheva, T.N.; Villa, A.E.P. J. Chem. Inf. Comput. Sci. 2001, 41, 246–252.

3. PCA PLOTS

Following the computational protocol described in the literature,^{1,2} the first three principal components (PC1–PC3) were obtained using R, an open source statistical computing package.¹⁰ These top three principal components account for 74.6% of the cumulative variance in the complete data set (**Supplementary Table 4** and **Supplementary Data Set 1**). They were then plotted on newly generated, unitless, orthogonal axes (principal components) that are based on linear combinations of the original 20 parameters (**Supplementary Table 3**, and **Supplementary Data Set 1**). The PCA graphs shown in **Supplementary Fig. 2** were generated using an alternative data visualization software called Prism.¹¹

Supplementary Table 4. Standard deviation and contribution for each principal component in PC	CA
plot (summary information from R).	

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Standard deviation	2.957	1.828	1.681	1.289	1.013	0.827	0.689	0.533	0.488	0.420
Proportion of Variance	0.437	0.167	0.141	0.083	0.051	0.034	0.024	0.014	0.012	0.009
Cumulative Proportion	0.437	0.604	0.746	0.829	0.880	0.914	0.938	0.952	0.964	0.973
	PC11	PC12	PC13	PC14	PC15	PC16	PC17	PC18	PC19	PC20
Standard deviation	0.394	0.329	0.287	0.251	0.222	0.189	0.165	0.110	0.091	0.059
Proportion of Variance	0.008	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.000	0.000
Cumulative Proportion	0.981	0.986	0.990	0.993	0.996	0.997	0.999	0.999	1.000	1.000

¹⁰ For the R project for statistical computing, see: https://www.r-project.org/

¹¹ For Prism, see: http://www.graphpad.com

C. MATERIALS AND METHODS

Reagents were obtained from Aldrich Chemical (www.sigma-aldrich.com) or Acros Organics (www.fishersci.com) and used without further purification. Lithium bis(trimethylsilyl)amide solution (1.0 M in THF) was obtained from Aldrich in SureSeal bottles. Optima grade solvents were obtained from Fisher Scientific (www.fishersci.com), degassed with Ar, and purified on a solvent drying system as described¹² unless otherwise indicated. Reactions were performed in flame-dried glassware under positive Ar pressure with magnetic stirring. Rubber septa and syringes were used for the transfer of liquid reagents and solutions. Cold baths were generated as follows: 0 °C, ice/water; -78 °C, dry ice/acetone.

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate ($KMnO_4$) or cerium ammonium molybdenate (CAM). Flash chromatography was performed on E. Merck 230–400 mesh silica gel 60.

IR spectra were recorded on a Bruker Optics Tensor 27 FTIR spectrometer with the Pike technologies MIRacle ATR (attenuated total reflectance, ZnSe crystal) accessory and peaks reported in cm⁻¹. NMR spectra were recorded on a Bruker UltraShield Plus 500 MHz Avance III NMR or UltraShield Plus 600 MHz Avance III NMR with DCH CryoProbe at 24 °C in CDCl₃ unless otherwise indicated. Spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr) software, and chemical shifts are expressed in ppm relative to TMS (¹H, 0 ppm) or solvent signals: CDCl₃ (¹³C, 77.0 ppm), C₆D₆ (¹H, 7.16 ppm; ¹³C, 128.0 ppm), methanol- d_4 (¹H, 3.31 ppm; ¹³C, 49.0 ppm), DMSO- d_6 (¹H, 2.50 ppm; ¹³C, 39.50 ppm), or acetone- d_6 (¹³C, 206.2 ppm); coupling constants are expressed in Hz. In the ¹³C NMR data, reported signal multiplicities are related to C-F coupling unless noted otherwise. High resolution mass spectra were obtained at the MSKCC Analytical Core Facility on a Waters Acuity Premiere XE TOF LC-MS by electrospray ionization (ESI)

Compounds not cited in the paper are numbered herein from S7.

¹² Pangborn, A.B.; Giardello, M.A.; Grubbs, R.H.; Rosen, R.K; Timmers, F. Organometallics **1996**, 15, 1518–1520.

D. SYNTHESIS OF OLEFIN-CONTAINING BENZANNULATED MEDIUM RING LACTAMS

1. SYNTHESIS OF LACTAMS 3A-3D

Supplementary Figure 11. Synthesis of 10-membered haloaromatics 3a–3d.

a. General procedure for nucleophilic addition of Grignard reagents to ketones 5a-5d

6-Bromo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (S7a). 6-bromo-1-tetralone $5a^{13}$ (296 mg, 1.31 mmol, 1.00 equiv) was dissolved in THF (15 mL) and cooled to 0 °C. A solution of MeMgCl (3.0 M in THF, 0.88 mL, 2.6 mmol, 2.0 equiv) was added by syringe and the reaction was stirred for 12 h or until complete conversion had occurred as judged by TLC. The reaction was then re-cooled to 0 °C and quenched with satd aq NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc (4 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (10% \rightarrow 15% EtOAc in hexanes) yielded **S7a** as a colorless oil (298 mg, 94%). Compound **S7a** is known in the literature.¹⁴

¹³ For preparation of 6-bromo-1-tetralone **5a**, see: Cui, L.-Q.; Dong, Z.-L.; Liu, K.; Zhang, C. *Org. Lett.*, **2011**, *13*, 6488–6491.

¹⁴ Kumar, S., Sharma, R., Halder, S., Sawargave, S. P., Deore, V. B. PCT. Int. Appl. WO 2015125085 A1 Aug 27, 2015.

6-Chloro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (S7b).¹⁵ Isolated as a colorless oil (311 mg, 82%). **TLC**: $R_f 0.12$ (9:1 hexanes/EtOAc). **IR** (NaCl, film): 3357 (O–H st), 2938, 1594, 1481, 1185, 1103, 931, 882, 821. ¹**H-NMR** (600 MHz): δ 7.52 (d, 1H, J = 8.4 Hz), 7.17 (dd, 1H, J = 8.4, 2.0 Hz), 7.06 (dd, 1H, J = 2.2, 1.0 Hz), 2.86 – 2.68 (m, 2H), 1.99 – 1.85 (m, 3H), 1.85 – 1.77 (m, 1H), 1.53 (s, 3H). ¹³**C-NMR** (151 MHz): δ 141.3, 138.2, 132.6, 128.4, 127.9, 126.5, 70.3, 39.6, 30.8, 29.8, 20.3. **HRMS** (ESI) m/z calcd for C₁₁H₁₂Cl ([M–H₂O+H]⁺) 179.0628; found 179.0629.

6-Iodo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (S7c).¹⁶ Isolated as a colorless oil (697 mg, 81%). TLC: R_f 0.21 (9:1 hexanes/EtOAc). IR (NaCl, film): 3362 (O–H st), 2935, 1583, 1477, 1400, 1103, 1048, 818. ¹H-NMR (600 MHz): δ 7.52 (d, 1H, J = 1.8 Hz), 7.44 (d, 1H, J = 1.8 Hz), 7.32 (d, 1H, J = 8.3 Hz), 2.82 – 2.65 (m, 2H), 1.98 – 1.84 (m, 3H), 1.84 – 1.74 (m, 1H), 1.52 (s, 3H). ¹³C-NMR (151 MHz): δ 142.6, 138.8, 137.5, 135.4, 128.4, 92.8, 70.5, 39.5, 30.7, 29.5, 20.2. HRMS (ESI) *m*/*z* calcd for C₁₁H₁₂I ([M–H₂O+H]⁺) 270.9984; found 270.9992.

6-Fluoro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (**S7d**).¹⁷ Isolated as a colorless oil (250 mg, 83%). Compound **S7d** is known in the literature.¹⁸

¹⁵ For preparation of 6-chloro-1-tetralone **5b**, see: Cui, L.-Q.; Dong, Z.-L.; Liu, K.; Zhang, C. *Org. Lett.* **2011**, *13*, 6488–6491.

¹⁶ For preparation of 6-iodo-1-tetralone 5c, see: Murineddu, G.; Rulu, S.; Mussinu, J. M.; Loriga, G.; Grella, G. E.; Caral, M. A. M.; Lazzarl, P.; Pani, L.; Pinna, G. A. *Bioorg. Med. Chem.* 2005, *13*, 3309–3320.

¹⁷ For preparation of 6-fluoro-1-tetralone **5d**, see: Gavardinas, K.; Jadhav, P. K.; Wang, M. PCT Int. Appl. WO 2005/092854 A1, Feb 18, 2005.

¹⁸ a) Gavardinas, K., Jadhav, P. K., Wang, M. PCT Int. Appl. WO 2005/092854 A1, Feb 18, 2005; b) Adcock, W.; Cox, D. P. J. Org. Chem. **1979**, 44, 3004–3017.

b. General procedure for Sakurai-type allylations of tetralols S7a-S7d

1-Allyl-6-bromo-1-methyl-1,2,3,4-tetrahydronaphthalene (S8a). Tertiary alcohol **S7a** (319 mg, 1.32 mmol, 1.00 equiv) and allyltrimethylsilane (1.1 mL, 6.9 mmol, 5.2 equiv) were dissolved in CH₂Cl₂ (15 mL) and cooled to -78 °C. A solution of TiCl₄ (1.0 M in toluene, 1.5 mL, 1.5 mmol, 1.1 equiv) was added by syringe and the reaction was stirred for 1 h. The reaction was quenched with satd aq NaHCO₃, diluted with CH₂Cl₂, allowed to warm to 24 °C and stirred for 30 min. The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (100% hexanes) yielded **S8a** as a colorless oil (295 mg, 84%).

TLC: $R_f 0.22$ (100% hexanes). **IR** (NaCl, film): 3073, 2933, 1588, 1480, 1095, 1049, 996, 912, 815. ¹H-NMR (600 MHz): δ 7.24 (dd, 1H, J = 8.4, 2.2 Hz), 7.20 – 7.18 (m, 1H), 7.15 (d, 1H, J = 8.5 Hz), 5.68 – 5.55 (m, 1H), 5.07 – 4.94 (m, 2H), 2.71 (t, 2H, J = 6.2 Hz), 2.46 (dd, 1H, J = 14.0, 6.8 Hz), 2.31 – 2.19 (m, 1H), 1.86 – 1.69 (m, 3H), 1.53 – 1.45 (m, 1H), 1.24 (s, 3H). ¹³C-NMR (151 MHz): δ 143.5, 139.2, 135.0, 131.7, 128.8, 128.7, 118.9, 117.5, 47.6, 36.7, 35.0, 30.4, 29.8, 19.1. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₉Br ([M+H]⁺) 265.0592; found 265.0599.

1-Allyl-6-chloro-1-methyl-1,2,3,4-tetrahydronaphthalene (S8b). Isolated as a colorless oil (249 mg, 72%). **TLC**: R_f 0.48 (100% hexanes). **IR** (NaCl, film): 3074, 2934, 1482, 1103, 913, 838, 817. ¹**H-NMR** (600 MHz): $\delta = 7.21$ (d, 1H, J = 8.5 Hz), 7.10 (dd, 1H, J = 8.4, 2.1 Hz), 7.03 (dt, 1H, J = 2.1, 1.0 Hz), 5.69 – 5.57 (m, 1H), 5.02 (d, 1H, J = 4.9 Hz), 5.00 (t, 1H, J = 1.2 Hz), 2.71 (t, 2H, J = 6.2 Hz), 2.46 (dd, 1H, J = 13.9, 6.9 Hz), 2.26 (dd, 1H, J = 13.9, 7.9 Hz), 1.85 – 1.65 (m, 3H), 1.54 – 1.46 (m, 1H), 1.24 (s, 3H). ¹³C-NMR (151 MHz): δ 143.0, 138.8, 135.1, 130.7, 128.7, 128.3, 125.9, 117.5, 47.6, 36.6, 35.1, 30.5, 29.8, 19.1. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₉Cl ([M+H]⁺) 221.1097; found 221.1100.

1-Allyl-6-iodo-1-methyl-1,2,3,4-tetrahydronaphthalene (S8c). Isolated as a colorless oil (585 mg, 78%). **TLC**: R_f 0.52 (100% hexanes). **IR** (NaCl, film): 3072, 2932, 1581, 1478, 1049, 913, 816. ¹**H-NMR** (600 MHz): δ 7.44 (dd, 1H, J = 8.2, 1.8 Hz), 7.42 – 7.36 (m, 1H), 7.02 (d, 1H, J = 8.4 Hz), 5.69 – 5.55 (m, 1H), 5.02 (d, 1H, J = 4.2 Hz), 5.00 (s, 1H), 2.69 (t, 2H,

J = 6.3 Hz), 2.45 (dd, 1H, J = 13.9, 6.9 Hz), 2.25 (dd, 1H, J = 13.9, 7.8 Hz), 1.83 – 1.67 (m, 3H), 1.53 – 1.44 (m, 1H), 1.23 (s, 3H). ¹³**C-NMR** (151 MHz): δ 144.3, 139.6, 137.8, 135.0, 134.7, 128.9, 117.5, 90.7, 47.5, 36.7, 35.0, 30.3, 29.8, 19.0. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₉I ([M+H]⁺) 313.0453; found 313.0451.

1-Allyl-6-fluoro-1-methyl-1,2,3,4-tetrahydronaphthalene (S8d). Isolated as a yellow oil (166 mg, 58%). **TLC**: R_f 0.51 (100% hexanes). **IR** (NaCl, film): 3074, 2934, 1611, 1495, 1255, 1233, 914. ¹**H-NMR** (600 MHz): δ 7.23 (dd, 1H, J = 8.7, 5.8 Hz), 6.83 (td, 1H, J = 8.6, 2.8 Hz), 6.73 (dd, 1H, J = 9.8, 2.3 Hz), 5.71 – 5.57 (m, 1H), 5.02 (d, 1H, J = 5.6 Hz), 5.00 (s, 1H), 2.72 (t, 2H, J = 6.2 Hz), 2.46 (dd, 1H, J = 14.0, 6.8 Hz), 2.26 (dd, 1H, J = 13.9, 7.8 Hz), 1.87 – 1.69 (m, 3H), 1.54 – 1.47 (m, 1H), 1.24 (s, 3H). ¹³C-NMR (151 MHz): δ 160.4 (d, J = 243.6 Hz), 140.1 (d, J = 3.0 Hz), 139.0 (d, J = 6.9 Hz), 135.2, 128.3 (d, H, J = 7.9 Hz), 117.3, 114.9 (d, J = 19.8 Hz), 112.8 (d, J = 20.9 Hz), 47.8, 36.5, 35.2, 30.8 (d, J = 1.5 Hz), 30.0, 19.1. **HRMS** (ESI) m/z calcd for C₁₄H₁₉F ([M+H]⁺) 205.1393; found 205.1399.

c. General procedure for hydroboration-oxidations and Jones oxidations of allylated tetralones S8a-S8d

3-(6-Bromo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic acid (S9a). Allylated intermediate S8a (295 mg, 1.12 mmol, 1.00 equiv) was dissolved in THF (12 mL) and cooled to 0 °C. A solution of 9-BBN (0.5 M in THF, 4.4 mL, 2.2 mmol, 2.0 equiv) was added by syringe and the reaction was stirred at 0 °C to 24 °C for 12 h. The reaction was cooled to 0 °C and aq H₂O₂ (30 wt%, 2.0 mL, 20 equiv), water (10 mL), aq NaOH (2.0 M, 2.0 mL), and EtOH (5 mL) were added sequentially. The reaction was warmed to 24 °C and stirred for 12 h. The volatile solvents were removed by rotary evaporation and EtOAc (10 mL) was added. The aqueous layer was extracted with EtOAc (4×20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Partial purification by silica flash chromatography (10% \rightarrow 20% EtOAc in hexanes) afforded the intermediate (284 mg, 90%) containing about 15% 9-BBN byproducts that did not adversely affect the subsequent reaction. The intermediate alcohol (284 mg, 1.22 mmol, 1.00 equiv) was dissolved in acetone (12 mL) and cooled to 0 °C. A solution of Jones reagent, prepared by dissolving 670 mg CrO₃ in 1.25 mL H₂O followed by dropwise addition of 0.58 mL conc. H₂SO₄,¹⁹ (0.60 mL) was added dropwise until an orange color persisted. The reaction was stirred at 0 °C for 1 h, then at 24 °C for 15 min. The reaction was guenched with isopropanol and Celite

¹⁹ Eisenbraun, E.J. Org. Synth. **1965**, 45, 28.

was added. The mixture was stirred for 5 min, filtered through Celite and concentrated by rotary evaporation. In the event that water remained in the flask, the residue was redissolved in EtOAc and H₂O was added; the aqueous layer was extracted with EtOAc (3×10 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (20% EtOAc in hexanes + 1% AcOH) yielded carboxylic acid **S10a** as a colorless oil (241 mg, 85% over 2 steps).

TLC: $R_f 0.40$ (7:3 hexanes/EtOAc + 1% AcOH). **IR** (NaCl, film): 2934, 1706 (C=O st), 1481, 1413, 1302, 1094, 818. ¹H-NMR (600 MHz): δ 7.25 (dd, 1H, J = 8.4, 2.2 Hz), 7.21 – 7.18 (m, 1H), 7.11 (d, 1H, J = 8.4 Hz), 2.74 – 2.67 (t, 2H, J = 6.3 Hz), 2.27 (ddd, 1H, J = 17.1, 11.9, 5.1 Hz), 2.16 – 2.04 (m, 2H), 1.86 (ddd, 1H, J = 13.8, 11.7, 5.2 Hz), 1.82 – 1.74 (m, 2H), 1.73 – 1.66 (m, 1H), 1.55 (ddd, 1H, J = 13.4, 7.1, 2.9 Hz), 1.25 (s, 3H). ¹³C-NMR (151 MHz): δ 179.8, 142.3, 139.4, 131.9, 129.1, 128.4, 119.6, 37.3, 36.4, 34.8, 30.4, 30.4, 29.6, 19.2. **HRMS** (ESI) m/z calcd for C₁₄H₁₆BrO₂ ([M–H]⁻) 295.0334; found 295.0336.

3-(6-Chloro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic acid (S9b). Isolated as a colorless oil (205 mg, 62% over 2 steps). **TLC**: R_f 0.43 (7:3 hexanes/EtOAc + 1% AcOH). **IR** (NaCl, film): 2935, 1706 (C=O st), 1484, 1457, 1302, 1102, 818. ¹**H-NMR** (600 MHz): δ 7.17 (d, 1H, J = 8.4 Hz), 7.10 (dd, 1H, J = 8.4, 2.3 Hz), 7.04 (d, 1H, J = 2.4 Hz), 2.72 – 2.69 (m, 2H), 2.27 (ddd, 1H, J = 17.1, 11.8, 5.1 Hz), 2.17 – 2.03 (m, 2H), 1.87 (ddd, 1H, J = 13.9, 11.6, 5.1 Hz), 1.84 – 1.74 (m, 2H), 1.74 – 1.66 (m, 1H), 1.56 (ddd, 1H, J = 12.8, 7.0, 2.7 Hz), 1.26 (s, 3H). ¹³**C-NMR** (151 MHz): δ 179.8, 141.7, 139.0, 131.1, 128.9, 128.0, 126.2, 37.3, 36.3, 34.9, 30.5, 30.4, 29.6, 19.2. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₆ClO₂ ([M–H]⁻) 251.0839; found 251.0845.

3-(6-Iodo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic acid (S9c). Isolated as a colorless oil (508 mg, 79% over 2 steps). **TLC**: R_f 0.48 (7:3 hexanes/EtOAc + 1% AcOH). **IR** (NaCl, film): 2933, 1706 (C=O st), 1479, 1302, 815. ¹**H-NMR** (600 MHz): δ 7.45 (dd, 1H, J = 8.3, 1.9 Hz), 7.41 (d, 1H, J = 1.6 Hz), 6.98 (d, 1H, J = 8.3 Hz), 2.70 (t, 2H, J = 6.0 Hz), 2.27 (ddd, 1H, J = 17.1, 11.9, 5.1 Hz), 2.16 – 2.02 (m, 2H), 1.86 (ddd, 1H, J = 13.9, 11.7, 5.1 Hz), 1.82 – 1.73 (m, 2H), 1.73 – 1.65 (m, 1H), 1.55 (ddd, 2H, J = 13.2, 7.1, 2.7 Hz), 1.25 (s, 3H). ¹³**C-NMR** (151 MHz): δ 179.0, 143.0, 139.7, 138.0, 135.0, 128.6, 91.0, 37.2, 36.5, 34.8, 30.4, 30.2, 29.4, 19.1. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₆IO₂ ([M–H]⁻) 343.0195; found 343.0193.

3-(6-Fluoro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic acid (S9d). Isolated as a colorless oil (123 mg, 64% over 2 steps). **TLC**: R_f 0.48 (7:3 hexanes/EtOAc + 1% AcOH). **IR** (NaCl, film): 2935, 1707 (C=O st), 1496, 1418, 1242, 925. ¹**H-NMR** (600 MHz): δ 7.19 (dd, 1H, J = 8.7, 5.8 Hz), 6.83 (td, 1H, J = 8.5, 2.8 Hz), 6.73 (dd, 1H, J = 9.7, 2.8 Hz), 2.72 (t, 2H, J = 6.3 Hz), 2.27 (ddd, 1H, J = 17.1, 11.9, 5.1 Hz), 2.16 – 2.03 (m, 2H), 1.87 (ddd, 1H, J = 13.2, 7.0, 2.9 Hz), 1.26 (s, 3H). ¹³**C-NMR** (151 MHz): δ 180.0, 160.6 (d, J = 244.1 Hz), 139.2 (d, J = 7.0 Hz), 138.8 (d, J = 3.0 Hz), 128.1 (d, J = 8.0 Hz), 115.1 (d, J = 19.9 Hz), 113.1 (d, J = 21.0 Hz), 37.5, 36.2, 35.0, 30.7 (d, J = 1.5 Hz), 30.56, 29.6, 19.2. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₆FO₂ ([M–H]⁻) 235.1134; found 235.1141.

d. General procedure for amidation of carboxylic acids S9a-S9d

3-(6-Bromo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxypropanamide (1a).

Carboxylic acid **S9a** (205 mg, 0.691 mmol, 1.00 equiv) was dissolved in CH_2Cl_2 (7 mL) and methoxyamine hydrochloride (86.6 mg, 1.04 mmol, 1.50 equiv), *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (198 mg, 1.04 mmol, 1.50 equiv) and Et_3N (290 mL, 2.10 mmol, 3.00 equiv) were added sequentially. The reaction was stirred for at 24 °C for 5 h, then quenched with satd aq NH₄Cl and diluted with CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂ (4 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (50% EtOAc in hexanes) yielded *N*-methoxyamide **1a** as a colorless oil (157 mg, 70%).

TLC: $R_f 0.20$ (1:1 hexanes/EtOAc). **IR** (NaCl, film): 3173, 2934, 1656 (C=O st), 1481, 1093, 820. ¹H-NMR (600 MHz): δ 7.97 (s, 1H), 7.26 – 7.23 (m, 1H), 7.21 – 7.18 (m, 1H), 7.14 – 7.08 (m, 1H), 3.81 – 3.56 (m, 3H), 2.80 – 2.59 (m, 2H), 2.16 – 2.05 (m, 1H), 1.98 (s, 1H), 1.93 – 1.84 (m, 1H), 1.84 – 1.64 (m, 4H), 1.60 – 1.50 (m, 1H), 1.26 (s, 3H). ¹³C-NMR (151 MHz): δ 171.1, 142.3, 139.8, 131.9, 129.1, 128.5, 119.2, 64.6, 37.8, 36.6, 34.9, 30.7, 30.4, 28.7, 19.2. **HRMS** (ESI) *m/z* calcd for C₁₅H₂₁BrNO₂ ([M+H]⁺) 326.0756; found 326.0767.

3-(6-Chloro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxypropanamide (1b).

Isolated as a colorless oil (171 mg, 62%). **TLC**: $R_f 0.24$ (1:1 hexanes/EtOAc). **IR** (NaCl, film): 3173, 2935, 1654 (C=O st), 1438, 1459, 1102, 1075, 818. ¹H-NMR (600 MHz): δ 8.05 (m, 1H), 7.17 (d, 1H, J = 8.6 Hz), 7.11 (dd, 1H, J = 8.4, 2.3 Hz), 7.04 (d, 1H, J = 2.2 Hz), 3.82 – 3.56 (m, 3H), 2.81 – 2.59 (m, 2H), 2.09 (t, 1H, J = 13.9 Hz), 1.98 (s, 1H), 1.90 (t, 1H, J = 13.5 Hz), 1.86 – 1.66 (m, 4H), 1.60 – 1.50 (m, 1H), 1.26 (s, 3H). ¹³C-NMR (151 MHz): δ 171.1, 141.7, 139.0, 131.0, 128.9, 128.1, 126.2, 64.5, 37.8, 36.5, 35.0, 30.7, 30.5, 28.7, 19.2. **HRMS** (ESI) m/z calcd for C₁₅H₂₁ClNO₂ ([M+H]⁺) 282.1261; found 282.1263.

3-(6-Iodo-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxypropanamide (1c).

Isolated as a colorless oil (353 mg, 64%). **TLC**: $R_f 0.09$ (6:4 hexanes/EtOAc). **IR** (NaCl, film): 2933, 1706 (C=O st), 1479, 1302, 815. ¹H-NMR (600 MHz): δ 7.98 (s, 1H), 7.45 (dd, 1H, J = 8.3, 2.0 Hz), 7.43 – 7.38 (m, 1H), 6.98 (d, 1H, J = 7.6 Hz), 3.81 – 3.56 (m, 3H), 2.77 – 2.59 (m, 2H), 2.09 (t, 1H, J = 12.9, 4.3 Hz), 1.97 (s, 1H), 1.94 – 1.85 (m, 1H), 1.85 – 1.63 (m, 4H), 1.57 – 1.50 (m, 1H), 1.25 (s, 3H). ¹³C-NMR (151 MHz): δ 171.1, 143.0, 139.8, 137.9, 135.0, 128.7, 90.9, 64.6, 37.7, 36.7, 34.9, 30.6, 30.2, 28.7, 19.2. **HRMS** (ESI) *m/z* calcd for C₁₅H₂₁INO₂ ([M+H]⁺) 374.0617; found 374.0613.

3-(6-Fluoro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxypropanamide (1d).

Isolated as a colorless oil (89.5 mg, 65%). **TLC**: $R_f 0.25$ (1:1 hexanes/EtOAc). **IR** (NaCl, film): 3167, 2936, 1656 (C=O st), 1495, 1238, 1074. ¹**H-NMR** (600 MHz): δ 7.96 (s, 1H), 7.24 – 7.14 (m, 1H), 6.84 (td, 1H, J = 8.5, 2.9 Hz), 6.74 (dd, 1H, J = 9.6, 2.6 Hz), 3.83 – 3.45 (m, 3H), 2.81 – 2.58 (m, 2H), 2.15 – 2.03 (m, 1H), 2.03 – 1.94 (m, 1H), 1.94 – 1.86 (m, 1H), 1.86 – 1.63 (m, 4H), 1.58 – 1.52 (m, 1H), 1.26 (s, 3H). ¹³C-NMR (151 MHz): δ 171.2, 160.5

Page S31

(d, J = 244.1 Hz), 139.2 (d, J = 7.0 Hz), 138.8, 128.2 (d, H, J = 8.0 Hz), 115.1 (d, J = 19.8 Hz), 113.1 (d, J = 21.1 Hz), 64.6, 38.0, 36.4, 35.1, 30.8, 30.7 (m, J = 1.5 Hz), 28.8, 19.3. **HRMS** (ESI) *m/z* calcd for C₁₅H₂₁FNO₂ ([M+H]⁺) 266.1556; found 266.1552.

e. General procedure for the oxidative dearomatization-ring expansion reaction of *N*-methoxyamides 1a-1d

(Z)-10-Bromo-1-methoxy-5-methyl-3,6,7,8-tetrahydrobenzo[b]azecin-2(1H)-one (3a).

N-methoxyamide **1a** (11.6 mg, 35.6 μ mol, 1.00 equiv) was dissolved in nitromethane (0.5 mL) and cooled to 0 °C. [Bis(trifluoroacetoxy)iodo]benzene (PIFA) (2.8 mg, 71 μ mol, 2.0 equiv) was added as a solid and the reaction was stirred at 0 °C to 24 °C for 12 h. The reaction was quenched with satd aq NaHCO₃ and diluted with CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂ (4 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (30% EtOAc in hexanes) yielded 10-membered lactam **3a** as a colorless oil (7.5 mg, 65%).

TLC: $R_f 0.21$ (7:3 hexanes/EtOAc). **IR** (NaCl, film): 2932, 1678 (C=O st), 1479, 1376, 1085, 1034, 984, 734. ¹H-NMR (600 MHz): δ 7.59 (d, 1H, J = 2.2 Hz), 7.45 (dd, 1H, J = 8.4, 2.2 Hz), 7.21 (d, 1H, J = 8.4 Hz), 5.59 (dd, 1H, J = 11.4, 5.5 Hz), 3.69 (s, 3H), 2.87 – 2.75 (m, 2H), 2.67 – 2.52 (m, 2H), 2.02 – 1.81 (m, 2H), 1.73 (s, 3H). ¹³C-NMR (151 MHz): δ 168.1, 143.2, 137.9, 137.0, 132.3, 130.9, 130.5, 124.2, 119.6, 61.1, 34.1, 28.6, 26.1, 25.9, 23.2. **HRMS** (ESI) *m/z* calcd for C₁₅H₁₉BrNO₂ ([M+H]⁺) 324.0599; found 324.0609.

(Z)-10-Chloro-1-methoxy-5-methyl-3,6,7,8-tetrahydrobenzo[b]azecin-2(1H)-one (3b).

Isolated as a colorless oil (12.8 mg, 66%). TLC: R_f 0.22 (7:3 hexanes/EtOAc). IR (NaCl, film): 2931, 1684 (C=O st), 1480, 1457, 1356, 1093, 1034, 812. ¹H-NMR (600 MHz): δ 7.43 (d, 1H, J = 2.2 Hz), 7.33 – 7.26 (m, 2H), 5.59 (dd, 1H, J = 11.4, 5.4 Hz), 3.69 (s, 3H), 2.81 (t, 2H, J = 12.1 Hz), 2.65 – 2.53 (m, 2H), 2.02 – 1.92 (m, 2H), 1.89 (t, 2H, J = 11.4 Hz), 1.74 (s, 3H). ¹³C-NMR (151 MHz): δ 168.1, 142.9, 137.4, 137.0, 136.0, 130.3, 129.2, 127.9, 119.6, 61.6, 34.1, 28.6, 26.1, 26.0, 23.3. HRMS (ESI) *m*/*z* calcd for C₁₅H₁₉ClNO₂ ([M+H]⁺) 280.1104; found 280.1108.

(Z)-10-Iodo-1-methoxy-5-methyl-3,6,7,8-tetrahydrobenzo[b]azecin-2(1*H*)-one (3c). Isolated as a colorless oil (24.3 mg, 72%). TLC: R_f 0.23 (7:3 hexanes/EtOAc). IR (NaCl, film): 2929, 1680 (C=O st), 1477, 1354, 1034, 918. ¹H-NMR (600 MHz): δ 7.79 (dd, 1H, J = 1.9, 0.9 Hz), 7.65 (dd, 1H, J = 8.4, 2.0 Hz), 7.06 (d, 1H, J = 8.3 Hz), 5.58 (ddd, 1H, J = 11.2, 5.3, 1.6 Hz), 3.68 (s, 3H), 2.81 (dd, 1H, J = 12.8, 11.3 Hz), 2.79 – 2.72 (m, 1H), 2.64 – 2.50 (m, 2H), 2.01 – 1.83 (m, 4H), 1.73 (s, 3H). ¹³C-NMR (151 MHz): δ 168.1, 143.3, 138.7, 138.4, 137.0, 136.8, 130.6, 119.6, 96.3, 61.1, 34.1, 28.6, 26.1, 25.7, 23.2. HRMS (ESI) *m*/*z* calcd for C₁₅H₁₉INO₂ ([M+H]⁺) 372.0461; found 372.0454.

(Z)-10-Fluoro-1-methoxy-5-methyl-3,6,7,8-tetrahydrobenzo[b]azecin-2(1*H*)-one (3d). Isolated as a colorless oil (3.9 mg, 40%). TLC: R_f 0.22 (7:3 hexanes/EtOAc). IR (NaCl, film): 2932, 1681 (C=O st), 1662, 1494, 1219, 1148, 1034, 815. ¹H-NMR (600 MHz): δ 7.32 (dd, 1H, J = 8.8, 5.5 Hz), 7.13 (dd, 1H, J = 9.6, 2.9 Hz), 7.03 (td, 1H, J = 8.8, 2.9 Hz), 5.59 (dd, 1H, J = 11.2, 5.5 Hz), 3.70 (s, 2H), 2.81 (dd, 2H, J = 12.9, 11.3 Hz), 2.67 – 2.51 (m, 2H), 2.00 – 1.89 (m, 2H), 1.91 – 1.79 (m, 2H), 1.73 (s, 3H). ¹³C-NMR (151 MHz): δ 168.3, 163.2 (d, J = 250.6 Hz), 143.8 (d, J = 8.1 Hz), 136.9, 134.9 (d, J = 3.0 Hz), 131.0 (d, J = 9.1 Hz), 119.7, 115.5 (d, J = 22.1 Hz), 115.0 (d, J = 22.8 Hz), 60.9, 34.1, 28.5, 26.2 (d, J = 1.9 Hz), 26.2, 23.3. HRMS (ESI) m/z calcd for C₁₅H₁₉FNO₂ ([M+H]⁺) 264.1400; found 264.1392.

E. SYNTHESIS OF BICYCLIC KETONE PRECURSORS

Herein we report the preparation of non-commercially available bicyclic ketones, the syntheses of which have not been reported in the literature unless otherwise indicated.

1. Synthesis of ketones S17 and S18

Supplementary Figure 12. Synthesis of fluorobenzosuberone and fluorobenzocyclooctanone.

a. General procedure for Wittig olefination of fluorobenzaldehyde S10

(*Z*,*E*)-5-(3-Fluorophenyl)pent-4-enoic acid S13.²⁰ To a suspension of (3-carboxypropyl)triphenylphosphonium bromide S11 (4.15 g, 9.67 mmol, 1.20 equiv) in anhydrous DMSO (10 mL) a solution of KO*t*-Bu (1.00 M in THF, 21.4 mL, 21.4 mmol, 2.65 equiv) was added by syringe over 10 min and the resulting mixture was stirred for 20 min at 24 °C. A solution of 3-fluorobenzaldehyde S10 (1.00 g, 8.06 mmol, 1.00 equiv) in DMSO (8 mL) was then added and the reaction was stirred for an additional 16 h at 24 °C. The reaction was poured into 100 mL of ice water and extracted with CHCl₃ (3 × 20 mL). The aqueous layer was acidified with conc. HCl to a pH of 1 and extracted with CHCl₃ (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% → 20% EtOAc in hexanes + 1% AcOH) yielded unsaturated carboxylic acid S13 as white solid (1.16 g, 74%, *E/Z* 96:4).

TLC: $R_f 0.43$ (3:1 hexanes/EtOAc + 1% AcOH). **IR** (ATR, ZnSe): 2920, 1720 (C=O st), 1446, 1296, 1266, 1147, 973, 783, 770. ¹H-NMR (600 MHz): δ 7.27 - 7.23 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.04 (dt, J = 10.3, 1.9 Hz, 1H), 6.90 (td, J = 8.5, 2.7 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.26 - 6.20 (m, 1H), 2.57 - 2.54 (m, 4H). ¹³C-NMR (151 MHz): δ 178.9, 163.1 (d, J = 245.0 Hz), 139.6 (d, J = 7.7 Hz), 130.2 (d, J = 2.5 Hz), 129.9 (d, J = 8.4 Hz), 129.4,

²⁰ Procedure was adapted from: Murineddu, G.; Ruiu, S.; Loriga, G.; Manca, I.; Lazzari, P.; Reali, R.; Pani, L.; Toma, L.; Pinna, G. A. J. Med. Chem. **2005**, *48*, 7351–7362.

122.0 (d, J = 2.7 Hz), 114.0 (d, J = 21.4 Hz), 112.5 (d, J = 21.7 Hz), 33.5, 27.8. **HRMS** (ESI) m/z calcd for C₁₁H₁₀FO₂ ([M–H]⁻) 193.0665; found 193.0665.

(*Z*,*E*)-6-(3-Fluorophenyl)hex-5-enoic acid (S14). Isolated as a white solid (1.35 g, 80%, *E/Z* 97:3). TLC: $R_f 0.43$ (3:1 hexanes/EtOAc + 1% AcOH). IR (ATR, ZnSe): 2935, 1707 (C=O st), 1489, 1269, 1143, 1143, 965, 777, 737. ¹H-NMR (600 MHz): δ 7.28 – 7.21 (m, 1H), 7.09 (d, 1H, *J* = 7.7 Hz), 7.04 (d, 1H, *J* = 10.2 Hz), 6.89 (td, 1H, *J* = 8.4, 2.1 Hz), 6.38 (d, 1H, *J* = 15.8 Hz), 6.19 (dt, 1H, *J* = 15.7, 7.0 Hz), 2.41 (t, 2H, *J* = 7.4 Hz), 2.28 (q, 2H, *J* = 7.2 Hz), 1.83 (p, 2H, *J* = 7.4 Hz). ¹³C-NMR (151 MHz): δ 179.3, 163.1 (d, *J* = 244.9 Hz), 139.8 (d, *J* = 7.7 Hz), 130.8, 129.9, 129.9 (d, *J* = 11.0 Hz), 121.9 (d, *J* = 2.7 Hz), 113.8 (d, *J* = 21.4 Hz), 112.4 (d, *J* = 21.7 Hz), 33.2, 32.1, 24.0. HRMS (ESI) m/z calcd for C₁₂H₁₂FO₂ ([M–H]⁻) 207.0821; found 207.0819.

b. General procedure for catalytic hydrogenation of olefins S13 and S14

5-(3-Fluorophenyl)pentanoic acid (S15).²⁰ Olefinic carboxylic acid **S13** (1.00 g, 5.15 mmol, 1.00 equiv) was dissolved in EtOAc (13 mL). 5% Palladium on carbon (0.55 g) was added and the reaction was stirred for 16 h under at ambient hydrogen pressure at 24 °C. The mixture was then filtered through a pad of Celite. The filtrate was concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 20% EtOAc in hexanes + 1% AcOH) yielded carboxylic acid **S15** as a white solid (0.90 g, 89%).

TLC: $R_f 0.45$ (3:1 hexanes/EtOAc + 1% AcOH). **IR** (ATR, ZnSe): 2947, 1695 (C=O st), 1487, 1408, 1260, 1201, 1147, 927. ¹H-NMR (600 MHz): δ ¹H NMR (600 MHz, Chloroform-*d*) δ 7.25 - 7.21 (m, 1H), 6.94 (d, 1H, *J* = 7.6 Hz), 6.90 - 6.85 (m, 2H), 2.63 (t, 2H, *J* = 6.8 Hz), 2.39 (t, 2H, *J* = 6.7 Hz), 1.68 (p, 4H, *J* = 3.7 Hz). ¹³C-NMR (151 MHz): δ 179.3, 162.9 (d, *J* = 245.2 Hz), 144.5 (d, *J* = 7.1 Hz), 129.7 (d, *J* = 8.4 Hz), 124.0 (d, *J* = 2.8 Hz), 115.1 (d, *J* = 20.7 Hz), 112.7 (d, *J* = 21.0 Hz), 35.3, 33.7, 30.4, 24.1. **HRMS** (ESI) m/z calcd for C₁₁H₁₂FO₂ ([M-H]⁻) 195.0821; found 195.0824.

6-(3-Fluorophenyl)hexanoic acid (S16). Isolated as a white solid (1.26 g, 96%). **TLC:** R_f 0.48 (3:1 hexanes/EtOAc + 1% AcOH). **IR** (ATR, ZnSe): 2936, 1708 (C=O st), 1590, 1449, 1253, 1141, 941, 782. ¹H-NMR (600 MHz): δ 7.25 – 7.20 (m, 1H), 6.94 (d, 1H, J = 7.6 Hz), 6.90 – 6.84 (m, 2H), 2.61 (d, 2H, J = 7.6 Hz), 2.36 (t, 2H, J = 7.5 Hz), 1.71 – 1.60 (m, 4H), 1.42 – 1.35 (m, 2H). ¹³C-NMR (151 MHz): δ 179.8, 162.9 (d, J = 245.1 Hz), 145.0 (d, J = 7.1 Hz), 129.6 (d, J = 8.3 Hz), 124.0 (d, J = 2.6 Hz), 115.1 (d, J = 20.7 Hz), 112.5 (d, J = 21.0 Hz), 35.4, 33.9, 30.8, 28.5, 24.4. **HRMS** (ESI) m/z calcd for C₁₂H₁₅FO₂Na ([M+Na]⁺) 233.0954; found 233.0955.

c. General procedure for intramolecular Friedel–Crafts annulation of carboxylic acids S15 and S16

2-Fluoro-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (S17).²¹ Carboxylic acid **S15** (0.80 g, 4.1 mmol, 1.0 equiv) and oxalyl chloride (0.57 g, 4.5 mmol, 1.1 equiv) were dissolved in CH₂Cl₂ (8.2 mL) and cooled to 0 °C. DMF (0.1 mL) was then added and the reaction was stirred for 2 h at 24 °C. The reaction mixture was then directly added to a suspension of AlCl₃ (2.72 g, 20.4 mmol, 5.00 equiv) in CH₂Cl₂ (20 mL) and stirred for 4 h at 24 °C. The reaction was poured into 20 mL of ice water and extracted with CH₂Cl₂ (4 × 20 mL). The combined organic extracts were washed with 1 M solution of NaOH, brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% EtOAc in hexanes) yielded ketone **S17** as a yellow oil (0.60 g, 83%).

TLC: $R_f 0.59$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 2943, 1677 (C=O st), 1606, 1584, 1264, 1091, 983, 870, 827. ¹H-NMR (600 MHz): δ 7.77 (dd, 1H, J = 8.6, 6.1 Hz), 6.98 (td, 1H, J = 8.4, 2.5 Hz), 6.91 (dd, 1H, J = 9.3, 2.5 Hz), 2.95 – 2.90 (m, 2H), 2.76 – 2.71 (m, 2H), 1.92 – 1.86 (m, 2H), 1.84 – 1.79 (m, 2H). ¹³C-NMR (151 MHz): δ 204.4, 164.9 (d, J = 253.2 Hz), 144.5 (d, J = 8.4 Hz), 135.0 (d, J = 2.9 Hz), 131.5 (d, J = 9.4 Hz), 116.4 (d, J = 21.4 Hz), 113.7 (d, J = 21.4 Hz), 40.7, 32.5, 24.9, 20.6. **HRMS** (ESI) m/z calcd for C₁₁H₁₁FO ([M+Na]⁺) 201.0692; found 201.0692.

2-Fluoro-7,8,9,10-tetrahydrobenzo[8]annulen-5(6H)-one (S18). Isolated as a colorless oil (0.73 g, 84%). **TLC:** R_f 0.80 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 2933, 1667 (C=O st), 1603, 1582, 1253, 1233, 1104, 958, 735. ¹H-NMR (600 MHz): δ 7.82 (dd, 1H, J = 8.7, 6.2 Hz), 6.97 (td, 1H, J = 8.4, 2.5 Hz), 6.89 (dd, 1H, J = 9.6, 2.5 Hz), 3.09 (d, 2H, J = 6.5 Hz), 2.96 (t, 2H, J = 7.0 Hz), 1.90 – 1.78 (m, 4H), 1.54 – 1.47 (m, 2H). ¹³C-NMR (151 MHz): δ 204.6, 164.7 (d, J = 252.5 Hz), 143.5 (d, J = 8.1 Hz), 135.8 (d, J = 3.0 Hz), 131.1 (d, J = 9.2 Hz), 117.7 (d, J = 21.1 Hz), 113.5 (d, J = 21.1 Hz), 43.5, 34.7, 27.5, 24.1 (2C). **HRMS** (ESI) m/z calcd for C₁₂H₁₄FO ([M+H]⁺) 193.1029; found 193.1036.

²¹ Procedure was adapted from: Zhang, Y.; Burgess, J. P.; Brackeen, M.; Gilliam, A.; Mascarella, S. W.; Page, K.; Seltzman, H. H.; Thomas, B. F. *J. Med. Chem.* **2008**, *51*, 3526–3539.

2. Synthesis of ketone S21

Supplementary Figure 13. Synthesis of bromobenzosuberone S21.

5-Oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulen-2-yl trifluoromethanesulfonate (S20). 7-Hydroxy-1-benzosuberone S19¹ (1.25 g, 7.09 mmol, 1.00 equiv) was dissolved in CH₂Cl₂ (8 mL) and cooled to 0 °C. 2,6-Lutidine (0.860 mL, 7.45 mmol, 1.05 equiv) and a solution of trifluoromethanesulfonic anhydride (1.25 mL, 7.45 mmol, 1.05 equiv) in CH₂Cl₂ (8 mL) were then added sequentially and the reaction was stirred for 2 h at 0 °C. The reaction was warmed to 24 °C and diluted with CH₂Cl₂, and washed with 1 M HCl (2×10 mL). The combined organic extracts were then washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% EtOAc in hexanes) yielded triflate S20 as an orange solid (2.0 g, 92%).

TLC: $R_f 0.65$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 2944, 2870, 1683 (C=O st), 1603, 1426, 1211, 974, 844. ¹H-NMR (600 MHz): δ 7.81 (d, J = 8.6 Hz, 1H), 7.21 (dd, J = 8.6, 2.4 Hz, 1H), 7.14 (d, J = 2.3 Hz, 1H), 2.97 (t, J = 6.1 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 1.93 (p, J = 6.7 Hz, 2H), 1.85 (p, J = 6.7 Hz, 2H). ¹³C-NMR (151 MHz): δ 204.1, 151.4, 144.2, 138.7, 131.1, 122.3, 119.4, 118.7 (q, J = 320.8 Hz), 40.6, 32.5, 24.9, 20.7. **HRMS** (ESI) m/z calcd for C₁₂H₁₁F₃O₄Na ([M+Na]⁺) 331.0228; found 331.0223.

2-Bromo-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-one (S21).²²** To a 25-mL round-bottom flask was added potassium bromide (0.83 g, 7.0 mmol, 2.0 equiv), potassium fluoride (105 mg, 1.75 mmol, 0.500 equiv) and aryl triflate S20 (1.1 g, 3.5 mmol, 1.0 equiv), which was evacuated and backfilled with argon three times. To a vial was added $Pd_2(dba)_3$ (48.0 mg, 52.5 µmol, 1.50 mol%) and *t*-BuBrettPhos (76.3 mg, 158 µmol, 4.50 mol%), which was evacuated and backfilled with argon three times. 1,4-Dioxane (3.5 mL) was added to the vial and the mixture was heated at 120 °C in a preheated oil bath for 3 minutes. The catalyst solution was then cooled to 24 °C, then it was added to the reaction mixture containing potassium bromide, potassium fluoride and aryl triflate S20 followed by addition of 1,4-dioxane (10.5 mL). The resulting mixture was stirred at 130 °C in a preheated oil bath for 16 h. The reaction mixture was then cooled to 24 °C, filtered through a pad of Celite, and concentrated by rotary evaporation to afford

²² Procedure was adapted from: Pan, J.; Wang, X. Y.; Zhang, Y.; Buchwald, S. L. Org. Lett. **2011**, *13*, 4974–4976.
the crude product. Purification by silica flash chromatography ($0\% \rightarrow 20\%$ EtOAc in hexanes) yielded ketone **S21** as an orange solid (0.54 g, 65%).

TLC: $R_f 0.81$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 2941, 1676 (C=O st), 1585, 1261, 1105, 963, 824. ¹H-NMR (600 MHz): δ 7.60 (d, 1H, J = 8.3 Hz), 7.44 (dd, 1H, J = 8.3, 1.8 Hz), 7.38 (d, 1H, J = 1.6 Hz), 2.90 (t, 2H, J = 6.5 Hz), 2.72 (d, 2H, J = 6.0 Hz), 1.89 (p, 2H, J = 6.7 Hz), 1.81 (p, 2H, J = 7.3, 6.6 Hz). ¹³C-NMR (151 MHz): δ 205.0, 143.2, 137.5, 132.5, 130.3, 129.9, 126.8, 40.7, 32.2, 25.0, 20.6. **HRMS** (ESI) m/z calcd for C₁₁H₁₂BrO ([M+H]⁺) 239.0072; found 239.0072.

3. Synthesis of ketone S23

Supplementary Figure 14. Synthesis of 1-tosyl-2,3-dihydroquinolin-4(1*H*)-one S23.

1-Tosyl-2,3-dihydroquinolin-4(1*H***)-one (S23).** 2,3-Dihydroquinolin-4(1*H*)-one S22 (0.10 g, 0.68 mmol, 1.0 equiv) was dissolved in DMF (6.8 mL) and cooled to 0 °C. NaH (27 mg, 60 % dispersion in mineral oil, 0.68 mmol, 1.0 equiv) was added and the reaction was stirred for 1 h at 0 °C. *p*-Toluenesulfonyl chloride (0.13 g, 0.68 mmol, 1.0 equiv) was then added and the reaction was stirred for an additional 6 h at 24 °C. The reaction was quenched slowly with satd aq NH₄Cl at 0 °C, warmed to 24 °C and diluted with EtOAc. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% MeOH in CH₂Cl₂) yielded ketone S23 as a yellow solid (127 mg, 62%).

TLC: $R_f 0.48$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 2941, 1687 (C=O st), 1598, 1475, 1458, 1353, 911, 736. ¹H-NMR (600 MHz): δ 7.95 (dd, 1H, J = 7.8, 1.7 Hz), 7.87 (d, 1H, J = 8.3 Hz), 7.58 (td, 1H, J = 8.6, 8.1, 1.7 Hz), 7.55 (d, 2H, J = 8.3 Hz), 7.28 (d, 1H, J = 8.0 Hz), 7.23 (d, 2H, J = 8.2 Hz), 4.24 (t, 2H, J = 6.2 Hz), 2.40 – 2.37 (m, 5H). ¹³C-NMR (151 MHz): δ 192.7, 144.6, 142.3, 136.8, 134.7, 130.1, 127.7, 126.8, 125.7, 125.6, 124.6, 46.2, 36.5, 21.6. **HRMS** (ESI) m/z calcd for C₁₆H₁₆NO₃S ([M+H]⁺) 302.0851; found 302.0853.

4. SYNTHESIS OF KETONES S26 AND S27

Supplementary Figure 15. Synthesis of tetrahydrocycloindolones S26 and S27.

a. General procedure for N-tosylation of tetrahydrocycloindolones S24 and S25

5-Tosyl-6,7,8,9-tetrahydrocyclohepta[*b*]indol-10(5*H*)-one (S26). 6,7,8,9-Tetrahydrocyclohepta[*b*]indol-10(5*H*)-one S24²³ (0.976 g, 4.91 mmol, 1.00 equiv) was dissolved in DMF (20 mL) and cooled to 0 °C. NaH (0.14 g, 60% dispersion in mineral oil, 5.9 mmol, 1.2 equiv) was added and the reaction was stirred at 0 °C for 30 min. *p*-Toluenesulfonyl chloride (1.40 g, 7.36 mmol, 1.50 equiv) was then added and the reaction was stirred at 0 °C to 24 °C over 12 h. The reaction was re-cooled to 0 °C, and quenched with satd aq NaHCO₃ and diluted with Et₂O. The organic layer was extracted with Et₂O (4 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (10% \rightarrow 20% EtOAc in hexanes) yielded ketone S26 as a light yellow solid (1.06 g, 61%).

TLC: $R_f 0.28$ (4:1 hexanes/EtOAc). **IR** (NaCl, film): 2941, 1655 (C=O st), 1450, 1378, 1173, 1089, 967, 751, 664 ¹**H-NMR** (600 MHz): δ 8.25 (d, 2H, J = 7.8 Hz), 7.69 (d, 2H, J = 8.4 Hz), 7.39 – 7.30 (m, 2H), 7.28 – 7.23 (m, 2H), 3.44 (dd, 2H, J = 6.8, 5.0 Hz), 2.76 (dd, 2H, J = 7.1, 5.3 Hz), 2.38 (s, 3H), 1.95 – 1.82 (m, 4H). ¹³**C-NMR** (151 MHz): δ 199.3, 148.2, 145.6, 136.3, 136.0, 130.1, 127.3, 126.4, 125.3, 124.8, 121.7, 121.7, 114.4, 42.8, 26.1, 24.9, 21.7, 21.2. **HRMS** (ESI) *m/z* calcd for C₂₀H₂₀NO₃S ([M+H]⁺) 354.1164; found 354.1147.

5-Tosyl-5,6,7,8,9,10-hexahydro-11*H***-cycloocta[***b***]indol-11-one (S27).²⁴ Isolated as a light yellow oil (681 mg, 46%). TLC: R_f 0.29 (4:1 hexanes/EtOAc). IR (NaCl, film): 2933, 1647 (C=O st), 1476, 1392, 1374, 1177, 1048, 751. ¹H-NMR (500 MHz): \delta 8.33 – 8.23 (m, 2H), 7.70**

²³ For preparation of 6,7,8,9-tetrahydrocyclohepta[b]indol-10(5H)-one **S24**, see: Oikawa, Y.; Yonemitsu, O. J. Org. Chem. **1977**, 42, 1213–1216.

²⁴ For preparation of 7,8,9,10-tetrahydro-5H-cycloocta[b]indol-11(6H)-one S25, see: Talez, O.; Saracoglu, N. *Tetrahedron*, 2010, 66, 1902–1910.

(d, 2H, J = 8.4 Hz), 7.37 – 7.29 (m, 2H), 7.26 – 7.23 (m, 2H), 3.55 (t, 2H, J = 6.6 Hz), 2.89 (t, 2H, J = 7.1 Hz), 2.38 (s, 3H), 1.87 – 1.73 (m, 4H), 1.55 – 1.47 (m, 2H). ¹³C-NMR (126 MHz): δ 199.6, 145.5, 144.6, 136.4, 136.2, 130.2, 127.6, 126.4, 125.2, 124.7, 122.3, 121.9, 114.3, 43.1, 26.3, 24.5, 24.0, 23.2, 21.6. **HRMS** (ESI) *m/z* calcd for C₂₁H₂₂NO₃S ([M+H]⁺) 368.1320; found 368.1314.

F. SYNTHESIS OF KETONE-CONTAINING BENZANNULATED MEDIUM-RING LACTAMS

Supplementary Figure 16. Three-step synthesis of medium-ring lactams from bicyclic ketones.

1. Synthesis of β -hydroxyesters

a. General procedure for preparation of β-hydroxyesters

Ethyl 2-(6-bromo-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (6a). Ethyl acetate (0.65 mL, 6.7 mmol, 3.0 equiv) was dissolved in THF (13 mL) and cooled to -78 °C. A solution of LiHMDS (1.0 M in THF, 6.7 mL, 6.7 mmol, 3.0 equiv) was added by syringe over 5 min and the reaction was stirred for 1 h. A solution of 6-bromo-1-tetralone **5a**¹³ (1.0 M in THF, 0.50 g, 2.2 mmol, 1.0 equiv) was then added by syringe over 5 min and the reaction was stirred for additional 4 h at -78 °C until complete conversion. The reaction was quenched slowly with satd aq NH₄Cl at -78 °C, warmed to 24 °C and diluted with EtOAc. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% → 10% EtOAc in hexanes) yielded β-hydroxyester **6a** as a colorless oil (650 mg, 93%).

TLC: $R_f 0.42$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3482 (O–H st), 2938, 1712 (C=O st), 1591, 1480, 1328, 1199, 1184, 1084, 1025, 823, 735. ¹H-NMR (600 MHz): δ 7.44 (d, 1H, J = 8.4 Hz), 7.32 (dd, 1H, J = 8.5, 2.0 Hz), 7.24 – 7.22 (m, 1H), 4.19 (qd, 2H, J = 7.1, 2.0 Hz), 4.13 (s, 1H), 2.84 – 2.70 (m, 4H), 2.09 – 2.04 (m, 1H), 1.98 – 1.90 (m, 2H), 1.81 – 1.73 (m, 1H), 1.27 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.4, 139.7, 138.8, 131.5, 129.4, 128.3, 121.3, 70.9, 60.9, 45.8, 36.0, 29.2, 19.8, 14.1. **HRMS** (ESI) m/z calcd for C₁₄H₁₇BrO₃Na ([M+Na]⁺) 335.0259; found 335.0247.

Ethyl 2-(6-chloro-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (S28).¹⁵ Isolated as a yellow oil (350 mg, 94%). **TLC**: R_f 0.46 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3487 (O–H st), 2940, 1712 (C=O st), 1597, 1483, 1329, 1200, 1186, 1026, 884, 856. ¹H-NMR (600 MHz): δ 7.49 (d, 1H, J = 8.5 Hz), 7.17 (dd, 1H, J = 8.5, 2.2 Hz), 7.08 – 7.05 (m, 1H), 4.19

(qd, 2H, J = 7.2, 1.9 Hz), 4.12 (s, 1H), 2.83 – 2.70 (m, 4H), 2.10 – 2.04 (m, 1H), 1.98 – 1.91 (m, 2H), 1.81 – 1.74 (m, 1H), 1.27 (t, 3H, J = 7.1 Hz). ¹³**C-NMR** (151 MHz): δ 172.4, 139.2, 138.4, 133.0, 128.5, 128.0, 126.5, 70.8, 60.9, 45.9, 36.1, 29.3, 19.8, 14.1. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₇ClO₃Na ([M+Na]⁺) 291.0764; found 291.0761.

Ethyl 2-(1-hydroxy-6-iodo-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (S29).¹⁶ Isolated as a colorless oil (588 mg, 89%). **TLC**: R_f 0.46 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3482 (O–H st), 2938, 1713 (C=O st), 1585, 1477, 1330, 1199, 1185, 978, 840, 735. ¹H-NMR (600 MHz): δ 7.52 (d, 1H, J = 8.3 Hz), 7.45 (s, 1H), 7.30 (d, 1H, J = 8.3 Hz), 4.19 (q, 2H, J = 7.1 Hz), 4.12 (s, 1H), 2.83 – 2.69 (m, 4H), 2.09 – 2.03 (m, 1H), 1.98 – 1.89 (m, 2H), 1.81 – 1.72 (m, 1H), 1.27 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.4, 140.4, 139.0, 137.6, 135.3, 128.4, 93.3, 70.9, 60.9, 45.8, 36.0, 29.0, 19.8, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₇IO₃Na ([M+Na]⁺) 383.0120; found 383.0114.

Ethyl 2-(6-fluoro-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (S30).¹⁷ Isolated as a colorless oil (384 mg, 77%). **TLC**: R_f 0.51 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3436 (O–H st), 2938, 1716 (C=O st), 1613, 1589, 1496, 1329, 1235, 1195, 1029, 976, 914, 738. **¹H-NMR** (600 MHz): δ 7.53 (dd, 1H, J = 8.7, 5.8 Hz), 6.90 (td, 1H, J = 8.6, 2.7 Hz), 6.76 (dd, 1H, J = 9.6, 2.7 Hz), 4.20 (qd, 2H, J = 7.2, 1.6 Hz), 4.09 (s, 1H), 2.85 – 2.71 (m, 4H), 2.10 – 2.03 (m, 1H), 2.00 – 1.91 (m, 2H), 1.83 – 1.74 (m, 1H), 1.27 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.5, 161.8 (d, J = 244.6 Hz), 138.9 (d, J = 7.5 Hz), 136.4 (d, J = 3.0 Hz), 128.4 (d, J = 9.1 Hz), 114.8 (d, J = 20.0 Hz), 113.5 (d, J = 21.1 Hz), 70.8, 60.9, 46.1, 36.2, 29.6 (d, J = 1.5 Hz), 19.9, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₇FO₃Na ([M+Na]⁺) 275.1059; found 275.1072.

Ethyl 2-(5-fluoro-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)acetate (S31).** Isolated as a colorless oil (450 mg, 95%). **TLC**: R_f 0.44 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3466 (O–H st), 2982, 1726 (C=O st), 1614, 1598, 1487, 1374, 1333, 1246, 1195, 1130, 1094, 1064, 963, 932, 864, 822, 735. ¹H-NMR (600 MHz): δ 7.28 (dd, 1H, J = 9.0, 5.3 Hz), 6.93 – 6.89 (m, 2H), 4.21 (q, 2H, J = 7.1 Hz), 4.18 (s, 1H), 3.03 (dt, 1H, J = 16.1, 6.9 Hz), 2.86 (d, 1H, J = 16.0 Hz), 2.81

(dt, 1H, J = 15.7, 7.5 Hz), 2.69 (d, 1H, J = 16.0 Hz), 2.35 – 2.26 (m, 2H), 1.28 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.7, 163.2 (d, J = 244.6 Hz), 145.1 (d, J = 9.1 Hz), 141.6 (d, J = 3.0 Hz), 124.2 (d, J = 9.1 Hz), 113.9 (d, J = 22.7 Hz), 111.8 (d, J = 21.1 Hz), 80.3, 61.0, 43.9, 40.6, 29.3 (d, J = 3.0 Hz), 14.1. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₅FO₃Na ([M+Na]⁺) 261.0903; found 261.0895.

Ethyl 2-(5-chloro-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)acetate (S32). Isolated as a colorless oil (910 mg, 95%). TLC**: R_f 0.44 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3469 (O–H st), 2980, 1727 (C=O st), 1601, 1581, 1474, 1373, 1191, 1071, 1029, 964, 912, 875, 823, 734. ¹H-NMR (600 MHz): δ 7.27 - 7.25 (m, 1H), 7.22 - 7.18 (m, 2H), 4.23 (s, 1H), 4.21 (q, 2H, J = 7.1 Hz), 3.01 (dt, 1H, J = 16.2, 6.4 Hz), 2.84 (d, 1H, J = 15.9 Hz), 2.84 – 2.78 (m, 1H), 2.69 (d, 1H, J = 16.0 Hz), 2.32 - 2.24 (m, 2H), 1.28 (t, 3H, J = 7.2 Hz). ¹³C-NMR (151 MHz): δ 172.6, 144.6, 144.5, 134.2, 127.1, 125.1, 124.1, 80.5, 61.0, 43.7, 40.4, 29.2, 14.1. **HRMS** (ESI) m/z calcd for C₁₃H₁₅ClO₃Na ([M+Na]⁺) 277.0607; found 277.0620.

Ethyl 2-(5-bromo-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)acetate (S33). Isolated as a colorless oil (540 mg, 95%). TLC**: R_f 0.46 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3466 (O–H st), 2981, 1725 (C=O st), 1597, 1472, 1373, 1333, 1192, 1063, 1028, 911, 866, 822, 735. ¹**H-NMR** (600 MHz): δ 7.37 (s, 1H), 7.35 (d, 1H, J = 8.1 Hz), 7.21 (d, 1H, J = 8.1 Hz), 4.24 (s, 1H), 4.21 (q, 2H, J = 7.1 Hz), 3.02 (ddd, 1H, J = 16.2, 7.4, 5.6 Hz), 2.83 (d, 1H, J = 16.0 Hz), 2.83 – 2.79 (m, 1H), 2.68 (d, 1H, J = 16.0 Hz), 2.31 – 2.23 (m, 2H), 1.28 (t, 3H, J = 7.2 Hz). ¹³**C-NMR** (151 MHz): δ 172.6, 145.0, 145.0, 129.9, 128.1, 124.5, 122.4, 80.5, 61.0, 43.6, 40.3, 29.2, 14.1. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₅BrO₃Na ([M+Na]⁺) 321.0102; found 321.0111.

Ethyl 2-(1-hydroxy-5-iodo-2,3-dihydro-1*H***-inden-1-yl)acetate (S34).** Isolated as a yellow oil (360 mg, 75%). TLC: R_f 0.62 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3448 (O–H st), 2980, 1718 (C=O st), 1591, 1470, 1401, 1372, 1196, 1028, 912, 821, 736. ¹**H-NMR** (600 MHz): δ 7.59 (s, 1H), 7.56 (d, 1H, J = 8.0 Hz), 7.09 (d, 1H, J = 8.0 Hz), 4.23 (s, 1H), 4.21 (q, 2H, J = 7.1 Hz), 3.01 (ddd, 1H, J = 16.2, 7.7, 5.2 Hz), 2.82 (d, 1H, J = 16.0 Hz), 2.81 – 2.77 (m, 1H), 2.68 (d, 1H, J = 16.0 Hz), 2.30 – 2.21 (m, 2H), 1.28 (t, 3H, J = 7.2 Hz). ¹³**C-NMR** (151 MHz):

δ 172.6, 145.8, 145.2, 135.8, 134.2, 124.8, 94.2, 80.7, 61.0, 43.6, 40.2, 29.1, 14.1. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₅IO₃Na ([M+Na]⁺) 368.9964; found 368.9969.

Ethyl 2-(2-fluoro-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)acetate (S35). Isolated as a yellow oil (800 mg, 97%). TLC: R_f 0.63 (3:1 hexanes/EtOAc). IR (ATR, ZnSe): 3495 (O–H st), 2932, 1711 (C=O st), 1611, 1590, 1493, 1447, 1371, 1329, 1240, 1190, 1097, 1048, 1025, 882, 862, 737. ¹H-NMR (600 MHz): \delta 7.62 (dd, 1H, J = 8.5, 6.2 Hz), 6.86 (td, 1H, J = 8.4, 2.8 Hz), 6.78 (dd, 1H, J = 9.6, 2.8 Hz), 4.56 (s, 1H), 4.11 (qd, 2H, J = 7.1, 2.7 Hz), 2.94 (d, 1H, J = 15.6 Hz), 2.90 – 2.84 (m, 3H), 2.04 (ddd, 1H, J = 13.4, 6.4, 2.3 Hz), 1.99 – 1.92 (m, 1H), 1.86 (ddd, 2H, J = 13.7, 11.7, 2.7 Hz), 1.82 – 1.74 (m, 1H), 1.56 – 1.48 (m, 1H), 1.18 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): \delta 172.8, 161.4 (d, J = 246.1 Hz), 142.0 (d, J = 6.0 Hz), 140.6 (d, J = 3.0 Hz), 127.7 (d, J = 7.5 Hz), 117.4 (d, J = 19.6 Hz), 112.2 (d, J = 19.6 Hz), 75.5, 60.9, 43.0, 40.4, 36.8, 27.6, 25.7, 14.0. HRMS (ESI) m/z calcd for C₁₅H₁₉FO₃Na ([M+Na]⁺) 289.1216; found 289.1224.**

Ethyl 2-(2-chloro-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)acetate (S36).²⁵ Isolated as a colorless oil (237 mg, 54%). TLC: R_f 0.65 (3:1 hexanes/EtOAc). IR** (ATR, ZnSe): 3486 (O–H st), 2933, 1715 (C=O st), 1479, 1447, 1330, 1192, 1047, 915, 828, 736. ¹H-NMR (600 MHz): δ 7.59 (d, 1H, J = 8.5 Hz), 7.16 (dd, 1H, J = 8.5, 2.3 Hz), 7.07 (d, 1H, J = 2.3 Hz), 4.57 (s, 1H), 4.11 (qd, 2H, J = 7.1, 4.7 Hz), 2.93 (d, 1H, J = 15.7 Hz), 2.90 – 2.83 (m, 3H), 2.04 (dd, 1H, J = 13.4, 6.2, 1.9 Hz), 1.95 (ddq, 1H, J = 12.9, 6.4, 3.3 Hz), 1.86 (dd, 2H, J = 11.9, 2.8 Hz), 1.81 – 1.73 (m, 1H), 1.51 (td, 1H, J = 10.2, 5.2 Hz), 1.19 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.8, 143.4, 141.5, 132.4, 130.6, 127.5, 126.0, 75.5, 60.9, 42.7, 40.4, 36.7, 27.6, 25.7, 14.0. **HRMS** (ESI) *m/z* calcd for C₁₅H₁₉ClO₃Na ([M+Na]⁺) 305.0920; found 305.0922.

²⁵ For preparation of 7-chloro- and 7-bromo-2,3,4,5-tetrahydro-benzocycloheptan-1-one, see: Murineddu, G.; Ruiu, S.; Loriga, G.; Manca, I.; Lazzari, P.; Reali, R.; Pani, L.; Toma, L.; Pinna, G. A. *J. Med. Chem.* **2005**, *48*, 7351–7362.

Ethyl 2-(2-bromo-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)acetate (S37).²⁵ Isolated as a white solid (916 mg, 89%). TLC: R_f 0.72 (3:1 hexanes/EtOAc). IR** (ATR, ZnSe): 3486 (O–H st), 2933, 1712 (C=O st), 1477, 1446, 1395, 1329, 1192, 1163, 1048, 1025, 910, 737. ¹**H-NMR** (600 MHz): δ 7.53 (d, 1H, J = 8.5 Hz), 7.31 (dd, 1H, J = 8.5, 2.2 Hz), 7.23 (d, 1H, J = 2.1 Hz), 4.57 (s, 1H), 4.11 (qd, 3H, J = 7.3, 4.8 Hz), 2.92 (d, 1H, J = 15.7 Hz), 2.89 – 2.85 (m, 3H), 2.04 (ddd, 1H, J = 13.5, 6.5, 2.0 Hz), 1.95 (ddq, 1H, J = 12.8, 6.4, 3.1 Hz), 1.86 (td, 2H, J = 11.9, 2.9 Hz), 1.81 – 1.73 (m, 1H), 1.54 – 1.46 (m, 1H), 1.19 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.7, 144.0, 141.9, 133.4, 129.0, 127.8, 120.8, 75.5, 61.0, 42.7, 40.3, 36.7, 27.6, 25.7, 14.0. **HRMS** (ESI) m/z calcd for C₁₅H₁₉BrO₃Na ([M+Na]⁺) 349.0415; found 349.0422.

Ethyl 2-(2-fluoro-5-hydroxy-5,6,7,8,9,10-hexahydrobenzo[8]annulen-5-yl)acetate (S38). Isolated as a colorless oil (651 mg, 89%). **TLC**: R_f 0.67 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3487 (O–H st), 2928, 1712 (C=O st), 1608, 1589, 1490, 1445, 1393, 1331, 1230, 1199 1164, 1023, 965, 818, 737. ¹H-NMR (600 MHz): δ 7.42 (br s, 1H), 6.82 (td, 1H, J = 8.5, 2.6 Hz), 6.77 (dd, 1H, J = 9.7, 2.7 Hz), 4.39 (s, 1H), 4.10 (qq, 2H, J = 7.3, 3.7 Hz), 3.02 (d, 1H, J = 12.3 Hz), 2.80 (br s, 1H), 2.68 (d, 1H, J = 15.8 Hz), 2.13 – 1.85 (m, 2H), 1.84 – 1.76 (m, 1H), 1.76 – 1.60 (m, 2H), 1.56 – 1.47 (m, 1H), 1.32 (br s, 1H), 1.19 (t, 3H, J = 7.1 Hz), 1.07 (br s, 1H). ¹³C-NMR (151 MHz): δ 172.8, 161.94 (d, J = 246.1 Hz), 139.6, 127.6 (2C), 117.64 (d, J = 19.6 Hz), 112.24 (d, J = 19.6 Hz), 76.1, 60.8, 48.1, 43.5, 32.2, 30.6, 23.5, 22.2, 14.1. **HRMS** (ESI) m/z calcd for C₁₆H₂₁FO₃Na ([M+Na]⁺) 303.1372; found 303.1371.

Ethyl 2-(2-chloro-5-hydroxy-5,6,7,8,9,10-hexahydrobenzo[8]annulen-5-yl)acetate (S39).²⁶ Isolated as a colorless oil (570 mg, 80%). **TLC**: R_f 0.70 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3486 (O–H st), 2928, 1712 (C=O st), 1478, 1445, 1204, 1158, 1023, 907, 832, 814, 736. ¹**H-NMR** (600 MHz): δ 7.38 (s, 1H), 7.11 (d, 1H, J = 10.1 Hz), 7.05 (d, 1H, J = 2.1 Hz), 4.41 (s, 1H), 4.10 (qd, 2H, J = 7.1, 2.5 Hz), 3.01 (d, 1H, J = 12.7 Hz), 2.80 (s, 1H), 2.68 (d, 1H,

²⁶ For preparation of 2-chloro-7,8,9,10-tetrahydrobenzo[8]annulen-5(6*H*)-one, see: Zhang, Y.; Burgess, J. P.; Brackeen, M.; Gilliam, A.; Mascarella, S. W.; Page, K.; Seltzman, H. H.; Thomas, B. F. *J. Med. Chem.* **2008**, *51*, 3526–3539.

J = 15.9 Hz), 2.08 – 1.86 (m, 2H), 1.85 – 1.76 (m, 1H), 1.76 – 1.60 (m, 2H), 1.56 – 1.46 (m, 1H), 1.32 (s, 1H), 1.19 (t, 3H, J = 7.1 Hz), 1.07 (s, 1H). ¹³**C-NMR** (151 MHz): δ 172.8, 142.4, 132.9, 131.1, 127.6, 127.3, 125.7, 76.2, 60.9, 47.9, 43.2, 32.0, 30.5, 23.5, 22.1, 14.1. **HRMS** (ESI) m/z calcd for C₁₆H₂₁ClO₃Na ([M+Na]⁺) 319.1077; found 319.1080.

Ethyl 2-(1-hydroxy-6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (S40). Isolated as a white solid (390 mg, 97%). **TLC**: R_f 0.43 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3498 (O–H st), 2937, 1723 (C=O st), 1609, 1502, 1323, 1252, 1197, 1039, 736. ¹**H-NMR** (600 MHz): δ 7.47 (d, 1H, J = 8.7 Hz), 6.78 (dd, 1H, J = 8.7, 2.7 Hz), 6.59 (d, 1H, J = 2.5 Hz), 4.19 (qd, 2H, J = 7.1, 2.5 Hz), 3.93 (s, 1H), 3.78 (s, 3H), 2.87 (d, 1H, J = 15.5 Hz), 2.84 – 2.78 (m, 1H), 2.76 – 2.71 (m, 2H), 2.06 (ddd, 1H, J = 13.5, 8.0, 3.0 Hz), 1.99 – 1.91 (m, 2H), 1.81 – 1.74 (m, 1H), 1.27 (t, 3H, J = 7.1 Hz). ¹³**C-NMR** (151 MHz): δ 172.6, 158.6, 138.1, 133.0, 127.8, 113.0, 112.7, 70.8, 60.8, 55.2, 46.2, 36.5, 29.9, 20.1, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₅H₂₀O₄Na ([M+Na]⁺) 287.1259; found 287.1258.

Ethyl 2-(5-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)acetate (S41). Isolated as a white solid (1.60 g, 74%). TLC: R_f 0.55 (3:1 hexanes/EtOAc). IR** (ATR, ZnSe): 3490 (O–H st), 2932, 1710 (C=O st), 1608, 1578, 1250, 1190, 1037, 912, 735. ¹H-NMR (600 MHz, Methanol- d_4) δ 7.53 (d, 1H, J = 8.7 Hz), 6.70 (dd, 1H, J = 8.7, 2.8 Hz), 6.62 (d, 1H, J = 2.7 Hz), 4.02 (qd, 2H, J = 7.1, 1.8 Hz), 3.75 (s, 3H), 2.95 – 2.79 (m, 4H), 2.18 – 2.12 (m, 1H), 1.93 – 1.84 (m, 3H), 1.84 – 1.77 (m, 1H), 1.52 – 1.43 (m, 1H), 1.11 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz, Methanol- d_4): δ 173.2, 159.8, 142.3, 138.9, 128.5, 117.5, 111.3, 77.1, 61.4, 55.5, 45.2, 42.0, 37.9, 29.2, 26.8, 14.4. **HRMS** (ESI) *m/z* calcd for C₁₆H₂₂O₄Na ([M+Na]⁺) 301.1416; found 301.1412.

Ethyl 2-(4-hydroxychroman-4-yl)acetate (S42). Isolated as a colorless oil (436 mg, 91%). **TLC**: $R_f 0.42$ (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3484 (O–H st), 2938, 1715 (C=O st), 1609, 1582, 1489, 1452, 1223, 1193, 1059, 757, 737. ¹H-NMR (600 MHz): δ 7.4 (dd, 1H, J = 7.8, 1.6 Hz), 7.2 (ddd, 1H, J = 8.4, 7.3, 1.6 Hz), 6.9 (td, 1H, J = 7.9, 1.2 Hz), 6.8 (dd, 1H, J = 8.2, 1.1 Hz), 4.3 (ddd, 1H, J = 11.8, 7.9, 4.0 Hz), 4.2 – 4.2 (m, 3H), 4.1 (s, 1H), 3.1 (d, 1H, J = 15.9 Hz), 2.7 (d, 1H, J = 15.9 Hz), 2.2 – 2.2 (m, 2H), 1.3 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.4, 154.1, 129.4, 126.7, 126.0, 120.8, 117.2, 66.9, 62.9, 61.1, 45.1, 35.5, 14.1. HRMS (ESI) *m/z* calcd for C₁₃H₁₆O₄Na ([M+Na]⁺) 259.0946; found 259.0959.

Ethyl 2-(7-fluoro-4-hydroxychroman-4-yl)acetate (S43). Isolated as a colorless oil (440mg, 96%). **TLC**: R_f 0.38 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3468 (O–H st), 2939, 1721(C=O st), 1616, 1595, 1501, 1432, 1335, 1312, 1194, 1127, 1056, 1028, 850, 806, 733. ¹**H-NMR** (600 MHz): δ 7.39 (dd, 1H, J = 8.7, 6.5 Hz), 6.65 (td, 1H, J = 8.5, 2.6 Hz), 6.53 (dd, 1H, J = 10.2, 2.6 Hz), 4.31 (ddd, 1H, J = 11.8, 8.3, 3.7 Hz), 4.25 – 4.19 (m, 3H), 4.12 (s, 1H), 3.04 (d, 1H, J = 15.9 Hz), 2.69 (d, 1H, J = 15.9 Hz), 2.21 – 2.12 (m, 2H), 1.28 (t, 3H, J = 7.1 Hz). ¹³**C-NMR** (151 MHz): δ 172.3, 162.96 (d, J = 246.1 Hz), 155.42 (d, J = 12.1 Hz), 128.14 (d, J = 10.6 Hz), 122.16 (d, J = 3.0 Hz), 108.17 (d, J = 22.7 Hz), 103.99 (d, J = 24.1 Hz), 66.6, 63.3, 61.1, 45.0, 35.2, 14.1. **HRMS** (ESI) m/z calcd for C₁₃H₁₅FO₄Na ([M+Na]⁺) 277.0852; found 277.0858.

NOESY

Ethyl 2-((2*R****,4***S****)-4-hydroxy-2-phenylchroman-4-yl)acetate (S44). Isolated as a colorless oil (385 mg, 92%). TLC:** *R***_f 0.49 (3:1 hexanes/EtOAc). IR** (ATR, ZnSe): 3488 (O–H st), 2983, 1715 (C=O st), 1609, 1582, 1484, 1453, 1222, 1186, 1059, 1028, 914, 757. ¹H-NMR (600 MHz): δ 7.54 (dd, 1H, *J* = 7.8, 1.6 Hz), 7.46 – 7.43 (m, 2H), 7.43 – 7.39 (m, 2H), 7.37 – 7.33 (m, 1H), 7.21 (ddd, 1H, *J* = 8.3, 7.3, 1.7 Hz), 6.98 (ddd, 1H, *J* = 7.9, 7.3, 1.2 Hz), 6.89 (dd, 1H, *J* = 8.2, 1.2 Hz), 5.18 (dd, 1H, *J* = 12.5, 2.2 Hz), 4.29 (s, 1H), 4.24 (qd, 2H, *J* = 7.1, 4.7 Hz), 3.03 (d, 1H, *J* = 15.8 Hz), 2.97 (dd, 1H, *J* = 15.8, 1.4 Hz), 2.45 (dd, 1H, *J* = 13.9, 2.4 Hz), 2.36 (ddd, 1H, *J* = 13.9, 12.6, 1.4 Hz), 1.30 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (151 MHz): δ 171.9, 153.7, 140.5, 129.3, 128.7, 128.3, 127.0, 126.3, 126.0, 121.1, 116.9, 76.2, 68.9, 61.2, 46.1, 42.7, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₉H₂₀O₄Na ([M+Na]⁺) 335.1259; found 335.1262.

Ethyl 2-(6-acetamido-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)acetate (S45).²⁷ Isolated as a colorless oil (87.0 mg, 72%). **TLC**: R_f 0.16 (1:1 benzene/EtOAc). **IR** (NaCl, film): 3313 (O–H st), 2937, 1718 (C=O st), 1670, 1613,1542, 1371. ¹**H-NMR** (600 MHz): δ 7.49 (d, 1H, J = 8.5 Hz), 7.33 (s, 1H), 7.19 (d, 1H, J = 8.5 Hz), 7.17 (s, 1H), 4.19 (qd, 2H, J = 7.2, 2.8 Hz), 4.06 (s, 1H), 2.88 – 2.68 (m, 4H), 2.16 (s, 3H), 2.11 – 2.02 (m, 1H), 2.00 – 1.89 (m, 2H), 1.83 – 1.70 (m, 1H), 1.27 (t, 3H, J = 7.2 Hz). ¹³**C-NMR** (151 MHz): δ 172.6, 168.2, 137.6, 136.8, 136.7, 127.2, 119.7, 118.0, 70.9, 60.8, 46.0, 36.3, 29.6, 24.7, 20.0, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₆H₂₁NO₄Na ([M+Na]⁺) 314.1368; found 314.1362.

Ethyl 2-(4-hydroxy-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl)acetate (S46). Isolated as a yellow oil (53 mg, 68%). **TLC**: *R*_f 0.26 (3:1 hexanes/EtOAc). **IR** (ATR, ZnSe): 3478 (O–H st), 2926, 2360, 2341, 1731 (C=O st), 1345, 1307, 1166, 1092, 1072, 910, 737. ¹H-NMR (600 MHz): δ 7.82 (d, 1H, *J* = 8.3 Hz), 7.52 (d, 2H, *J* = 8.2 Hz), 7.47 (d, 1H, *J* = 7.8 Hz), 7.29 (d, 1H, *J* = 8.5 Hz), 7.22 (d, 2H, *J* = 8.1 Hz), 7.18 (t, 1H, *J* = 7.5 Hz), 4.17 – 4.10 (m, 2H), 4.07 (s, 1H), 4.00 – 3.95 (m, 1H), 3.74 (ddd, 1H, *J* = 13.4, 8.1, 4.9 Hz), 2.63 (d, 1H, *J* = 15.9 Hz), 2.39 (s, 3H), 1.93 (d, 1H, *J* = 15.9 Hz), 1.90 – 1.83 (m, 2H), 1.25 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.3, 143.9, 136.5, 135.7, 133.2, 129.7, 128.5, 127.1, 126.8, 125.3, 124.0, 68.3, 61.0, 45.0, 43.4, 35.0, 21.5, 14.1. **HRMS** (ESI) *m/z* calcd for C₂₀H₂₃NO₅Na ([M+Na]⁺) 412.1195; found 412.1198.

Ethyl 2-(4-hydroxy-4,5,6,7-tetrahydrobenzofuran-4-yl)acetate (S47). Isolated as a colorless oil (431 mg, 83%). **TLC**: R_f 0.37 (4:1 hexanes/EtOAc). **IR** (NaCl, film): 3493 (O–H st), 2940, 1713 (C=O st), 1372, 1327, 1196, 1035. ¹**H-NMR** (400 MHz): δ 7.24 (d, 1H, J = 2.1 Hz), 6.37 (d, 1H, J = 2.0 Hz), 4.21 (q, 2H, J = 7.1 Hz), 4.00 (s, 1H), 2.87 (d, 1H, J = 15.7 Hz), 2.71 – 2.59 (m, 2H), 2.59 – 2.46 (m, 1H), 2.13 – 2.02 (m, 1H), 1.97 (ddd, 1H, J = 13.4, 7.5, 2.9 Hz), 1.85 (ddq, 1H, J = 10.9, 5.5, 2.8 Hz), 1.84 – 1.68 (m, 1H), 1.29 (t, 3H, J = 7.1 Hz). ¹³C-NMR

²⁷ For preparation of 6-acetamido-1-tetralone, see: Siqueira, F. A.; Ishikawa, E. E.; Fogaca, A.; Faccio, A. T.; Carneiro, V. M. T.; Soares, R. R. S.; Utaka, A.; Tebeka, I. R. M.; Bielawski, M.; Olofsson, B.; Silva, L. F. *J. Braz. Chem. Soc.* **2011**, *22*, 1795–1807.

(151 MHz): δ 172.8, 152.0, 141.0, 121.6, 107.6, 68.5, 60.9, 45.1, 36.7, 23.0, 19.4, 14.2. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₆O₄Na ([M+Na]⁺) 247.0946; found 247.0938.

Ethyl 2-(4-hydroxy-4,5,6,7-tetrahydrobenzo[*b*]**thiophen-4-yl)acetate (S48).** Isolated as a colorless oil (260 mg, 82%). TLC: R_f 0.15 (9:1 hexanes/EtOAc). IR (NaCl, film): 3490 (O–H st), 2937, 1726 (C=O st), 1370, 1188, 1026, 709. ¹H-NMR (600 MHz): δ 7.07 (d, 1H, J = 5.3 Hz), 7.03 (d, 1H, J = 5.2 Hz), 4.20 (q, 2H, J = 7.1 Hz), 3.96 (s, 1H), 2.95 (d, 1H, J = 15.5 Hz), 2.87 – 2.81 (m, 1H), 2.73 (ddd, 1H, J = 16.6, 7.5, 5.5 Hz), 2.68 (d, 1H, J = 15.5 Hz), 2.09 – 2.03 (m, 1H), 2.03 – 1.97 (m, 1H), 1.97 – 1.89 (m, 1H), 1.89 – 1.82 (m, 1H), 1.28 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.6, 139.1, 138.6, 124.9, 122.7, 69.6, 60.9, 45.4, 36.2, 25.1, 20.6, 14.2. HRMS (ESI) m/z calcd for C₁₂H₁₆O₃SNa ([M+Na]⁺) 263.0718; found 263.0709.

Ethyl 2-(4-hydroxy-1-tosyl-4,5,6,7-tetrahydro-1*H***-indol-4-yl)acetate (S49). Isolated as a colorless oil (184 mg, 94%). TLC**: R_f 0.28 (96:4 CH₂Cl₂/Et₂O). **IR** (NaCl, film): 3492 (O–H st), 2941, 1714 (C=O st), 1369, 1177, 1127, 1092, 665. ¹H-NMR (400 MHz): δ 7.68 (d, 2H, J = 8.3 Hz), 7.30 (d, 2H, J = 8.2 Hz), 7.20 (d, 1H, J = 3.5 Hz), 6.28 (d, 1H, J = 3.5 Hz), 4.18 (q, 2H, J = 7.2 Hz), 4.02 (s, 1H), 2.85 (d, 1H, J = 15.7 Hz), 2.67 (t, 2H, J = 6.4 Hz), 2.56 (d, 1H, J = 15.8 Hz), 2.42 (s, 3H), 1.93 (ddd, 1H, J = 12.9, 6.4, 3.1 Hz), 1.86 (ddd, 1H, J = 13.2, 7.8, 2.9 Hz), 1.80 – 1.67 (m, 2H), 1.26 (t, 2H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.8, 145.0, 136.0, 130.2, 130.0, 127.0, 121.2, 108.9, 68.4, 60.9, 45.0, 35.9, 22.8, 21.6, 19.6, 14.1 (1 signal not resolved). **HRMS** (ESI) *m/z* calcd for C₁₉H₂₃NO₅SNa ([M+Na]⁺) 400.1195; found 400.1187.

Ethyl 2-(4-hydroxy-9-tosyl-2,3,4,9-tetrahydro-1*H***-carbazol-4-yl)acetate (S50).²⁸ Isolated as a yellow oil (393 mg, 86%). TLC: R_f 0.40 (7:3 hexanes/EtOAc). IR** (NaCl, film): 3509 (O–H st), 2940, 1718 (C=O st), 1452, 1371, 1174, 1090, 669. ¹H-NMR (600 MHz, C₆D₆): δ 8.54 (d, 1H, J = 8.5 Hz), 7.88 (d, 1H, J = 7.9 Hz), 7.57 (d, 2H, J = 8.3 Hz), 7.21 – 7.17 (m, 1H), 7.13 – 7.07 (m, 1H), 6.50 – 6.39 (m, 2H), 3.89 – 3.74 (m, 2H), 3.62 (s, 1H), 3.13 – 2.98 (m, 2H), 2.89 (ddd, 1H, J = 17.8, 8.6, 5.8 Hz), 2.42 (d, 1H, J = 15.6 Hz), 2.06 (ddd, 1H, J = 13.3, 7.3, 2.8 Hz), 1.79 – 1.69 (m, 1H), 1.63 (s, 4H), 1.46 – 1.40 (m, 1H), 0.82 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz, C₆D₆): δ 172.24, 144.27, 137.26, 137.05, 136.76, 129.84, 128.30, 126.40, 124.27, 123.61, 122.31, 121.51, 114.82, 70.44, 60.50, 43.39, 36.76, 24.92, 20.98, 20.69, 14.00. **HRMS** (ESI) *m/z* calcd for C₂₃H₂₅NO₅SNa ([M+Na]⁺) 450.1351; found 450.1359.

Ethyl 2-(1-hydroxy-9-tosyl-2,3,4,9-tetrahydro-1*H***-carbazol-1-yl)acetate** (S51).²⁹ Isolated as a colorless oil (114 mg, 91%). TLC: R_f 0.30 (4:1 hexanes/EtOAc). **IR** (NaCl, film): 3528 (O–H st), 2939, 1731 (C=O st), 1453, 1346, 1171, 1089, 752. ¹**H-NMR** (500 MHz): δ 8.01 (d, 1H *J* = 8.3 Hz), 7.66 (d, 2H, *J* = 8.2 Hz), 7.31 (d, 1H, *J* = 8.6 Hz), 7.30 – 7.23 (m, 1H), 7.18 (t, 1H, *J* = 7.4 Hz), 7.09 (d, 2H, *J* = 8.1 Hz), 4.92 (s, 1H), 4.05 (qd, 2H, *J* = 7.1, 1.7 Hz), 3.43 (d, 1H, *J* = 14.3 Hz), 3.15 (d, 1H, *J* = 14.3 Hz), 2.68 (dt, 1H, *J* = 16.9, 5.0 Hz), 2.56 (ddd, 1H, *J* = 16.9, 8.6, 5.3 Hz), 2.27 (s, 3H), 2.23 (ddd, 1H, *J* = 13.3, 7.1, 2.7 Hz), 2.16 (t, 1H, *J* = 13.1, 10.7 Hz), 2.13 – 2.00 (m, 1H), 1.97 – 1.84 (m, 1H), 1.12 (t, 3H, *J* = 7.1 Hz). ¹³C-NMR (126 MHz): δ 170.4, 144.6, 138.5, 137.8, 133.9, 130.3, 129.4, 126.8, 126.7, 125.7, 124.2, 119.3, 116.0, 69.3, 60.4, 46.3, 38.2, 22.6, 21.5, 19.1, 14.1. **HRMS** (ESI) *m/z* calcd for C₂₃H₂₅NO₅SNa ([M+Na]⁺) 450.1351; found 450.1334.

²⁸ For preparation of 9-tosyl-1,2,3,9-tetrahydro-4*H*-carbazol-4-one, see: Gartshore, C. J.; Lupton, D. W. Aust. J. Chem. **2013**, 66, 882–890.

²⁹ For preparation of 9-tosyl-2,3,4,9-tetrahydro-1*H*-carbazol-1-one, see: Wu, Z. J.; Li, Y.; Cai, Y.; Yuan, J. Y.; Yuan, C. Y. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 4903–4906.

Ethyl 2-(10-hydroxy-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]**indol-10-yl)acetate (S52).** Isolated as a light yellow oil (710 mg, 54%). **TLC**: R_f 0.18 (1:4 hexanes/CH₂Cl₂). **IR** (NaCl, film): 3492 (O–H st), 2937, 1711 (C=O st), 1451, 1368, 1171, 1090, 660. ¹**H-NMR** (600 MHz): δ 8.23 (d, 1H, J = 8.4 Hz), 8.04 (d, 1H, J = 7.9 Hz), 7.57 (d, 2H, J = 8.4 Hz), 7.27 – 7.22 (m, 1H), 7.22 – 7.15 (m, 3H), 4.28 – 4.10 (m, 2H), 4.00 (s, 1H), 3.28 (ddd, 1H, J = 16.8, 9.0, 3.1 Hz), 3.20 (ddd, 1H, J = 16.6, 8.1, 2.7 Hz), 3.11 (d, 1H, J = 16.0 Hz), 2.69 (d, 1H, J = 15.9 Hz), 2.35 (s, 3H), 2.17 – 2.09 (m, 2H), 1.84 – 1.62 (m, 4H), 1.25 (t, 3H, J = 7.1 Hz). ¹³**C-NMR** (151 MHz): δ 172.6, 144.7, 137.3, 137.0, 136.1, 129.8, 129.0, 126.3, 125.9, 124.1, 123.4, 121.8, 115.2, 74.1, 61.0, 42.7, 37.7, 25.5, 23.8, 22.0, 21.6, 14.1. **HRMS** (ESI) *m/z* calcd for C₂₄H₂₇NO₅SNa ([M+Na]⁺) 464.1508; found 464.1521.

Ethyl 2-(11-hydroxy-5-tosyl-6,7,8,9,10,11-hexahydro-5*H*-cycloocta[*b*]indol-11-yl)acetate (S53). Isolated as a colorless oil (654 mg, 77%). TLC: R_f 0.20 (1:4 hexanes/CH₂Cl₂). IR (NaCl, film): 3308 (O–H st), 2927, 1726 (C=O st), 1452, 1368, 1176, 1090, 658. ¹H-NMR (600 MHz): δ 8.24 (d, 1H, J = 7.8 Hz), 8.08 (d, 1H, J = 7.8 Hz), 7.60 (d, 2H, J = 8.4 Hz), 7.28 – 7.19 (m, 2H), 7.19 (d, 2H, J = 8.1 Hz), 4.05 (q, 2H, J = 7.2 Hz), 3.78 (s, 1H), 3.68 (ddd, 1H, J = 15.6, 6.3, 3.9 Hz), 3.16 (d, 1H, J = 15.8 Hz), 3.13 – 2.99 (m, 1H), 2.64 (d, 1H, J = 15.9 Hz), 2.54 – 2.38 (m, 1H), 2.35 (s, 3H), 2.08 (dt, 1H, J = 15.5, 5.0 Hz), 1.99 – 1.89 (m, 1H), 1.78 – 1.64 (m, 2H), 1.64 – 1.57 (m, 1H), 1.44 – 1.27 (m, 2H), 1.14 (t, 3H, J = 7.1 Hz). ¹³C-NMR (151 MHz): δ 172.44, 144.58, 136.84, 136.77, 134.43, 129.75, 128.70, 126.23, 124.69, 123.89, 123.12, 122.07, 114.88, 74.07, 60.70, 46.11, 38.51, 26.75, 24.23, 23.61, 22.89, 21.56, 14.03. HRMS (ESI) *m/z* calcd for C₂₅H₂₉NO₅SNa ([M+Na]⁺) 478.1664; found 478.1669.

2. Synthesis of β -hydroxy-N-methoxyamides

a. General procedure for preparation of β-hydroxy-N-methoxyamides

2-(6-Bromo-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (7a).

Methoxyamine hydrochloride (0.48 g, 5.8 mmol, 3.0 equiv) was suspended in THF (11 mL) and cooled to 0 °C. A solution of AlMe₃ (2.0 M in hexanes, 2.9 mL, 5.8 mmol, 3.0 equiv) was added by syringe over 5 min and the mixture was stirred for 1 h. A solution of the ester **6a** (0.5 M in THF, 0.6 g, 1.9 mmol, 1.0 equiv) was then added by syringe over 5 min and the reaction was stirred at 0 °C to 24 °C for 16–24 h until complete conversion. The reaction was then cooled to 0 °C and quenched slowly with satd aq Rochelle salt. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% MeOH in CH₂Cl₂) yielded β-hydroxyamide **7a** as a white solid (580 mg, 96%).

TLC: $R_f 0.28$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3382 (O–H st), 2937, 2501, 1670 (C=O st), 1450, 1119, 1043, 975, 823, 751. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.47 (d, 1H, J = 8.5 Hz), 7.32 (dd, 1H, J = 8.4, 2.1 Hz), 7.27 – 7.23 (m, 1H), 3.64 (s, 3H), 2.83 – 2.72 (m, 2H), 2.58 (d, 1H, J = 14.2 Hz), 2.48 (d, 1H, J = 14.2 Hz), 2.27 – 2.20 (m, 1H), 1.95 – 1.79 (m, 3H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.8, 141.8, 140.6, 132.4, 130.2, 130.0, 122.0, 72.0, 64.3, 45.6, 37.2, 30.4, 20.8. **HRMS** (ESI) m/z calcd for C₁₃H₁₆BrNO₃Na ([M+Na]⁺) 336.0211; found 336.0219.

2-(6-Chloro-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (7b).

Isolated as a white solid (340 mg, 97%). TLC: $R_f 0.29$ (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3216 (O–H st), 2940, 1650 (C=O st), 1483, 1409, 1093, 1064, 856, 737, 701. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.53 (d, 1H, J = 8.5 Hz), 7.17 (dd, 1H, J = 8.5, 2.2 Hz), 7.09 (d, 1H, J = 2.0 Hz), 3.63 (s, 3H), 2.81 – 2.72 (m, 2H), 2.58 (d, 1H, J = 14.2 Hz), 2.48 (d, 1H, J = 14.2 Hz), 2.26 – 2.20 (m, 1H), 1.94 – 1.81 (m, 3H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.9, 141.3, 140.2, 133.9, 129.7, 129.3, 127.2, 72.0, 64.3, 45.7, 37.2, 30.4, 20.8. HRMS (ESI) m/z calcd for C₁₃H₁₆ClNO₃Na ([M+Na]⁺) 292.0716; found 292.0705.

2-(1-Hydroxy-6-iodo-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (7c).

Isolated as a white solid (420 mg, 93%). **TLC**: $R_f 0.27$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3395 (O–H st), 2967, 2934, 2512, 1682 (C=O st), 1450, 1119, 1044, 976, 751. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.52 (dd, 1H, J = 8.3, 1.8 Hz), 7.46 (s, 1H), 7.32 (d, 1H, J = 8.3 Hz), 3.64 (s, 3H), 2.81 – 2.70 (m, 2H), 2.57 (d, 1H, J = 14.2 Hz), 2.48 (d, 1H, J = 14.2 Hz), 2.26 – 2.20 (m, 1H), 1.94 – 1.79 (m, 3H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.8, 142.4, 140.7, 138.6, 136.3, 130.1, 93.6, 72.1, 64.3, 45.6, 37.1, 30.2, 20.8. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₆INO₃Na ([M+Na]⁺) 384.0073; found 384.0067.

2-(6-Fluoro-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (7d). Isolated as a colorless oil (352 mg, 92%). TLC: $R_f 0.34$ (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3389 (O–H st), 2939, 2502, 2071, 1649 (C=O st), 1496, 1439, 1241, 1117, 1067, 977, 946. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.56 (dd, 1H, J = 8.7, 5.8 Hz), 6.90 (td, 1H, J = 8.6, 2.8 Hz), 6.79 (dd, 1H, J = 9.7, 2.7 Hz), 3.63 (s, 3H), 2.82 – 2.73 (m, 2H), 2.60 (d, 1H, J = 14.2 Hz), 2.47 (d, 1H, J = 14.2 Hz), 2.26 – 2.19 (m, 1H), 1.96 – 1.80 (m, 3H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 170.0, 163.2 (d, J = 244.6 Hz), 140.7 (d, J = 7.5 Hz), 138.5 (d, J = 3.0 Hz), 130.1 (dd, J = 9.1, 4.5 Hz), 115.5 (dd, J = 21.1, 3.0 Hz), 114.0 (dd, J = 21.1, 3.0 Hz), 72.0, 64.3, 45.8, 37.4, 30.7 (d, J = 1.5 Hz), 20.9. HRMS (ESI) *m/z* calcd for C₁₃H₁₆FNO₃Na ([M+Na]⁺) 276.1012; found 276.1021.

2-(5-Fluoro-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)***-N***-methoxyacetamide (10a).** Isolated as a yellow oil (355 mg, 79%). TLC: $R_f 0.31$ (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3400 (O–H st), 2942, 2510, 2073, 1656 (C=O st), 1487, 1441, 1247, 1121, 1084, 976, 865, 823. ¹**H-NMR** (600 MHz, Methanol-*d*₄): δ 7.33 (dd, 1H, *J* = 9.0, 5.3 Hz), 6.96 – 6.91 (m, 2H), 3.62 (s, 3H), 2.98 (ddd, 1H, *J* = 16.1, 8.6, 4.3 Hz), 2.84 (dt, 1H, *J* = 15.8, 7.6 Hz), 2.61 (d, 1H, *J* = 14.0 Hz), 2.53 (ddd, 1H, *J* = 12.8, 8.2, 4.3 Hz), 2.45 (d, 1H, *J* = 14.0 Hz), 2.19 (ddd, 1H, *J* = 13.2, 8.6, 7.1 Hz). ¹³**C-NMR** (151 MHz, Methanol-*d*₄): δ 169.9, 164.7 (d, *J* = 244.6 Hz), 146.8 (d, *J* = 9.1 Hz), 143.5 (d, *J* = 3.0 Hz), 125.7 (d, *J* = 10.6 Hz), 114.5 (d, *J* = 24.2 Hz), 112.5 (d, *J* = 22.7 Hz), 82.0, 64.3, 43.9, 41.2, 30.1 (d, *J* = 3.0 Hz). **HRMS** (ESI) *m/z* calcd for C₁₂H₁₄FNO₃Na ([M+Na]⁺) 262.0855; found 262.0852.

2-(5-Chloro-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)**-*N***-methoxyacetamide (10b).** Isolated as a colorless oil (473 mg, 94%). TLC: R_f 0.24 (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3210 (O–H st), 2972, 1649 (C=O st), 1475, 1439, 1414, 1072, 975, 950, 874, 823, 737. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.31 (d, 1H, J = 8.0 Hz), 7.24 – 7.20 (m, 2H), 3.62 (s, 3H), 2.97 (ddd, 1H, J = 16.2, 8.7, 4.2 Hz), 2.84 (dt, 1H, J = 16.0, 7.7 Hz), 2.59 (d, 1H, J = 14.0 Hz), 2.52 (ddd, 1H, J = 12.7, 8.2, 4.2 Hz), 2.45 (d, 1H, J = 14.0 Hz), 2.17 (ddd, 1H, J = 13.2, 8.5, 7.4 Hz). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.7, 146.4, 146.4, 135.1, 127.8, 126.0, 125.6, 82.1, 64.3, 43.7, 40.9, 30.0. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₄CINO₃Na ([M+Na]⁺) 278.0560; found 278.0568.

2-(5-bromo-1-hydroxy-2,3-dihydro-1*H***-inden-1-yl)***-N***-methoxyacetamide (10c).** Isolated as a white solid (450 mg, 90%). TLC: R_f 0.28 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3305 (O–H st), 2939, 1649 (C=O st), 1472, 1439, 1439, 1409, 1200, 1062, 979, 864, 821. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.40 – 7.35 (m, 2H), 7.26 (d, 1H, J = 8.1 Hz), 3.62 (s, 3H), 2.98 (dd, 1H, J = 16.2, 8.7, 4.1 Hz), 2.85 (dt, 1H, J = 16.0, 7.7 Hz), 2.59 (d, 1H, J = 14.0 Hz), 2.51 (ddd, 1H, J = 12.5, 8.1, 4.2 Hz), 2.45 (d, 1H, J = 14.0 Hz), 2.16 (ddd, 1H, J = 13.2, 8.6, 7.4 Hz). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.7, 146.9, 146.7, 130.7, 129.0, 126.0, 123.2, 82.2, 64.3, 43.7, 40.9, 30.0. HRMS (ESI) *m/z* calcd for C₁₂H₁₄BrNO₃Na ([M+Na]⁺) 322.0055; found 322.0061.

2-(1-Hydroxy-5-iodo-2,3-dihydro-1*H***-inden-1-yl)-***N***-methoxyacetamide (10d).** Isolated as a yellow oil (280 mg, 80%). **TLC**: $R_f 0.35$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3363 (O–H st), 2942, 1657 (C=O st), 1469, 1439, 1402, 1194, 1119, 978, 820, 735. ¹H-NMR (600 MHz, Methanol-*d*₄): δ 7.60 (s, 1H), 7.57 (d, 1H, *J* = 8.0 Hz), 7.13 (d, 1H, *J* = 8.0 Hz), 3.61 (s, 3H), 2.96 (ddd, 1H, *J* = 16.1, 8.7, 4.1 Hz), 2.83 (dt, 1H, *J* = 16.0, 7.7 Hz), 2.58 (d, 1H, *J* = 14.0 Hz), 2.48 (ddd, 1H, *J* = 12.5, 8.1, 4.2 Hz), 2.44 (d, 1H, *J* = 14.0 Hz), 2.14 (ddd, 1H, *J* = 13.2, 8.5, 7.5 Hz). ¹³C-NMR (151 MHz, Methanol-*d*₄): δ 169.7, 147.6, 146.9, 136.8, 135.2, 126.3, 94.6, 82.3, 64.3, 43.7, 40.7, 29.9. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₄INO₃Na ([M+Na]⁺) 369.9916; found 369.9918.

2-(2-Fluoro-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)-***N***-methoxyacetamide (12a). Isolated as a white solid (754 mg, 96%). TLC: R_f 0.35 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3385 (O–H st), 2935, 1648 (C=O st), 1491, 1446, 1241, 1093, 973, 820, 736. ¹H-NMR (600 MHz, Methanol-d_4): \delta 7.68 (dd, 1H, J = 8.8, 6.1 Hz), 6.87 (td, 1H, J = 8.5, 2.8 Hz), 6.82 (dd, 1H, J = 9.7, 2.8 Hz), 3.52 (s, 3H), 2.99 (t, 1H, J = 13.2 Hz), 2.81 (dd, 1H, J = 14.9, 6.0 Hz), 2.68 (d, 1H, J = 14.4 Hz), 2.62 (d, 1H, J = 14.4 Hz), 2.13 (dt, 1H, J = 12.8, 3.2 Hz), 1.96 – 1.87 (m, 3H), 1.84 – 1.78 (m, 1H), 1.49 – 1.41 (m, 1H). ¹³C-NMR (151 MHz, Methanol-d_4): \delta 170.3, 162.9 (d, J = 243.1 Hz), 143.4 (d, J = 7.5 Hz), 142.4 (d, J = 3.0 Hz), 129.7 (d, J = 7.5 Hz), 118.1 (d, J = 21.1 Hz), 113.0 (d, J = 19.6 Hz), 77.3, 64.3, 42.3, 41.9, 37.6, 28.9, 26.6. HRMS (ESI) m/z calcd for C₁₄H₁₈FNO₃Na ([M+Na]⁺) 290.1168; found 290.1162.**

2-(2-Chloro-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)-***N***-methoxyacetamide (12b). Isolated as a clear and colorless oil (137 mg, 85%). TLC: R_f 0.33 (95:5 CH₂Cl₂/MeOH). IR** (ATR, ZnSe): 3391 (O–H st), 2938, 1646 (C=O st), 1484, 1245, 1196, 1073, 932, 819, 739. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.66 (d, 1H, J = 8.5 Hz), 7.16 (d, 1H, J = 8.5 Hz), 7.10 (s, 1H), 3.52 (s, 3H), 2.98 (t, 1H, J = 13.7 Hz), 2.81 (dd, 1H, J = 15.3, 5.2 Hz), 2.67 (d, 1H, J = 14.4 Hz), 2.62 (d, 1H, J = 14.3 Hz), 2.17 – 2.10 (m, 1H), 1.96 – 1.87 (m, 3H), 1.84 – 1.78 (m, 1H), 1.48 – 1.39 (m, 1H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 170.2, 145.4, 142.9, 133.5, 131.4, 129.4, 126.8, 77.2, 64.3, 42.2, 41.8, 37.5, 28.9, 26.6. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₈ClNO₃Na ([M+Na]⁺) 306.0873; found 306.0874.

2-(2-Bromo-5-hydroxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)-***N***-methoxyacetamide (12c). Isolated as a white solid (740 mg, 96%). TLC: R_f 0.33 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3391 (O–H st), 2936, 1642 (C=O st), 1477, 1445, 1267, 1075, 978, 738. ¹H-NMR (600 MHz, Methanol-d_4): \delta 7.60 (d, 1H, J = 8.5 Hz), 7.31 (dd, 1H, J = 8.5, 2.1 Hz), 7.25 (d, 1H, J = 2.1 Hz), 3.52 (s, 3H), 2.98 (t, 1H, J = 13.4 Hz), 2.80 (dd, 1H, J = 14.5, 5.6 Hz), 2.67 (d, 1H, J = 14.3 Hz), 2.62 (d, 1H, J = 14.3 Hz), 2.13 (dt, 1H, J = 12.9, 3.5 Hz), 1.96 – 1.87 (m, 3H), 1.85 – 1.78 (m, 1H), 1.48 – 1.40 (m, 1H). ¹³C-NMR (151 MHz, Methanol-d_4): \delta 170.2, 145.9, 143.2,**

134.3, 129.9, 129.7, 121.6, 77.3, 64.3, 42.1, 41.7, 37.4, 28.9, 26.6. **HRMS** (ESI) m/z calcd for C₁₄H₁₈BrNO₃Na ([M+Na]⁺) 350.0368; found 350.0367.

2-(2-Fluoro-5-hydroxy-5,6,7,8,9,10-hexahydrobenzo[8]annulen-5-yl)-*N*-methoxyacetamide (14a). Isolated as a white solid (555 mg, 92%). TLC: R_f 0.34 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3196 (O–H st), 2933, 1642 (C=O st), 1491, 1442, 1236, 1061, 961, 871, 821, 737. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.65 (br s, 1H), 6.89 (td, 1H, J = 8.5, 2.8 Hz), 6.77 (dd, 1H, J = 9.8, 2.8 Hz), 3.49 (s, 3H), 3.08 (br s, 2H), 2.69 – 2.32 (m, 3H), 1.99 (dq, 1H, J = 5.5, 4.0 Hz), 1.88 – 1.72 (m, 2H), 1.71 – 1.63 (m, 1H), 1.59 – 1.51 (m, 1H), 1.22 (br s, 2H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 170.0, 163.5 (d, J = 244.6 Hz), 141.6, 130.2 (2C), 118.1 (d, J = 21.1 Hz), 113.3 (d, J = 19.6 Hz), 77.3, 64.3, 49.6, 43.0, 34.2, 30.4, 23.9, 23.9. HRMS (ESI) m/z calcd for C₁₅H₂₀FNO₃Na ([M+Na]⁺) 304.1325; found 304.1310.

2-(2-Chloro-5-hydroxy-5,6,7,8,9,10-hexahydrobenzo[8]annulen-5-yl)-*N*-methoxyacetamide (14b). Isolated as a white solid (393 mg, 91%). TLC: R_f 0.34 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3194 (O–H st), 2932, 1643 (C=O st), 1484, 1441, 1268, 1087, 1061, 738. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.63 (br s, 1H), 7.17 (dd, 1H, J = 8.6, 2.3 Hz), 7.05 (d, 1H, J = 2.3 Hz), 3.49 (s, 3H), 3.07 (br s, 2H), 2.71 – 2.27 (m, 3H), 2.04 – 1.94 (m, 1H), 1.89 – 1.72 (m, 2H), 1.67 (q, 1H, J = 10.3, 7.7 Hz), 1.55 (ddq, 1H, J = 14.9, 9.6, 5.7 Hz), 1.20 (br s, 2H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.9, 144.5, 134.0, 131.6, 130.0, 128.7, 126.8, 77.3, 64.2, 49.6, 42.8, 34.0, 30.4, 23.9, 23.8. HRMS (ESI) *m/z* calcd for C₁₅H₂₀ClNO₃Na ([M+Na]⁺) 320.1029; found 320.1030.

2-(1-Hydroxy-6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (16). Isolated as a white solid (390 mg, 97%). TLC: R_f 0.40 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3206 (O–H st), 2938, 1646 (C=O st), 1608, 1501, 1245, 1039, 838, 738. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.45 (d, 1H, J = 8.7 Hz), 6.75 (dd, 1H, J = 8.7, 2.6 Hz), 6.60 (d, 1H, J = 2.5 Hz), 3.74 (s, 3H), 3.63 (s, 3H), 2.80 – 2.68 (m, 2H), 2.62 (d, 1H, J = 14.2 Hz), 2.45 (d, 1H, J = 14.2 Hz), 2.22 – 2.15 (m, 1H), 1.94 – 1.86 (m, 2H), 1.84 – 1.77 (m, 1H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 170.3, 160.2, 139.5, 134.5, 129.2, 113.8, 113.6, 72.2, 64.4, 55.6, 45.9, 37.7, 31.1, 21.1. **HRMS** (ESI) m/z calcd for C₁₄H₁₉NO₄Na ([M+Na]⁺) 288.1212; found 288.1200.

2-(5-hydroxy-2-methoxy-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-yl)-***N***-methoxyacetamide (18). Isolated as a white solid (1.10 g, 95%). TLC: R_f 0.35 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3401 (O–H st), 2932, 1647 (C=O st), 1495, 1266, 1251, 1066, 1032, 739.¹H-NMR (600 MHz, Methanol-***d***₄): \delta 7.56 (d, 1H, J = 8.7 Hz), 6.71 (dd, 1H, J = 8.7, 2.8 Hz), 6.64 (d, 1H, J = 2.7 Hz), 3.75 (s, 3H), 3.50 (s, 3H), 2.95 (t, 1H, J = 13.1 Hz), 2.79 (dd, 1H, J = 15.5, 5.2 Hz), 2.68 (d, 1H, J = 14.4 Hz), 2.59 (d, 1H, J = 14.4 Hz), 2.14 – 2.09 (m, 1H), 1.94 – 1.85 (m, 3H), 1.85 – 1.78 (m, 1H), 1.49 – 1.41 (m, 1H). ¹³C-NMR (151 MHz, Methanol-***d***₄): \delta 170.6, 159.9, 142.1, 138.4, 128.8, 117.6, 111.3, 77.4, 64.3, 55.5, 42.6, 42.1, 37.9, 29.1, 26.6. HRMS (ESI)** *m***/***z* **calcd for C₁₅H₂₁NO₄Na ([M+Na]⁺) 302.1368; found 302.1361.**

2-(4-Hydroxychroman-4-yl)-*N***-methoxyacetamide (20a).** Isolated as a white solid (360 mg, 90%). TLC: R_f 0.28 (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3230 (O–H st), 2932, 1650 (C=O st), 1489, 1453, 1266, 1224, 1059, 758, 740. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.47 (dd, 1H, J = 7.8, 1.6 Hz), 7.14 (ddd, 1H, J = 8.3, 7.2, 1.7 Hz), 6.90 (td, 1H, J = 7.9, 1.2 Hz), 6.76 (dd, 1H, J = 8.2, 1.1 Hz), 4.24 (t, 2H, J = 5.6 Hz), 3.63 (s, 3H), 2.77 (d, 1H, J = 14.2 Hz), 2.52 (d, 1H, J = 14.2 Hz), 2.44 – 2.38 (m, 1H), 2.11 – 2.06 (m, 1H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.6, 155.7, 130.1, 128.2, 128.2, 121.5, 118.0, 68.2, 64.3, 64.1, 45.0, 36.5. HRMS (ESI) m/z calcd for C₁₂H₁₅NO₄Na ([M+Na]⁺) 260.0899; found 260.0900.

2-(7-Fluoro-4-hydroxychroman-4-yl)-*N*-methoxyacetamide (20b). Isolated as a white solid (440 mg, 96%). TLC: R_f 0.25 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3201 (O–H st), 1650 (C=O st), 1501, 1434, 1260, 1149, 1111, 1056, 977, 850, 737. ¹H-NMR (600 MHz, Methanold₄): δ 7.48 (dd, 1H, J = 8.7, 6.6 Hz), 6.66 (td, 1H, J = 8.5, 2.6 Hz), 6.50 (dd, 1H, J = 10.4, 2.6 Hz), 4.26 (t, 2H, J = 5.6 Hz), 3.64 (s, 3H), 2.74 (d, 1H, J = 14.2 Hz), 2.52 (d, 1H, J = 14.2 Hz), 2.43 – 2.38 (m, 1H), 2.10 – 2.04 (m, 1H). ¹³C-NMR (151 MHz, Methanol-d₄): δ 169.5, 164.3 (d, J = 244.6 Hz), 157.1 (d, J = 12.1 Hz), 130.0 (d, J = 10.6 Hz), 124.7 (d, J = 3.0 Hz), 108.6 (d, J = 21.1 Hz), 104.5 (d, J = 24.2 Hz), 68.0, 64.7, 64.4, 45.0, 36.2. **HRMS** (ESI) m/z calcd for C₁₂H₁₄FNO₄Na ([M+Na]⁺) 278.0805; found 278.0813.

2-((2*R****,4***S****)-4-Hydroxy-2-phenylchroman-4-yl)-***N***-methoxyacetamide (22). Isolated as a white solid (330 mg, 91%). TLC: R_f 0.35 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3394 (O–H st), 3034, 1646 (C=O st), 1484, 1453, 1224, 1061, 756. ¹H-NMR (600 MHz, Methanold₄): \delta 7.54 (dd, 1H, J = 7.8, 1.6 Hz), 7.48 (d, 2H, J = 7.2 Hz), 7.39 (t, 2H, J = 7.6 Hz), 7.34 – 7.30 (m, 1H), 7.17 (ddd, 1H, J = 8.3, 7.3, 1.7 Hz), 6.95 (td, 1H, J = 7.8, 1.1 Hz), 6.84 (dd, 1H, J = 8.2, 1.0 Hz), 5.31 (dd, 1H, J = 12.5, 1.8 Hz), 3.69 (s, 3H), 2.75 (d, 1H, J = 14.2 Hz), 2.68 (dd, 1H, J = 14.2, 1.1 Hz), 2.61 (dd, 1H, J = 13.6, 2.1 Hz), 2.19 – 2.12 (m, 1H). ¹³C-NMR (151 MHz, Methanol-d₄): \delta 169.5, 155.2, 142.6, 130.1, 129.9, 129.5, 129.0, 127.7, 126.9, 121.8, 117.7, 77.5, 70.1, 64.4, 46.2, 44.0. HRMS (ESI)** *m/z* **calcd for C₁₈H₁₉NO₄Na ([M+Na]⁺) 336.1212; found 336.1212.**

2-(6-Acetamido-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*N*-methoxyacetamide (24). Isolated as a white solid (50.2 mg, 58%). TLC: R_f 0.32 (90:10 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3307 (O–H st), 2941, 1665 (C=O st), 1544, 1416, 1025. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.49 (d, 1H, J = 8.5 Hz), 7.34 (dd, 1H, J = 8.5, 2.2 Hz), 7.29 (d, 1H, J = 2.1 Hz), 3.63 (s, 3H), 2.82 – 2.68 (m, 2H), 2.61 (d, 1H, J = 14.2 Hz), 2.46 (d, 1H, J = 14.2 Hz), 2.27 – 2.16 (m, 1H), 2.09 (s, 3H), 1.97 – 1.75 (m, 3H). ¹³C-NMR (151 MHz, Methanol- d_4): δ 171.7, 170.2, 138.9, 138.7, 138.1, 128.4, 120.8, 119.2, 72.2, 64.4, 45.8, 37.5, 31.0, 23.8, 21.1. HRMS (ESI) *m/z* calcd for C₁₅H₂₀N₂O₄Na ([M+Na]⁺) 315.1321; found 315.1309.

2-(4-Hydroxy-1-tosyl-1,2,3,4-tetrahydroquinolin-4-yl)-*N*-methoxyacetamide (26). Isolated as a white solid (15.2 mg, 76%). TLC: R_f 0.22 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 3436 (O–H st), 1763 (C=O st), 1488, 1451, 1307, 1163, 1092, 814, 762, 729. ¹H-NMR (600 MHz, Methanol- d_4): δ 7.75 (d, 1H, J = 8.3 Hz), 7.56 (d, 2H, J = 8.3 Hz), 7.52 (dd, 1H, J = 7.8, 1.5 Hz),

7.31 (d, 2H, J = 8.1 Hz), 7.23 (ddd, 1H, J = 8.5, 7.2, 1.6 Hz), 7.15 (td, 1H, J = 7.9, 1.1 Hz), 4.02 (ddd, 1H, J = 13.5, 7.9, 3.9 Hz), 3.79 (ddd, 1H, J = 13.4, 8.5, 3.7 Hz), 3.60 (s, 3H), 2.40 – 2.37 (m, 4H), 2.13 (ddd, 1H, J = 12.6, 8.5, 3.9 Hz), 1.85 (d, 1H, J = 14.2 Hz), 1.80 (ddd, 1H, J = 13.9, 7.9, 3.7 Hz). ¹³C-NMR (151 MHz, Methanol- d_4): δ 169.2, 145.7, 137.8, 137.1, 135.7, 131.0, 129.1, 128.4, 128.3, 125.9, 124.2, 69.6, 64.4, 45.0, 44.6, 35.5, 21.5. HRMS (ESI) *m/z* calcd for C₁₉H₂₀N₂O₄Na ([M+Na]⁺) 411.0991; found 411.0997.

2-(4-Hydroxy-4,5,6,7-tetrahydrobenzofuran-4-yl)-*N*-methoxyacetamide (28). Isolated as a colorless oil (381 mg, 88%). TLC: R_f 0.22 (1:3 hexanes/EtOAc). IR (NaCl, film): 3208 (O–H st), 2939, 1653 (C=O st), 1508, 1438, 1060, 942. ¹H-NMR (600 MHz): δ 9.27 (s, 1H), 7.22 (d, 1H, J = 2.2 Hz), 6.36 (d, 1H, J = 2.1 Hz), 4.03 (s, 1H), 3.77 (s, 3H), 2.69 – 2.58 (m, 2H), 2.58 – 2.45 (m, 1H), 2.37 (d, 1H, J = 14.7 Hz), 2.07 – 1.94 (m, 1H), 1.91 (ddd, 1H, J = 13.2, 7.8, 2.9 Hz), 1.89 – 1.79 (m, 1H), 1.76 (ddd, 1H, J = 13.1, 10.1, 2.9 Hz). ¹³C-NMR (151 MHz): δ 169.6, 152.0, 141.2, 121.6, 107.5, 69.1, 64.4, 44.1, 36.6, 22.9, 19.5. HRMS (ESI) m/z calcd for C₁₁H₁₄NO₄Na ([M–H]⁻) 224.0923; found 224.0926.

2-(4-Hydroxy-4,5,6,7-tetrahydrobenzo[b]thiophen-4-yl)-*N***-methoxyacetamide (29).** Isolated as a colorless oil (251 mg, 96%). TLC: R_f 0.42 (1:3 hexanes/EtOAc). **IR** (NaCl, film): 3210 (O–H st), 2938, 1639 (C=O st), 1438, 1210, 1055. ¹**H-NMR** (600 MHz): $\delta = 9.24$ (s, 1H), 7.06 (d, 1H, J = 5.3 Hz), 7.00 (d, 1H, J = 5.3 Hz), 4.01 (s, 1H), 3.76 (s, 3H), 2.88 – 2.59 (m, 3H), 2.35 (d, 1H, J = 14.6 Hz), 2.12 – 1.77 (m, 4H) ppm ¹³C-NMR (151 MHz): δ 169.4, 139.2, 138.7, 124.8, 123.0, 70.0, 64.4, 44.4, 36.0, 25.0, 20.7. **HRMS** (ESI) *m/z* calcd for C₁₁H₁₅NO₃SNa ([M+Na]⁺) 264.0670; found 264.0669.

2-(4-Hydroxy-1-tosyl-4,5,6,7-tetrahydro-1*H***-indol-4-yl)-***N***-methoxyacetamide (32). Isolated as a colorless oil (136 mg, 81%). TLC: R_f 0.31 (95:5 CH₂Cl₂/MeOH). IR (NaCl, film): 3207 (O–H st), 2940, 1655 (C=O st), 1597, 1366, 1176, 814. ¹H-NMR (600 MHz): \delta 8.73 (s, 1H), 7.68 (d, 2H, J = 8.0 Hz), 7.30 (d, 2H, J = 8.1 Hz), 7.21 (d, 1H, J = 3.5 Hz), 6.28 (d, 1H, J = 3.5 Hz), 3.78 (s, 3H), 3.73 (s, 1H), 2.74 – 2.57 (m, 3H), 2.43 (s, 3H), 2.32 (d, 1H, J = 14.6 Hz), 1.92 – 1.85 (m, 1H), 1.85 – 1.67 (m, 3H). ¹³C-NMR (151 MHz): \delta 169.5, 145.2,**

135.8, 130.1, 127.1, 121.5, 108.7, 68.9, 64.5, 44.4, 35.9, 22.7, 21.7, 19.6 (2 signals not resolved). **HRMS** (ESI) m/z calcd for C₁₈H₂₂N₂O₅SNa ([M+Na]⁺) 401.1147; found 401.1137.

2-(4-Hydroxy-9-tosyl-2,3,4,9-tetrahydro-1*H*-carbazol-4-yl)-*N*-methoxyacetamide (34).

Isolated as a colorless oil (388 mg, 86%). **TLC**: R_f 0.42 (1:3 hexanes/EtOAc). **IR** (NaCl, film): 3200 (O–H st), 2940, 1655 (C=O st), 1451, 1370, 1174, 1091, 661. ¹H-NMR (600 MHz): δ 8.90 (s, 1H), 8.16 (d, 1H, J = 8.3 Hz), 7.75 (d, 1H, J = 7.8 Hz), 7.66 (d, 2H, J = 8.1 Hz), 7.26 (dd, 1H, J = 15.7, 1.4 Hz), 7.25 – 7.18 (m, 3H), 3.85 (s, 1H), 3.75 (s, 3H), 3.16 – 3.01 (m, 2H), 2.95 – 2.86 (m, 1H), 2.42 – 2.29 (m, 4H), 2.16 – 2.06 (m, 1H), 2.07 – 1.91 (m, 1H), 1.86 (t, 1H, J = 12.2 Hz), 1.83 – 1.69 (m, 1H) ppm. ¹³C-NMR (151 MHz): δ 169.4, 145.0, 136.5, 136.4, 135.9, 130.0, 127.2, 126.4, 124.1, 123.4, 121.2, 120.7, 114.3, 70.8, 64.4, 42.4, 36.2, 24.4, 21.6, 20.6. **HRMS** (ESI) *m/z* calcd for C₂₂H₂₄N₂O₅SNa ([M+Na]⁺) 451.1304; found 451.1310.

2-(1-Hydroxy-9-tosyl-2,3,4,9-tetrahydro-1*H*-carbazol-1-yl)-*N*-methoxyacetamide (36).

Isolated as a white solid (124 mg, 91%). TLC: $R_f 0.22$ (1:1 hexanes/EtOAc). IR (NaCl, film): 3200 (O–H st), 2940, 1655 (C=O st), 1452, 1357, 1172, 1089, 704. ¹H-NMR (600 MHz): δ 8.95 (s, 1H), 7.96 (d, 1H, J = 8.3 Hz), 7.58 (d, 2H, J = 8.0 Hz), 7.33 (d, 1H, J = 7.7 Hz), 7.29 (d, 1H, J = 8.5 Hz), 7.21 (t, 1H, J = 7.5 Hz), 7.12 (d, 2H, J = 8.1 Hz), 5.07 (s, 1H), 3.70 (s, 3H), 3.46 (d, 1H, J = 14.5 Hz), 2.75 – 2.64 (m, 2H), 2.58 (ddd, 1H, J = 17.0, 8.4, 5.4 Hz), 2.36 – 2.22 (m, 4H), 2.17 (t, 1H, J = 12.0, 10.8 Hz), 2.11 – 1.98 (m, 1H), 1.98 – 1.87 (m, 1H). ¹³C-NMR (151 MHz): δ 167.8, 145.1, 138.1, 137.7, 133.4, 130.2, 129.6, 127.3, 126.6, 126.1, 124.6, 119.6, 115.9, 69.4, 64.4, 46.0, 37.4, 22.5, 21.6, 19.0. HRMS (ESI) *m*/*z* calcd for C₂₂H₂₄N₂O₅SNa ([M+Na]⁺) 451.1304; found 451.1307.

2-(10-hydroxy-5-tosyl-5,6,7,8,9,10-hexahydrocyclohepta[*b*]**indol-10-yl**)-*N*-methoxyacetamide (38). Isolated as a colorless oil (664 mg, 93%). TLC: R_f 0.20 (1:1 hexanes/EtOAc). IR (NaCl, film): 3204 (O–H st), 2935, 1658 (C=O st), 1642, 1451, 1367,

1171, 1089, 660. ¹**H-NMR** (600 MHz): δ 8.69 (s, 1H), 8.25 (d, 1H, J = 8.4 Hz), 8.00 (d, 1H, J = 7.9 Hz), 7.58 (d, 2H, J = 8.3 Hz), 7.31 – 7.16 (m, 4H), 3.73 (s, 3H), 3.55 (s, 1H), 3.29 – 3.14 (m, 2H), 3.05 (d, 1H, J = 15.0 Hz), 2.41 (d, 1H, J = 14.9 Hz), 2.36 (s, 3H), 2.19 (dt, 1H, J = 14.2, 4.4 Hz), 2.07 (t, 1H, J = 13.1 Hz), 1.86 – 1.70 (m, 3H), 1.70 – 1.61 (m, 1H) ppm. ¹³C-NMR (151 MHz): δ 169.2, 144.9, 137.4, 136.9, 136.1, 129.8, 128.7, 126.3, 125.6, 124.3, 123.4, 121.5, 115.3, 74.6, 64.5, 42.4, 37.7, 25.3, 23.9, 21.8, 21.6. **HRMS** (ESI) *m/z* calcd for C₂₃H₂₆N₂O₅SNa ([M+Na]⁺) 465.1460; found 465.1464.

2-(11-hydroxy-5-tosyl-6,7,8,9,10,11-hexahydro-5*H***-cycloocta[***b***]indol-11-yl)-***N***-methoxyacetamide (40). Isolated as a colorless oil (546 mg, 83%). TLC: R_f 0.17 (1:1 hexanes/EtOAc). IR (NaCl, film): 3208 (O–H st), 2933, 1655 (C=O st), 1452, 1366, 1176, 1090, 659. ¹H-NMR (400 MHz): \delta 8.48 (s, 1H), 8.26 (d, 1H, J = 8.3 Hz), 8.07 (d, 1H, J = 7.9 Hz), 7.61 (d, 2H, J = 8.0 Hz), 7.31 – 7.21 (m, 2H), 7.20 (d, 2H, J = 8.1 Hz), 3.63 (s, 3H), 3.56 (s, 1H), 3.06 (d, 1H, J = 14.8 Hz), 3.05 – 2.94 (m, 1H), 2.57 – 2.44 (m, 1H), 2.36 (s, 3H), 2.31 (d, 1H, J = 14.8 Hz), 2.10 (d, 1H, J = 15.6 Hz), 1.95 – 1.82 (m, 1H), 1.78 – 1.61 (m, 3H), 1.44 – 1.29 (m, 3H) ppm. ¹³C-NMR (151 MHz): \delta 169.1, 144.8, 136.8, 136.7, 134.2, 129.9, 128.4, 126.2, 124.3, 124.1, 123.2, 121.8, 115.0, 74.5, 64.4, 45.7, 37.8, 26.3, 24.3, 23.5, 22.8, 21.6. HRMS (ESI) m/z calcd for C₂₄H₂₈N₂O₅SNa ([M+Na]⁺) 479.1617; found 479.1593.**

3. Synthesis of medium rings via tandem odre

a. General procedure for tandem oxidative dearomatization-ring expanding rearomatization reactions

9-Bromo-1-methoxy-1,5,6,7-tetrahydro-2*H*-benzo[*b*]azonine-2,4(3*H*)-dione (9a).

N-Methoxyamide **7a** (0.10 g, 0.32 mmol, 1.0 equiv) was dissolved in nitromethane (3.2 mL) and cooled to 0 °C. [Bis(trifluoroacetoxy)iodo]benzene (PIFA) (0.21 g, 0.48 mmol, 1.5 equiv) was added as a solid and the reaction was stirred at 0 °C to 24 °C for 0.5–1 h until complete conversion. The reaction was then quenched with satd aq NaHCO₃. The mixture was extracted with CH₂Cl₂ (4 × 10 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 5% MeOH in CH₂Cl₂) yielded 9-membered lactam **9a** as a colorless oil (72 mg, 73%).

TLC: $R_f 0.38$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2936, 1716 (C=O st), 1679 (C=O st), 1478, 1440, 1081, 1043, 984, 737. ¹H-NMR (600 MHz) δ 7.47 – 7.44 (m, 2H), 7.10 (d, 1H, J = 8.9 Hz), 3.83 (s, 3H), 3.32 (d, 1H, J = 16.1 Hz), 3.13 (d, 1H, J = 16.1 Hz), 2.86 – 2.79 (m, 2H), 2.75 – 2.70 (m, 1H), 2.24 – 2.16 (m, 2H), 2.05 – 1.96 (m, 1H). ¹³C-NMR (151 MHz): δ 204.4, 163.9, 144.7, 135.1, 134.7, 131.3, 130.9, 126.0, 61.4, 54.5, 39.8, 31.1, 30.8. **HRMS** (ESI) m/z calcd for C₁₃H₁₄BrNO₃Na ([M+Na]⁺) 334.0055; found 334.0056.

9-Chloro-1-methoxy-1,5,6,7-tetrahydro-2*H***-benzo**[*b*]**azonine-2,4(3***H*)**-dione (9b).** Isolated as a yellow solid (48.5 mg, 72%). TLC: R_f 0.39 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2934, 1716 (C=O st), 1677 (C=O st), 1480, 1439, 1088, 1038, 734. ¹H-NMR (600 MHz) δ 7.32 – 7.28 (m, 2H), 7.17 (d, 1H, *J* = 8.6 Hz), 3.83 (s, 3H), 3.32 (d, 1H, *J* = 16.1 Hz), 3.13 (d, 1H, *J* = 16.1 Hz), 2.87 – 2.80 (m, 2H), 2.75 – 2.70 (m, 1H), 2.24 – 2.16 (m, 2H), 2.05 – 1.96 (m, 1H). ¹³C-NMR (151 MHz): δ 204.4, 164.0, 144.5, 137.7, 134.7, 131.7, 130.7, 128.4, 61.4, 54.5, 39.8, 31.2, 30.8. HRMS (ESI) *m/z* calcd for C₁₃H₁₄CINO₃Na ([M+Na]⁺) 290.0560; found 290.0557.

9-Iodo-1-methoxy-1,5,6,7-tetrahydro-2*H***-benzo**[*b*]**azonine-2,4(3***H***)-dione (9c).** Isolated as a colorless oil (75.1 mg, 75%). TLC: R_f 0.41 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2935, 1714 (C=O st), 1679 (C=O st), 1477, 1440, 1076, 1041, 984, 825, 737. ¹H-NMR (600 MHz): δ 7.68 – 7.64 (m, 2H), 6.95 (d, 1H, J = 8.2 Hz), 3.82 (s, 3H), 3.31 (d, 1H, J = 16.1 Hz), 3.13 (d, 1H, J = 16.1 Hz), 2.85 – 2.76 (m, 2H), 2.73 – 2.68 (m, 1H), 2.24 – 2.14 (m, 2H), 2.05 – 1.95 (m, 1H). ¹³C-NMR (151 MHz): δ 204.4, 163.9, 144.7, 140.7, 137.3, 135.8, 130.9, 98.2, 61.4, 54.4, 39.8, 30.9, 30.8. HRMS (ESI) *m/z* calcd for C₁₃H₁₄INO₃Na ([M+Na]⁺) 381.9916; found 381.9933.

9-Fluoro-1-methoxy-1,5,6,7-tetrahydro-2*H***-benzo**[*b*]**azonine-2,4(3***H*)**-dione (9d).** Isolated as a yellow solid (80.4 mg, 81%). TLC: R_f 0.38 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2937, 1716 (C=O st), 1680 (C=O st), 1493, 1270, 1044, 972, 738. ¹**H-NMR** (600 MHz): δ 7.22 (dd, 1H, *J* = 8.5, 5.2 Hz), 7.04 – 6.98 (m, 2H), 3.84 (s, 3H), 3.32 (d, 1H, *J* = 16.0 Hz), 3.13 (d, 1H, *J* = 16.0 Hz), 2.88 – 2.81 (m, 2H), 2.77 – 2.71 (m, 1H), 2.24 – 2.16 (m, 2H), 2.06 – 1.97 (m, 1H). ¹³C-NMR (151 MHz): δ 204.4, 164.1, 164.0 (d, *J* = 253.7 Hz), 145.6 (d, *J* = 9.1 Hz), 132.2 (d, *J* = 3.0 Hz), 131.4 (d, *J* = 9.1 Hz), 118.2 (d, *J* = 22.7 Hz), 115.3 (d, *J* = 22.7 Hz), 61.3, 54.6, 39.8, 31.4 (d, *J* = 1.5 Hz), 30.8. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₄FNO₃Na ([M+Na]⁺) 274.0855; found 274.0850.

8-Fluoro-1-methoxy-5,6-dihydrobenzo[*b*]azocine-2,4(1*H,3H*)-dione (11a). Isolated as a red oil (45.8 mg, 46%). TLC: R_f 0.48 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2938, 1716 (C=O st), 1679 (C=O st), 1493, 1429, 1354, 1253, 1040, 912, 824, 736. ¹H-NMR (600 MHz): δ 7.50 (dd, 1H, J = 8.8, 5.2 Hz), 7.13 (td, 1H, J = 8.3, 2.9 Hz), 7.10 (dd, 1H, J = 8.7, 2.8 Hz), 3.83 (s, 3H), 3.36 (d, 1H, J = 12.0 Hz), 3.25 (d, 1H, J = 12.0 Hz), 3.16 – 3.10 (m, 1H), 2.94 – 2.87 (m, 2H), 2.59 – 2.51 (m, 1H). ¹³C-NMR (151 MHz): δ 199.8, 162.9 (d, J = 252.2 Hz), 162.3 140.3 (d, J = 7.5 Hz), 134.5 (d, J = 3.0 Hz), 128.7 (d, J = 9.1 Hz), 116.9 (d, J = 22.7 Hz), 116.1 (d, J = 22.7 Hz), 61.8, 50.9, 43.5, 27.3 (d, J = 1.5 Hz). HRMS (ESI) *m*/*z* calcd for C₁₂H₁₂FNO₃Na ([M+Na]⁺) 260.0699; found 260.0701.

8-Chloro-1-methoxy-5,6-dihydrobenzo[*b*]**azocine-2,4(1***H***,3***H***)-dione (11b).** Isolated as a yellow solid (58.7 mg, 51%). TLC: R_f 0.40 (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2937, 1715 (C=O st), 1679 (C=O st), 1482, 1418, 1343, 1269, 1185, 1095, 1072, 826, 737. ¹H-NMR (600 MHz): δ 7.46 – 7.44 (m, 1H), 7.42 – 7.39 (m, 2H), 3.82 (s, 3H), 3.37 (d, 1H, *J* = 11.8 Hz), 3.25 (d, 1H, *J* = 11.7 Hz), 3.14 – 3.07 (m, 1H), 2.95 – 2.86 (m, 2H), 2.60 – 2.51 (m, 1H). ¹³C-NMR (151 MHz): δ 199.7, 162.0, 139.4, 137.0, 135.8, 130.4, 129.1, 127.8, 62.0, 50.8, 43.5, 27.2. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₂CINO₃Na ([M+Na]⁺) 276.0403; found 276.0413.

8-Bromo-1-methoxy-5,6-dihydrobenzo[*b*]**azocine-2,4(1***H***,3***H***)-dione (11c).** Isolated as a red solid (36.4 mg, 37%). **TLC**: R_f 0.50 (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2937, 1716 (C=O st), 1680 (C=O st), 1480, 1342, 1271, 1183, 1039, 912, 821, 735. ¹H-NMR (600 MHz): δ 7.58 – 7.53 (m, 2H), 7.38 (d, 1H, J = 8.1 Hz), 3.82 (s, 3H), 3.37 (d, 1H, J = 11.7 Hz), 3.25 (d, 1H, J = 11.6 Hz), 3.12 – 3.05 (m, 1H), 2.90 (t, 2H, J = 15.6 Hz), 2.55 (t, 1H, J = 13.1 Hz). ¹³C-NMR (151 MHz): δ 199.6, 161.9, 139.6, 137.5, 133.4, 132.1, 127.9, 123.9, 62.0, 50.8, 43.6, 27.2. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₂BrNO₃Na ([M+Na]⁺) 319.9898; found 319.9908.

8-Iodo-1-methoxy-5,6-dihydrobenzo[*b*]**azocine-2,4(1***H***,3***H***)-dione (11d). Isolated as a yellow solid (24.4 mg, 41%). TLC:** *R***_f 0.64 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2933, 1715**

(C=O st), 1679 (C=O st), 1480, 1341, 1271, 1076, 1039, 913, 735. ¹H-NMR (600 MHz): δ 7.77 (d, 1H, J = 1.9 Hz), 7.75 (dd, 1H, J = 8.3, 2.0 Hz), 7.23 (d, 1H, J = 8.3 Hz), 3.81 (s, 3H), 3.38 (d, 1H, J = 11.5 Hz), 3.24 (d, 1H, J = 11.5 Hz), 3.06 (t, 1H, J = 12.3 Hz), 2.89 (t, 2H, J = 12.8 Hz), 2.55 (t, 1H, J = 12.8 Hz). ¹³C-NMR (151 MHz): δ 199.6, 161.9, 139.7, 139.4, 138.2, 138.0, 127.9, 95.6, 62.0, 50.8, 43.6, 27.0. HRMS (ESI) *m*/*z* calcd for C₁₂H₁₂INO₃Na ([M+Na]⁺) 367.9760; found 367.9770.

10-Fluoro-1-methoxy-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H*,3*H*)-**dione (13a).** Isolated as a yellow solid (89.0 mg, 90%). **TLC**: R_f 0.59 (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2936, 1718 (C=O st), 1673 (C=O st), 1491, 1459, 1421, 1367, 1252, 1037, 915, 832, 734. ¹**H-NMR** (600 MHz): δ 7.28 (dd, 1H, J = 8.6, 5.4 Hz), 7.07 (d, 1H, J = 9.1 Hz), 7.03 (t, 1H, J = 6.9 Hz), 3.75 (s, 3H), 3.53 (d, 1H, J = 15.2 Hz), 3.08 (d, 1H, J = 15.2 Hz), 2.99 (t, 1H, J = 15.7 Hz), 2.71 (d, 1H, J = 15.2 Hz), 2.57 (dt, 1H, J = 12.9, 6.2 Hz), 2.29 (ddd, 1H, J = 13.9, 8.6, 5.7 Hz), 2.01 – 1.93 (m, 1H), 1.91 – 1.83 (m, 1H), 1.80 – 1.73 (m, 1H), 1.30 – 1.21 (m, 1H). ¹³C-NMR (151 MHz): δ 203.2, 163.8, 163.5 (d, J = 252.2 Hz), 143.6 (d, J = 9.1 Hz), 133.8 (d, J = 3.0 Hz), 131.3 (d, J = 9.1 Hz), 116.8 (d, J = 22.7 Hz), 114.8 (d, J = 22.7 Hz), 61.0, 47.5, 40.0, 27.9, 26.4, 20.9. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₆FNO₃Na ([M+Na]⁺) 288.1012; found 288.1015.

10-Chloro-1-methoxy-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H***,3***H***)-dione (13b). Isolated as a yellow oil (96.1 mg, 77%). TLC: R_f 0.42 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2935, 1718 (C=O st), 1674 (C=O st), 1480, 1361, 1115, 1092, 1039, 912, 830, 735. ¹H-NMR (600 MHz): \delta 7.37 (s, 1H), 7.31 (d, 1H, J = 8.3 Hz), 7.23 (d, 1H, J = 8.4 Hz), 3.74 (s, 3H), 3.54 (d, 1H, J = 15.2 Hz), 3.07 (d, 1H, J = 15.2 Hz), 2.97 (t, 1H, J = 16.0 Hz), 2.70 (d, 1H, J = 15.1 Hz), 2.56 (dt, 1H, J = 12.9, 6.1 Hz), 2.30 (dt, 1H, J = 13.8, 7.1 Hz), 1.99 (t, 1H, J = 11.9 Hz), 1.87 (t, 1H, J = 11.7 Hz), 1.80 – 1.74 (m, 1H), 1.29 – 1.21 (m, 1H). ¹³C-NMR (151 MHz): \delta 203.3, 163.6, 142.6, 136.7, 136.4, 130.6, 130.3, 127.8, 61.1, 47.2, 40.3, 27.9, 26.2, 21.0. HRMS (ESI)** *m/z* **calcd for C₁₄H₁₆ClNO₃Na ([M+Na]⁺) 304.0716; found 304.0717.**

10-Bromo-1-methoxy-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H***,3***H***)-dione (13c). Isolated as a yellow oil (640 mg, 79%). TLC: R_f 0.47 (95:5 CH₂Cl₂/MeOH). IR** (ATR, ZnSe): 2934, 1719 (C=O st), 1673 (C=O st), 1479, 1358, 1083, 1038, 912, 832, 734. ¹H-NMR (600 MHz): δ 7.53 (s, 1H), 7.47 (d, 1H, *J* = 7.5 Hz), 7.16 (d, 1H, *J* = 8.3 Hz), 3.74 (s, 3H), 3.54 (d, 1H, *J* = 15.2 Hz), 3.07 (d, 1H, *J* = 15.2 Hz), 2.97 (t, 1H, *J* = 13.9 Hz), 2.71 (d, 1H, *J* = 15.0 Hz), 2.56 (dt, 1H, Jz) = 15.0 Hz), 2.56 (dt, 1H, Jz), 2.56 (dt, 1H,

J = 12.9, 6.1 Hz), 2.31 (dt, 1H, J = 13.5, 7.9 Hz), 1.98 (t, 1H, J = 11.4 Hz), 1.87 (t, 1H, J = 11.9 Hz), 1.81 – 1.75 (m, 1H), 1.30 – 1.22 (m, 1H). ¹³**C-NMR** (151 MHz): δ 203.2, 163.6, 142.9, 136.9, 133.4, 130.8, 130.8, 124.9, 61.2, 47.1, 40.3, 28.0, 26.2, 21.1. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₆BrNO₃Na ([M+Na]⁺) 348.0211; found 348.0197.

11-Fluoro-1-methoxy-1,5,6,7,8,9-hexahydro-2H-benzo[b][1]azacycloundecine-2,4(3H)-dione (15a). Isolated as a yellow oil (74.4 mg, 74%, mixture of rotamers (3:2 E/Z)). TLC: $R_f 0.38$ (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2937, 1710 (C=O st), 1663 (C=O st), 1491, 1408, 1386, 1247, 1150, 966, 871, 826, 734. ¹H-NMR (600 MHz, *E rotamer*): δ 7.22 (dd, 1H, *J* = 8.5, 5.4 Hz), 7.03 (dd, 1H, J = 9.0, 2.7 Hz), 7.01 – 6.95 (m, 1H), 4.03 (d, 1H, J = 15.0 Hz), 3.69 (s, 3H), 3.37 (d, 1H, J = 15.0 Hz), 2.94 (ddd, 1H, J = 12.7, 10.0, 2.9 Hz), 2.78 (ddd, 1H, J = 13.5, 7.5, 3.8 Hz), 2.38 (dt, 1H, J = 13.5, 8.6 Hz), 2.33 – 2.22 (m, 1H), 1.92 – 1.71 (m, 3H), 1.48 – 1.36 (m, 3H). ¹³C-NMR (151 MHz, *E rotamer*): δ 204.6, 167.1, 163.0 (d, J = 249.2 Hz), 144.9 (d, J = 7.5 Hz), 132.5 (d, J = 9.1 Hz), 130.2 (d, J = 3.0 Hz), 118.3 (d, J = 22.6 Hz), 113.3 (d, J = 22.6 Hz), 62.0, 48.7, 38.0, 29.4, 27.1, 26.6, 19.9. ¹**H-NMR** (600 MHz, Z rotamer): δ 7.14 (dd, 1H, J = 8.4, 5.3 Hz), 7.08 (dd, 1H, J = 8.8, 1.9 Hz), 7.01 – 6.95 (m, 1H), 3.76 (s, 3H), 3.31 (d, 1H, J = 16.5 Hz), 3.22 (d, 1H, J = 16.5 Hz), 3.11 (dt, 1H, J = 15.3, 8.7 Hz), 3.02 - 2.97(m, 1H), 2.64 (dt, 1H, J = 14.7, 4.3 Hz), 2.33 – 2.22 (m, 1H), 1.92 – 1.71 (m, 4H), 1.48 – 1.36 (m, 1H), 0.91 - 0.80 (m, 1H). ¹³C-NMR (151 MHz, Z rotamer): δ 203.8, 163.5, 163.4 (d, J = 252.2 Hz), 144.7 (d, J = 9.1 Hz), 132.7 (d, J = 1.5 Hz), 131.3 (d, J = 9.1 Hz), 118.1 (d, J = 21.1 Hz), 114.0 (d, J = 22.6 Hz), 60.7, 48.9, 41.2, 28.4, 28.0, 24.1, 21.8. **HRMS** (ESI) m/z calcd for C₁₅H₁₈FNO₃Na ([M+Na]⁺) 302.1168; found 302.1173.

11-Chloro-1-methoxy-1,5,6,7,8,9-hexahydro-2*H*-benzo[*b*][1]azacycloundecine-2,4(3*H*) dione (15b). Isolated as a yellow oil (69.6 mg, 70%, mixture of rotamers (2:1 *E*/*Z*)). TLC: R_f 0.50 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2937, 1711 (C=O st), 1665 (C=O st), 1481, 1441, 1405, 1269, 1231, 1187, 981, 826, 738. ¹H-NMR (600 MHz, *E rotamer*): δ 7.31 (d, 1H, *J* = 1.6 Hz), 7.29 - 7.25 (m, 1H), 7.18 (d, 1H, *J* = 8.3 Hz), 4.02 (d, 1H, *J* = 15.0 Hz), 3.69 (s, 3H), 3.37 (d, 1H, *J* = 15.0 Hz), 2.97 - 2.90 (m, 1H), 2.77 (ddd, 1H, *J* = 12.0, 7.3, 3.9 Hz), 2.38 (dt, 1H, *J* = 13.5, 8.6 Hz), 2.32 - 2.27 (m, 1H), 1.90 - 1.71 (m, 3H), 1.47 - 1.35 (m, 3H). ¹³C-NMR (151 MHz, *E rotamer*): δ 204.5, 167.0, 143.9, 135.6, 132.8, 131.9, 131.6, 126.6, 62.1, 48.7, 38.0, 29.2, 27.1, 26.6, 19.9. ¹H-NMR (600 MHz, *Z rotamer*): δ 7.37 (s, 1H), 7.29 - 7.25 (m, 1H), 7.09 (d, 1H, *J* = 8.2 Hz), 3.75 (s, 3H), 3.31 (d, 1H, *J* = 16.5 Hz), 3.22 (d, 1H, *J* = 16.5 Hz), 3.11 (dt, 1H, *J* = 15.9, 8.3 Hz), 3.01 - 2.95 (m, 1H), 2.65 - 2.59 (m, 1H), 2.31 -

2.23 (m, 1H), 1.90 – 1.71 (m, 4H), 1.47 – 1.35 (m, 1H), 0.89 – 0.78 (m, 1H). ¹³C-NMR (151 MHz, *Z rotamer*): δ 203.7, 163.4, 143.7, 136.6, 135.1, 131.7, 130.7, 127.1, 60.9, 48.7, 41.2, 28.3, 27.9, 24.2, 21.8. **HRMS** (ESI) *m/z* calcd for C₁₅H₁₈ClNO₃Na ([M+Na]⁺) 318.0873; found 318.0863.

1,9-Dimethoxy-1,5,6,7-tetrahydro-2*H***-benzo[***b***]azonine-2,4(3***H***)-dione (17). The general procedure was modified using methanol as the solvent at 0 °C instead of nitromethane. Isolated as a white solid (85.5 mg, 86%). TLC: R_f 0.60 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2977, 2940, 1723 (C=O st), 1679 (C=O st), 1501, 1446, 1280, 1239, 1050, 1030, 920. ¹H-NMR (600 MHz): \delta 7.13 (d, 1H, J = 8.6 Hz), 6.81 (dd, 1H, J = 8.6, 2.9 Hz), 6.76 (d, 1H, J = 2.9 Hz), 3.82 (s, 3H), 3.82 (s, 3H), 3.29 (d, 1H, J = 16.1 Hz), 3.16 (d, 1H, J = 16.1 Hz), 2.87 – 2.80 (m, 2H), 2.73 – 2.68 (m, 1H), 2.22 – 2.14 (m, 2H), 2.07 – 1.98 (m, 1H). ¹³C-NMR (151 MHz): \delta 204.5, 164.4, 161.8, 144.3, 130.8, 128.6, 116.2, 113.5, 61.0, 55.5, 54.6, 39.9, 31.7, 31.1. HRMS (ESI) m/z calcd for C₁₄H₁₇NO₄Na ([M+Na]⁺) 286.1055; found 286.1051**

1,10-Dimethoxy-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H***,3***H***)-dione (19). The general procedure was modified using methanol as the solvent at 0 °C instead of nitromethane. Isolated as a yellow oil (780 mg, 87%). TLC: R_f 0.55 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2937, 1717 (C=O st), 1675 (C=O st), 1604, 1495, 1424, 1248, 1214, 1035, 842, 703. ¹H-NMR (600 MHz): \delta 7.19 (d, 1H, J = 8.5 Hz), 6.86 (d, 1H, J = 2.3 Hz), 6.84 (dd, 1H, J = 8.6, 2.6 Hz), 3.85 (s, 3H), 3.73 (s, 3H), 3.58 (d, 1H, J = 15.1 Hz), 3.06 (d, 1H, J = 15.1 Hz), 2.97 (ddd, 1H, J = 14.9, 12.7, 4.7 Hz), 2.69 (dt, 1H, J = 14.8, 3.9 Hz), 2.59 (dt, 1H, J = 13.9, 3.7 Hz), 1.76 – 1.69 (m, 1H), 1.27 – 1.19 (m, 1H). ¹³C-NMR (151 MHz): \delta 203.5, 164.0, 161.1, 142.4, 130.7, 130.2, 115.3, 112.6, 60.6, 55.5, 47.6, 39.6, 28.2, 26.3, 20.8. HRMS (ESI)** *m/z* **calcd for C₁₅H₁₉NO₄Na ([M+Na]⁺) 300.1212; found 300.1206.**

7-Methoxy-2,3-dihydrobenzo[*b*][1,4]oxazonine-4,6(5*H*,7*H*)-dione (21a). Isolated as a yellow oil (88.7 mg, 89%). TLC: R_f 0.30 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2936, 1718 (C=O st), 1678 (C=O st), 1491, 1346, 1237, 1118, 1034, 1015, 898, 767, 738. ¹H-NMR (600 MHz): δ 7.48 (ddd, 1H, J = 8.1, 7.6, 1.7 Hz), 7.42 (dd, 1H, J = 7.9, 1.6 Hz), 7.25 – 7.20 (m, 2H), 4.64 (br s, 1H), 4.37 (br s, 1H), 3.83 (s, 3H), 3.29 (s, 2H), 3.18 (br s, 1H), 2.47 (br s, 1H). ¹³C-NMR (151 MHz): δ 202.2, 164.6, 155.8, 132.3, 131.2, 129.6, 125.0, 120.8, 72.8,

61.5, 51.8, 42.9. **HRMS** (ESI) m/z calcd for $C_{12}H_{13}NO_4Na$ ([M+Na]⁺) 258.0742; found 258.0735.

10-Fluoro-7-methoxy-2,3-dihydrobenzo[*b*][**1,4**]**oxazonine-4,6**(*5H*,*7H*)-**dione** (**21b**). Isolated as a yellow oil (85.0 mg, 86%). TLC: R_f 0.30 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2938, 1721 (C=O st), 1682 (C=O st), 1498, 1359, 1274, 1248, 1151, 1109, 1034, 1015, 739. ¹H-NMR (600 MHz): δ 7.42 (dd, 1H, J = 8.7, 6.0 Hz), 6.97 – 6.92 (m, 2H), 4.67 (br s, 1H), 4.35 (br s, 1H), 3.82 (s, 3H), 3.29 (s, 2H), 3.18 (br s, 1H), 2.48 (br s, 1H). ¹³C-NMR (151 MHz): δ 201.9, 164.6, 164.3 (d, J = 253.7 Hz), 157.0 (d, J = 10.6 Hz), 131.0 (d, J = 10.6 Hz), 127.6 (d, J = 4.5 Hz), 112.5 (d, J = 22.7 Hz), 108.6 (d, J = 24.2 Hz), 73.3, 61.5, 52.0, 42.7. HRMS (ESI) *m/z* calcd for C₁₂H₁₂FNO₄Na ([M+Na]⁺) 276.0648; found 276.0643.

7-Methoxy-2-phenyl-2,3-dihydrobenzo[*b*][1,4]oxazonine-4,6(5*H*,7*H*)-dione (23). Isolated as a yellow oil (81.6 mg, 82%). TLC: R_f 0.41 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2932, 1713 (C=O st), 1684 (C=O st), 1489, 1354, 1259, 1216, 1160, 1121, 1032, 911, 812, 756, 737. ¹H-NMR (600 MHz): δ 7.48 – 7.36 (m, 7H), 7.23 (td, 1H, *J* = 7.7, 1.2 Hz), 7.09 (d, 1H, *J* = 8.2 Hz), 5.31 (d, 1H, *J* = 11.6 Hz), 3.92 (s, 3H), 3.46 (dd, 1H, *J* = 14.4, 11.1 Hz), 3.38 (s, 2H), 2.61 (dd, 1H, *J* = 14.4, 1.9 Hz). ¹³C-NMR (151 MHz): δ 201.2, 165.3, 155.6, 139.7, 132.3, 131.2, 129.3, 128.9, 128.6, 125.4, 125.2, 120.7, 86.1, 61.7, 51.9, 50.4. HRMS (ESI) *m/z* calcd for C₁₈H₁₇NO₄Na ([M+Na]⁺) 334.1055; found 334.1055.

N-(1-Methoxy-2,4-dioxo-2,3,4,5,6,7-hexahydro-1*H*-benzo[*b*]azonin-9-yl)acetamide (25). Isolated as a light yellow oil (11.0 mg, 57%). TLC: R_f 0.28 (95:5 EtOAc/MeOH). IR (NaCl, film): 2935, 1710 (C=O st), 1671 (C=O st), 1543, 1499, 729. ¹H-NMR (600 MHz): 7.52 (dd, 1H, J = 8.4, 2.5 Hz), 7.47 (d, 1H, J = 2.5 Hz), 7.32 (s, 1H), 7.16 (d, 1H, J = 8.5 Hz), 3.83 (s, 3H), 3.30 (d, 1H, J = 16.1 Hz), 3.15 (d, 1H, J = 16.0), 2.84 (td, 2H, J = 13.2, 2.4 Hz), 2.76 – 2.67 (m, 1H), 2.27 – 2.12 (m, 5H), 2.08 – 1.95 (m, 1H). ¹³C-NMR (151 MHz): δ 204.8, 168.3, 164.2, 143.9, 140.8, 131.5, 130.4, 121.5, 118.7, 61.2, 54.6, 39.9, 31.5, 31.1, 24.8. HRMS (ESI) m/z calcd for C₁₅H₁₈N₂O₄Na ([M+Na]⁺) 313.1164; found 313.1157.

1-Methoxy-7-tosyl-1,5,6,7-tetrahydro-2*H***-benzo**[*b*][1,4]diazonine-2,4(3*H*)-dione (27). Isolated as a yellow oil (8.7 mg, 88%). TLC: R_f 0.38 (95:5 CH₂Cl₂/MeOH). IR (ATR, ZnSe): 2934, 2359, 2341, 1719 (C=O st), 1681 (C=O st), 1492, 1356, 1164, 912, 771, 734. ¹H-NMR (600 MHz): δ 7.88 (d, 2H, J = 8.2 Hz), 7.55 – 7.47 (m, 3H), 7.38 (d, 2H, J = 8.1 Hz), 7.22 (dd, 1H, J = 7.5, 1.7 Hz), 4.05 (d, 1H, J = 13.6 Hz), 4.01 (s, 3H), 3.46 (t, 1H, J = 11.9 Hz), 3.30 (d, 1H, J = 15.8 Hz), 3.16 (d, 1H, J = 15.8 Hz), 3.01 (t, 1H, J = 10.9 Hz), 2.47 (s, 3H), 2.20 (dd, 1H, J = 13.3, 4.0 Hz). ¹³C-NMR (151 MHz): δ 202.1, 163.5, 144.6, 139.0, 138.5, 135.1, 132.5, 130.9, 130.6, 130.2, 129.9, 128.7, 62.6, 53.2, 51.6, 41.3, 21.7. HRMS (ESI) *m/z* calcd for C₁₉H₂₂N₂O₅SNa ([M+Na]⁺) 413.1147; found 413.1133.

4-Methoxy-4,8,9,10-tetrahydro-5*H***-furo[3,2-***b***]azonine-5,7(6***H***)-dione (30). Isolated as a light yellow oil (22.6 mg, 57%). TLC: R_f 0.31 (1:3 hexanes/EtOAc). IR (NaCl, film): 2937, 1682 (C=O st), 1438, 1358, 1130, 1038. ¹H-NMR (400 MHz): \delta 7.39 (d, 1H, J = 2.1 Hz), 6.31 (d, 1H, J = 2.0 Hz), 3.83 (s, 3H), 3.42 – 3.14 (m, 2H), 2.83 – 2.70 (m, 2H), 2.35 – 2.01 (m, 4H). ¹³C-NMR (151 MHz): \delta 202.1, 164.7, 155.5, 142.8, 120.9, 109.5, 61.6, 54.2, 39.8, 28.4, 26.0. HRMS (ESI)** *m/z* **calcd for C₁₁H₁₃NO₄Na ([M+Na]⁺) 246.0742; found 246.0740.**

4-Methoxy-4,8,9,10-tetrahydro-5*H***-thieno[3,2-***b***]azonine-5,7(6***H***)-dione (31). Isolated as a yellow oil (19.8 mg, 61%). TLC: R_f 0.16 (1:1 hexanes/EtOAc). IR (NaCl, film): 2933, 1711 (C=O st), 1678 (C=O st), 1441, 1402, 1349, 1042. ¹H-NMR (600 MHz): \delta 7.29 – 7.26 (m, 1H), 6.85 (d, 1H, J = 5.3 Hz), 3.85 (s, 3H), 3.34 (d, 1H, J = 16.1 Hz), 3.17 (d, 1H, J = 16.1 Hz), 3.06 – 2.87 (m, 3H), 2.83 – 2.70 (m, 1H), 2.23 (dt, 1H, J = 13.5, 4.6 Hz), 2.20 – 2.10 (m, 2H). ¹³C-NMR (151 MHz): \delta 203.0, 164.6, 146.4, 132.8, 125.7, 125.2, 61.7, 54.3, 39.7, 31.9, 27.4. HRMS (ESI)** *m/z* **calcd for C₁₁H₁₃NO₃Na ([M+Na]⁺) 262.0514; found 262.0525.**

4-Methoxy-1-tosyl-4,8,9,10-tetrahydropyrrolo[**3,2-***b*]**azonine-5,7(1***H***,6***H***)-dione** (33). Isolated as a light yellow oil (15.0 mg, 55%). TLC: R_f 0.15 (1:1 hexanes/EtOAc). IR (NaCl,

film): 2934, 1712 (C=O st), 1681 (C=O st), 1370, 1177, 1125, 702. ¹**H-NMR** (600 MHz): δ 7.76 (d, 2H, *J* = 8.2 Hz), 7.38 (d, 2H, *J* = 8.0 Hz), 7.34 (d, 1H, *J* = 3.6 Hz), 6.19 (d, 1H, *J* = 3.6 Hz), 3.76 (s, 3H), 3.29 (d, 1H, *J* = 16.3 Hz), 3.11 (d, 1H, *J* = 16.2 Hz), 2.65 (t, 2H, *J* = 13.8 Hz), 2.50 – 2.39 (m, 3H), 2.13 – 1.99 (m, 2H), 1.96 – 1.86 (m, 1H). ¹³C-NMR (151 MHz): δ 202.9, 164.8, 146.0, 135.3, 135.0, 130.3, 127.4, 124.1, 122.5, 109.9, 61.5, 54.2, 39.6, 29.1, 24.6, 21.8. **HRMS** (ESI) *m/z* calcd for C₁₈H₂₁N₂O₅S ([M+H]⁺) 377.1171; found 377.1187.

1-Methoxy-8-tosyl-5,6,7,8-tetrahydroazonino[3,2-*b*]indole-2,4(1*H,3H*)-dione (35). Isolated as a light yellow oil (25.6 mg, 68%). TLC: R_f 0.25 (1:1 hexanes/EtOAc). IR (NaCl, film): 2935, 1714 (C=O st), 1686 (C=O st), 1450, 1374, 1175, 1039, 660. ¹H-NMR (600 MHz): δ 8.08 (d, 1H, J = 8.4 Hz), 7.78 (d, 2H, J = 8.4 Hz), 7.41 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.1 Hz), 7.32 – 7.29 (m, 3H), 3.84 (s, 3H), 3.60 – 3.53 (m, 1H), 3.31 (d, 1H, J = 16.2 Hz), 3.00 (d, 1H, J = 16.2 Hz), 2.98 – 2.90 (m, 1H), 2.82 – 2.72 (m, 1H), 2.52 (q, 1H, J = 12.9 Hz), 2.39 (s, 3H), 2.28 – 2.12 (m, 2H). ¹³C-NMR (151 MHz): δ 202.9, 165.3, 145.7, 142.3, 135.6, 135.2, 130.1, 126.8, 125.9, 125.1, 124.7, 119.8, 117.3, 115.1, 62.5, 53.4, 40.0, 29.8, 26.0, 21.7. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂O₅SNa ([M+Na]⁺) 449.1147; found 449.1156.

1-Methoxy-12-tosyl-5,6,7,12-tetrahydroazonino[2,3-b]indole-2,4(1H,3H)-dione (37).

Isolated as a yellow oil (25.3 mg, 67%). **TLC**: R_f 0.23 (4:1 benzene/EtOAc). **IR** (ATR, ZnSe): 2923, 1721 (C=O st), 1697 (C=O st), 1368, 1170, 1140, 748. ¹H-NMR (600 MHz): δ 8.20 (d, 1H, J = 8.5 Hz), 7.95 (d, 2H, J = 8.1 Hz), 7.54 (d, 1H, J = 7.9 Hz), 7.51 (t, 1H, J = 7.9 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.21 (d, 2H, J = 8.1 Hz), 3.81 (s, 3H), 3.53 (d, 1H, J = 16.4 Hz), 3.46 (d, 1H, J = 16.4 Hz), 3.01 (dt, 1H, J = 14.2, 3.4 Hz), 2.75 (td, 1H, J = 13.7, 3.5 Hz), 2.66 (t, 1H, J = 11.9 Hz), 2.35 (s, 3H), 2.34 – 2.21 (m, 2H), 2.23 – 2.14 (m, 1H). ¹³C-NMR (151 MHz): δ 202.1, 165.7, 145.2, 135.5, 135.3, 129.5, 128.0, 127.7, 127.4, 126.6, 125.5, 123.8, 120.2, 114.8, 61.7, 53.7, 40.5, 29.2, 24.2, 21.6. **HRMS** (ESI) *m/z* calcd for C₂₂H₂₃N₂O₅S ([M+H]⁺) 427.1328; found 427.1334.

1-Methoxy-9-tosyl-1,5,6,7,8,9-hexahydro-2*H*-azecino[3,2-*b*]indole-2,4(3*H*)-dione (39). Isolated as a light yellow oil (46.3 mg, 66%). TLC: R_f 0.25 (1:1 hexanes/EtOAc). IR (NaCl,

Isolated as a light yellow oil (46.3 mg, 66%). TLC: $R_f 0.25$ (1:1 hexanes/EtOAc). IR (NaCl, film): 2933, 1721 (C=O st), 1688 (C=O st), 1452, 1373, 1174, 1031, 733, 659. ¹H-NMR

(600 MHz): δ 8.19 (d, 1H, J = 8.4 Hz), 7.59 (d, 2H, J = 8.0 Hz), 7.43 – 7.34 (m, 2H), 7.35 – 7.28 (m, 1H), 7.20 (d, 2H, J = 8.1 Hz), 3.62 (s, 3H), 3.52 (d, 1H, J = 15.4 Hz), 3.32 (dt, 1H, J = 15.3, 4.6 Hz), 3.12 (ddd, 1H, J = 15.6, 11.6, 5.0 Hz), 3.06 (d, 1H, J = 15.4 Hz), 2.58 (ddd, 1H, J = 13.8, 8.8, 5.5 Hz), 2.54 – 2.42 (m, 1H), 2.40 – 2.31 (m, 4H), 1.92 (td, 1H, J = 12.0, 11.2, 4.8 Hz), 1.78 (dq, 1H, J = 12.6, 6.6, 5.2 Hz), 1.25 (dd, 1H, J = 16.1, 9.3 Hz). ¹³C-NMR (151 MHz): δ 203.7, 164.7, 145.6, 141.2, 136.0, 134.6, 130.0, 129.9, 126.4, 126.0, 125.2, 122.6, 117.6, 115.9, 61.3, 47.1, 41.4, 27.6, 23.3, 21.9, 21.6. **HRMS** (ESI) *m/z* calcd for C₂₂H₂₅N₂O₅S ([M+H]⁺) 441.1484; found 441.1484.

1-Methoxy-10-tosyl-5,6,7,8,9,10-hexahydro-[1]azacycloundecino[3,2-b]indole-2,4(1*H***,3***H***) dione (41).** Isolated as a light yellow oil (53.7 mg, 60%). **TLC**: R_f 0.30 (1:1 hexanes/EtOAc). **IR** (NaCl, film): 2936, 1712 (C=O st), 1677 (C=O st), 1450, 1373, 1174, 1089, 729. ¹H-NMR (600 MHz): δ 8.21 (d, 1H, J = 8.5 Hz), 7.64 (d, 2H, J = 8.0 Hz), 7.38 (t, 1H, J = 7.9 Hz), 7.34 (t, 1H, J = 7.5 Hz), 7.31 – 7.18 (m, 3H), 3.68 (s, 3H), 3.43 – 3.33 (m, 1H), 3.32 – 3.21 (m, 2H), 3.17 (d, 1H, J = 16.6 Hz), 2.88 (dt, 1H, J = 15.5, 5.0 Hz), 2.37 (s, 3H), 2.35 – 2.24 (m, 1H), 2.25 – 2.16 (m, 1H), 2.04 – 1.94 (m, 1H), 1.85 – 1.76 (m, 1H), 1.52 – 1.29 (m, 2H), 0.88 (q, 1H, J = 12.9 Hz). ¹³**C-NMR** (151 MHz): δ 203.8, 164.4, 145.5, 140.6, 135.2, 135.1, 130.1, 126.7, 126.4, 125.6, 125.1, 121.4, 116.5, 115.7, 61.9, 47.1, 42.4, 27.0, 25.7, 23.9, 22.0, 21.6. **HRMS** (ESI) *m/z* calcd for C₂₄H₂₇N₂O₅S ([M+H]⁺) 455.1641; found 455.1638.

G. DOWNSTREAM MODIFICATIONS OF ODRE SCAFFOLDS

1. α -Geminal dimethylation of β -ketolactam 13c

Supplementary Figure 17. α -Geminal dimethylation of β -ketolactam 13c to form lactam 47.

10-Bromo-1-methoxy-3,3-dimethyl-5,6,7,8-tetrahydrobenzo[b]azecine-2,4(1H,3H)-dione

(47). β -Ketolactam 13c (20.0 mg, 61.3 µmol, 1.00 equiv) was dissolved in DMF (1.0 mL) at 24 °C. Potassium carbonate (34.0 mg, 245 µmol, 4.00 equiv) was added followed by methyl iodide (35.0 mg, 245 µmol, 4.00 equiv). The reaction was stirred at 24 °C for 48 h and monitored by TLC. The mixture was then filtered through a pad of Celite. The filtrate was diluted with EtOAc and washed with H₂O (4 × 10 mL) and brine. The organic layer was dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 50% EtOAc in hexanes) yielded α , α -dimethyl lactam 47 as a colorless oil (15 mg, 68%).

TLC: $R_f 0.55$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2973, 2935, 1715 (C=O st), 1666 (C=O st), 1477, 1020, 910, 734. ¹H-NMR (600 MHz): δ 7.45 (d, 1H, J = 2.1 Hz), 7.39 (dd, 1H, J = 8.3, 2.2 Hz), 7.11 (d, 1H, J = 8.3 Hz), 3.69 (s, 3H), 2.75 (t, 1H, J = 13.6 Hz), 2.62 (dd, 1H, J = 15.3, 5.7 Hz), 2.56 (d, 1H, J = 10.7 Hz), 2.19 (br s, 1H), 1.94 (br s, 1H), 1.82 – 1.71 (m, 2H), 1.70 – 1.62 (m, 1H), 1.42 (s, 3H), 1.30 (s, 3H). ¹³C-NMR (151 MHz): δ 207.4, 170.7, 143.3, 135.4, 133.4, 131.9, 129.8, 125.6, 60.5, 56.5, 34.8, 25.3, 25.0, 23.2, 18.9. **HRMS** (ESI) m/z calcd for C₁₆H₂₀BrNO₃Na ([M+Na]⁺) 376.0524; found 376.0542.

2. Sonogashira coupling of bromo β-ketolactam 47

Supplementary Figure 18. Sonogashira coupling of bromo β -ketolactam 47 to form lactam 48.

1-Methoxy-3,3-dimethyl-10-(phenylethynyl)-5,6,7,8-tetrahydrobenzo[*b*]azecine-2,4(1*H,3H*)dione (48). To a vial containing bromo β -ketolactam 47 (8.00 mg, 22.5 µmol, 1.00 equiv) was added tetrakis(triphenylphosphine palladium(0) (5.3 mg, 4.4 µmol, 0.20 equiv) and copper (I) iodide (1.0 mg, 5.6 µmol, 0.25 equiv). The vial was then flushed with argon. Phenylacetylene (25.0 µL, 0.225 mmol, 10.0 equiv), triethylamine (1.0 mL) and DMF (0.1 mL) were then added at 24 °C. The reaction was heated at 60 °C for 16 h. The mixture was then allowed to cool, diluted with CH₂Cl₂ and then washed with H₂O (4 × 5 mL) and brine. The organic layer was dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 30% EtOAc in hexanes) yielded lactam 48 as a white solid (5.5 mg, 65%).

TLC: $R_f 0.64$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2934, 2250, 1713 (C=O st), 1667 (C=O st), 1497, 1020, 912, 735. ¹H-NMR (600 MHz): δ 7.54 (dd, 2H, J = 6.6, 3.0 Hz), 7.46 (s, 1H), 7.41 (dd, 1H, J = 8.1, 1.7 Hz), 7.39 – 7.36 (m, 3H), 7.23 (d, 1H, J = 8.1 Hz), 3.74 (s, 3H), 2.78 (t, 1H, J = 13.6 Hz), 2.64 (dd, 1H, J = 15.5, 5.5 Hz), 2.58 (d, 1H, J = 10.7 Hz), 2.17 (br s, 1H), 2.00 (br s, 1H), 1.83 – 1.65 (m, 3H), 1.43 (s, 3H), 1.32 (s, 3H). ¹³C-NMR (151 MHz): δ 207.4, 170.7, 141.2, 135.8, 133.3, 131.7 (2C), 130.6, 129.6, 128.7, 128.4 (2C), 126.4, 122.7, 91.5, 88.3, 60.5, 56.5, 34.8, 25.3, 24.8, 23.3, 18.8. HRMS (ESI) m/z calcd for C₂₄H₂₅NO₃Na ([M+Na]⁺) 398.1716; found 398.1732.

3. Suzuki-Miyaura coupling of bromo β -ketolactam 13c

Supplementary Figure 19. Suzuki-Miyaura coupling of bromo β -ketolactam 13c to form β -ketolactam 49.

Methyl 3-(1-methoxy-2,4-dioxo-1,2,3,4,5,6,7,8-octahydrobenzo[*b*]azecin-10-yl)benzoate (49). To a vial containing bromo β-ketolactam 13c (13.0 mg, 40.0 μ mol, 1.00 equiv) was added

3-methoxycarbonylphenylboronic acid (7.50 mg, 44.0 µmol, 1.10 equiv), potassium carbonate (13.8 mg, 100 µmol, 2.50 equiv) and tetra-*N*-butylammonium bromide (12.8 mg, 40.0 µmol, 1.10 equiv). The vial was then flushed with argon. Water (1.0 mL) was added and the resulting suspension was heated at 70 °C for 2 h. The mixture was then allowed to cool, diluted with water and then extracted with EtOAc (4 × 10 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 20% EtOAc in hexanes) yielded biaryl lactam **49** as a colorless oil (10 mg, 65%).

TLC: $R_f 0.53$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2935, 1720 (C=O st), 1673 (C=O st), 1250, 913, 736. ¹H-NMR (600 MHz): δ 8.29 (s, 1H), 8.08 (d, 1H, J = 7.7 Hz), 7.80 (d, 1H, J = 7.6 Hz), 7.61 (s, 1H), 7.57 (t, 2H, J = 7.9 Hz), 7.37 (d, 1H, J = 8.1 Hz), 3.97 (s, 3H), 3.79 (s, 3H), 3.64 (d, 1H, J = 15.2 Hz), 3.13 – 3.04 (m, 2H), 2.84 – 2.79 (m, 1H), 2.61 (dt, 1H, J = 12.0 Hz), 2.31 (dt, 1H, J = 13.9, 7.3 Hz), 2.07 (t, 1H, J = 12.0 Hz), 1.90 (t, 1H, J = 12.0 Hz), 1.80 – 1.72 (m, 1H), 1.31 – 1.22 (m, 1H). ¹³C-NMR (151 MHz): δ 203.5, 166.8, 163.7, 142.6, 141.3, 139.9, 137.2, 131.6, 130.9, 129.9, 129.2, 129.1, 129.0, 128.3, 126.2, 61.1, 52.4, 47.3, 40.1, 28.2, 26.4, 21.1. **HRMS** (ESI) m/z calcd for C₂₂H₂₃NO₅Na ([M+Na]⁺) 404.1474; found 404.1490.

1-Methoxy-10-phenyl-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H***,3***H***)-dione (50). Isolated as a colorless oil (9.7 mg, 75%). TLC:** $R_f 0.50$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2934, 1718 (C=O st), 1672 (C=O st), 1484, 1366, 912, 735. ¹**H-NMR** (600 MHz): δ 7.62 – 7.57 (m, 3H), 7.54 (d, 1H, *J* = 8.1 Hz), 7.49 (t, 2H, *J* = 7.5 Hz), 7.42 (t, 1H, *J* = 7.3 Hz), 7.35 (d, 1H, *J* = 8.1 Hz), 3.79 (s, 3H), 3.65 (d, 1H, *J* = 15.2 Hz), 3.12 – 3.03 (m, 2H), 2.80 (dt, 1H, *J* = 15.0, 4.4 Hz), 2.60 (dt, 1H, *J* = 12.8, 6.1 Hz), 2.34 – 2.27 (m, 1H), 2.10 – 2.02 (m, 1H), 1.89 (dd, 1H, *J* = 14.0, 2.7 Hz), 1.78 – 1.71 (m, 1H), 1.29 – 1.22 (m, 1H). ¹³C-NMR (151 MHz): δ 203.6, 163.8, 143.7, 141.0, 139.6, 136.8, 129.7, 129.0 (3C), 128.2 (2C), 127.2, 126.2, 61.1, 47.2, 40.1, 28.3, 26.3, 21.1. **HRMS** (ESI) m/z calcd for C₂₀H₂₁NO₃Na ([M+Na]⁺) 346.1419; found 346.1426.

1H), 1.92 - 1.85 (m, 1H), 1.80 - 1.72 (m, 1H), 1.30 - 1.23 (m, 1H). ¹³C-NMR (151 MHz): δ 203.5, 163.7, 140.9, 139.8, 136.6, 136.5, 131.1, 129.7, 128.8 (2C), 128.3, 128.3, 127.0 (2C), 126.7, 125.1, 61.0, 47.4, 40.1, 28.2, 26.2, 21.1. HRMS (ESI) m/z calcd for C₂₂H₂₃NO₃Na ([M+Na]⁺) 372.1576; found 372.1565.

4. REDUCTIVE CLEAVAGE OF THE N-O BOND IN 13C

Supplementary Figure 20. Reductive cleavage of the N–O bond in 13c to form secondary lactam 52.

10-Bromo-5,6,7,8-tetrahydrobenzo[*b*]**azecine-2,4(1***H***,3***H***)-dione (52). \beta-Ketolactam 13c (5.00 mg, 15.3 µmol, 1.00 equiv) was dissolved in an acetic acid and water mixture (1.0 mL, 1:1) at 24 °C. Zinc powder (40.1 mg, 612 µmol, 40.0 equiv) was added and the resulting suspension was stirred at 24 °C for 24 h. The mixture was then diluted with CH₂Cl₂ and then filtered through a pad of Celite. The filtrate was washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% MeOH in CH₂Cl₂) yielded secondary lactam 52** as a white solid (3.9 mg, 85%).

TLC: $R_f 0.42$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3274, 2916, 2849, 1707 (C=O st), 1647 (C=O st), 1524, 1463, 738. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.15 (s, 1H), 7.49 (d, 1H, J = 2.0 Hz), 7.42 (dd, 1H, J = 8.4, 2.2 Hz), 7.14 (d, 1H, J = 8.3 Hz), 3.42 (s, 2H), 2.78 (t, 2H, J = 6.6 Hz), 2.71 (t, 2H, J = 6.5 Hz), 1.45 – 1.36 (m, 4H). ¹³C-NMR (151 MHz, DMSO-*d*₆): δ 204.4, 164.4, 141.2, 135.1, 132.8, 130.3, 129.3, 119.2, 56.1, 39.9, 39.8, 39.6, 39.5, 39.4, 39.2, 39.1, 37.5, 28.2, 27.7, 23.7. **HRMS** (ESI) m/z calcd for C₁₃H₁₄NO₂Na ([M+Na]⁺) 318.0106; found 318.0106.

5. Reduction of the ketone in α -methyl- β -ketolactam 53

Supplementary Figure 21. Synthesis of α -methyl- β -hydroxylactam 52.

1,10-Dimethoxy-3-methyl-5,6,7,8-tetrahydrobenzo[b]azecine-2,4(1H,3H)-dione (53).

Methoxyaryl lactam **19** (0.20 g, 0.72 mmol, 1.0 equiv) was dissolved in THF (6.5 mL) and cooled to 0 °C. A solution of KOt-Bu (1.0 M in THF, 0.75 mL, 0.75 mmol, 1.05 equiv) was added by syringe over 5 min and the reaction was stirred for 1 h. Methyl iodide (135 μ L, 2.16 mmol, 3.00 equiv) was then added and the reaction was stirred for an additional 3 h at 24 °C. The reaction was quenched slowly with satd aq NH₄Cl at 0 °C, warmed to 24 °C and diluted with CH₂Cl₂. The mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% MeOH in CH₂Cl₂) yielded α -methyl- β -hydroxylactam **53** as a yellow oil (152 mg, 72%).

TLC: $R_f 0.51$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2935, 1719 (C=O st), 1672 (C=O st), 1496, 1245, 1016, 915, 733. ¹H-NMR (600 MHz): δ 7.15 (d, 1H, J = 8.6 Hz), 6.89 (d, 1H, J = 2.8 Hz), 6.83 (dd, 1H, J = 8.6, 2.9 Hz), 3.86 (s, 3H), 3.75 (s, 3H), 3.56 (q, 1H, J = 6.8 Hz), 3.06 (td, 1H, J = 14.4, 4.5 Hz), 2.70 (dt, 1H, J = 14.7, 4.2 Hz), 2.56 (ddd, 1H, J = 13.5, 7.0, 4.2 Hz), 2.30 (ddd, 1H, J = 13.5, 9.9, 7.3 Hz), 1.93 (ddq, 1H, J = 17.8, 7.9, 4.6 Hz), 1.81 (ddq, 1H, J = 13.8, 10.4, 3.6 Hz), 1.74 – 1.66 (m, 1H), 1.26 (d, 3H, J = 6.8 Hz), 1.14 – 1.06 (m, 1H). ¹³C-NMR (151 MHz): δ 205.7, 168.0, 161.1, 142.9, 130.7, 130.2, 115.8, 112.4, 60.6, 55.5, 47.5, 38.2, 29.0, 26.5, 21.1, 12.3. **HRMS** (ESI) m/z calcd for C₁₆H₂₁NO₄Na ([M+Na]⁺) 314.1368; found 314.1353.

(3*S**,4*S**)-4-hydroxy-1,10-dimethoxy-3-methyl-3,4,5,6,7,8-hexahydrobenzo[*b*]azecin-2(1*H*)one (54). α -Methyl methoxyaryl lactam 53 (10.0 mg, 34.0 µmol, 1.00 equiv) was dissolved in THF (0.5 mL) and cooled to 0 °C. A solution of L-Selectride (1.00 M in THF, 70.0 µL, 68.0 µmol, 2.00 equiv) was added and the reaction was stirred for 1 h. The reaction was quenched with satd aq NH₄Cl at 0 °C, warmed to 24 °C and diluted with CH₂Cl₂. The mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% MeOH in CH₂Cl₂) yielded hydroxylactam 54 as a white solid (9.5 mg, 94%). The relative stereochemistry of 54 was assigned as *anti*- α -methyl- β -hydroxylactam based on X-ray crystal structure analysis (see Section F below). Key diagnostic NOESY correlations were entirely consistent with the ring conformation assignment.

TLC: $R_f 0.35$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3464 (O–H st), 2936, 2874, 1651 (C=O st), 1495, 1425, 1242, 1217, 984, 738. ¹H-NMR (600 MHz): δ 7.09 (d, 1H, J = 8.6 Hz), 6.89 (d, 1H, J = 2.6 Hz), 6.80 (dd, 1H, J = 8.5, 2.7 Hz), 3.85 (s, 3H), 3.74 (s, 3H), 3.73 (br s, 1H), 3.26 (tt, 1H, J = 11.5, 2.7 Hz), 2.96 (td, 1H, J = 13.8, 4.3 Hz), 2.60 (dt, 1H, J = 13.8, 4.0 Hz), 2.56 (qd, 1H, J = 6.9, 2.6 Hz), 1.89 (dtd, 1H, J = 13.8, 10.0, 3.6 Hz), 1.79 (ddt, 1H, J = 17.6, 13.1, 4.0 Hz), 1.69 (tq, 1H, J = 13.8, 3.4 Hz), 1.46 (tdd, 1H, J = 13.6, 8.1, 3.4 Hz), 1.35 (td, 1H, J = 13.1, 9.3 Hz), 1.28 (d, 1H, J = 6.9 Hz), 0.38 (tdd, 1H, J = 13.6, 9.4, 2.8 Hz). ¹³C-NMR (151 MHz): δ 173.0, 161.2, 143.4, 130.2, 130.1, 115.7, 112.0, 73.9, 60.5, 55.5, 37.3, 32.3, 29.2, 26.2, 19.5, 14.7. **HRMS** (ESI) m/z calcd for C₁₆H₂₃NO₄Na ([M+Na]⁺) 316.1525; found 316.1520.

6. Reductive amination of α -methyl- β -ketolactam 53

Supplementary Figure 22. Synthesis of α -methyl- β -hydroxylactam 55.

(3S*,4S*)-4-(benzylamino)-1,10-dimethoxy-3-methyl-3,4,5,6,7,8-hexahydrobenzo[b]azecin-2(1H)-one (55). α -Methyl methoxyaryl lactam 53 (50.0 mg, 0.170 mmol, 1.00 equiv) was dissolved in toluene (1.7 mL) and benzyl amine (20.6 µL, 0.190 mmol, 1.10 equiv), acetic acid (17.0 M, 10.0 µL, 0.170 mmol, 1.00 equiv) and crushed molecular sieves (≈50 mg) were added and the reaction was stirred at 90 °C for 2 h. The reaction mixture was then cooled to 24 °C and filtered through a pad of Celite. The filtrate was concentrated by rotary evaporation to afford the crude imine, which was used directly in the following step. The imine was dissolved in dichloroethane (1.7 mL) and sodium triacetoxyborohydride (145 mg, 0.690 mmol, 4.00 equiv) was added. The resulting reaction mixture was stirred at 24 °C for 16 h. The reaction was quenched with satd aq NaHCO₃ and diluted with CH₂Cl₂. The mixture was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography ($30\% \rightarrow 80\%$ EtOAc in hexanes) yielded amine 55 as a colorless oil (51 mg, 76%). The relative stereochemistry of 55 was assigned as *anti*- α -methyl- β -aminolactam based on extensive NMR studies. The key diognostic NOESY correlations of 55 showed perfect alignment with the NOESY correlations of *anti*- α -methyl- β -hydroxylactam 54. Additionally, the $J_{2H 3H}$ coupling constants of both 54 and 55 support *anti* configuration.

TLC: $R_f 0.32$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2933, 2869, 1664 (C=O st), 1494, 1463, 1246, 1027, 912, 736. ¹H-NMR (600 MHz): δ 7.36 (d, 2H, J = 7.5 Hz), 7.29 – 7.27 (m, 2H), 7.18 (t, 1H, J = 7.3 Hz), 7.06 (d, 1H, J = 8.6 Hz), 6.86 (d, 1H, J = 2.8 Hz), 6.77 (dd, 1H, J = 8.6, 2.9 Hz), 3.97 (d, 1H, J = 13.8 Hz), 3.84 (s, 3H), 3.73 (s, 3H), 3.65 (d, 1H, J = 13.8 Hz), 3.01 (td, 1H, J = 13.7, 4.4 Hz), 2.63 (qd, 1H, J = 6.9, 4.0 Hz), 2.58 (dt, 1H, J = 13.9, 3.7 Hz), 2.19 (dt, 1H, J = 12.1, 3.2 Hz), 2.01 (dtd, 1H, J = 12.7, 9.9, 2.2 Hz), 1.76 (tq, 1H, J = 13.3, 4.5 Hz), 1.68 (dtd, 1H, J = 13.7, 6.8, 2.9 Hz), 1.34 (dddt, 1H, J = 13.5, 9.9, 6.9, 3.4 Hz), 1.25 (d, 3H, J = 6.9 Hz), 1.09 (td, 1H, J = 12.6, 9.5 Hz), 0.43 (tdd, 1H, J = 13.4, 9.8, 2.5 Hz). ¹³C-NMR (151 MHz): ¹³C NMR (151 MHz, CDCl₃) δ 172.6, 160.9, 143.6, 141.5, 130.9, 130.2, 128.0, 128.0, 126.4, 115.6, 111.9, 60.2, 59.3, 55.5, 50.7, 37.4, 29.3, 27.8, 26.5, 20.9, 15.2. **HRMS** (ESI) m/z calcd for C₂₃H₃₁N₂O₃ ([M+H]⁺) 383.2335; found 383.2339.

7. Aldol-Tishchenko reaction of α -methyl- β -ketolactam 53

Supplementary Figure 23. Synthesis of 1,3-diol 56.

(3*S**,4*R**,5*R**)-4-hydroxy-5-((*R**)-hydroxy(4-nitrophenyl)methyl)-1,10-dimethoxy-3-methyl -3,4,5,6,7,8-hexahydrobenzo[*b*]azecin-2(1*H*)-one (56). α -Methyl methoxyaryl lactam 53 (20.0 mg, 68.0 µmol, 1.00 equiv) was dissolved in THF (0.7 mL) and cooled to -78 °C. A solution of LiHMDS (1.00 M in THF, 2.00 mL, 2.04 mmol, 3.00 equiv) was added and the reaction was stirred for 1 h. A solution of *p*-nitrobenzaldehyde (0.100 M in THF, 26.0 mg, 0.170 mmol, 2.50 equiv) was added and the reaction was stirred for an additional 15 h while the reaction slowly warmed to 24 °C. The reaction was quenched with satd aq NH₄Cl and diluted with EtOAc. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% → 10% MeOH in CH₂Cl₂) yielded 1,3-diol **56** as a yellow oil (18 mg, 59%, 99:1 dr).

TLC: $R_f 0.33$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 3425 (O–H st), 2931, 2874, 1650 (C=O st), 1347, 1243, 911, 736. ¹H-NMR (600 MHz): δ 8.24 (d, 2H, J = 8.6 Hz), 7.56 (d, 2H, J = 8.6 Hz), 7.08 (d, 1H, J = 8.4 Hz), 6.91 (d, 1H, J = 2.7 Hz), 6.80 (dd, 1H, J = 8.6, 2.8 Hz), 4.91 (d, 1H, J = 3.6 Hz), 3.85 (s, 3H), 3.82 (d, 1H, J = 9.7 Hz), 3.67 (s, 3H), 2.78 (td, 1H, J = 14.0, 3.9 Hz), 2.64 (dt, 1H, J = 14.5, 3.9 Hz), 2.40 (dq, 1H, J = 9.5, 6.5 Hz), 1.85 – 1.78 (m, 2H), 1.72 – 1.67 (m, 1H), 1.55 (t, 1H, J = 13.9 Hz), 1.14 (d, 3H, J = 6.6 Hz), 1.01 (t, 1H, J = 14.4 Hz). ¹³C-NMR (151 MHz): δ 170.9, 161.3, 150.6, 147.1, 142.9, 130.3, 128.6, 126.7

(2C), 123.8 (2C), 115.6, 112.2, 75.2, 73.7, 60.5, 55.6, 43.2, 41.3, 27.3, 26.5, 20.4, 14.5. **HRMS** (ESI) m/z calcd for $C_{23}H_{27}N_2O_7$ ([M–H]⁻) 443.1818; found 443.1830.

Supplementary Figure 24. Synthesis of acetonide S54.

(4*R**,4*aR**,14*S**,14*aR**)-9,12-dimethoxy-2,2,14-trimethyl-4-(4-nitrophenyl)-4,4a,5,6,7,12,14, 14a-octahydro-13*H*-benzo[*b*][1,3]dioxino[5,4-*g*]azecin-13-one (S54). Diol 56 (4.3 mg, 10 µmol, 1.0 equiv) was dissolved in CH₂Cl₂ (1.0 mL). Dimethoxypropane (6.0 µL, 50 µmol, 5.0 equiv) and camphorsulfonic acid (10 mM in CH₂Cl₂, 0.10 mL, 1.0 µmol 0.10 equiv) were added. The resultant reaction mixture was stirred at 24 °C for 16 h. The mixture was concentrated by rotary evaporation to afford the crude product. Purification by silica flash chromatography (0% \rightarrow 10% EtOAc in hexanes) yielded acetonide S54 as a yellow oil (2.1 mg, 44%). Upon extensive NMR analysis of S54, the relative stereochemistry of the acetoinde was assigned as *anti*-1,3-diol acetonide. Characteristic ¹³C NMR resonances reported in the literature³⁰ for the ketal carbon as well as the geminal dimethyl groups were in agreement with the observed NMR data of S54. The assigned stereochemistry was also supported by NOESY correlations analogous to the observed NOESY correlations in 54 and 55.

TLC: $R_f 0.77$ (95:5 CH₂Cl₂/MeOH). **IR** (ATR, ZnSe): 2933, 1670 (C=O st), 1522, 1350, 1244, 741, 669. ¹H-NMR (600 MHz): δ 8.24 (d, 2H, J = 8.6 Hz), 7.68 (d, 2H, J = 8.7 Hz), 7.15 (d, 1H, J = 8.5 Hz), 6.92 (d, 1H, J = 2.8 Hz), 6.80 (dd, 1H, J = 8.5, 2.8 Hz), 4.74 (d, 1H, J = 1.6 Hz), 4.18 (dd, 1H, J = 10.1, 0.9 Hz), 3.86 (s, 3H), 3.75 (s, 3H), 2.76 (td, 1H, J = 13.9, 3.8 Hz), 2.64 (dt, 1H, J = 14.4, 3.9 Hz), 2.54 (dq, 1H, J = 10.0, 6.6 Hz), 2.04 (d, 1H, J = 6.4 Hz), 1.87 (t, 1H, J = 13.8 Hz), 1.69 – 1.60 (m, 2H), 1.33 (s, 3H), 1.20 (d, 3H, J = 6.5 Hz), 1.03 (s, 3H), 0.87 – 0.80 (m, 1H). ¹³C-NMR (151 MHz): δ 171.6, 161.3, 149.6, 147.1, 143.0, 130.4, 130.3, 128.0 (2C), 123.8 (2C), 115.8, 112.0, 100.8, 76.5, 71.0, 60.6, 55.6, 39.2, 35.4, 28.6, 28.2, 26.9, 24.8, 24.4, 14.5. HRMS (ESI) m/z calcd for C₂₆H₃₂N₂O₇Na ([M+Na]⁺) 507.2107; found 507.2090.

³⁰ Evans, D. A.; Rieger, D. L.; Gage, J. R. *Tetrahedron Lett.* **1990**, *31*,7099–7100.

H. X-RAY CRYSTALLOGRAPHIC ANALYSIS OF *ANTI*-α-METHYL-β-HYDROXYLACTAM 54

Supplementary Figure 25. X-ray crystal structures of anti α -methyl- β -hydroxylactam 54. The two cocrystallized conformers A (a) and B (b) are shown.

Lactam **54** (10 mg) was placed in a 15 mL conical flask and dissolved in 1.5 mL EtOAc/pentane (3:1) upon heating. After 3 days at 24 °C, clear needle shaped crystals were obtained for X-ray crystallographic analysis.

A colorless irregular prism-like specimen of $C_{16}H_{23}NO_4$, approximate dimensions 0.116 mm \times 0.227 mm \times 0.246 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 27.54 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 52524 reflections to a maximum θ angle of 71.17° (0.81 Å resolution), of which 5853 were independent (average redundancy 8.974, completeness = 98.2%, $R_{int} = 2.32\%$, $R_{sig} = 1.16\%$) and 5679 (97.03%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.2770(5) Å, <u>b</u> = 32.3108(18) Å, <u>c</u> = 11.1622(6) Å, β = 113.1263(17)°, volume = 3077.0(3) Å³, are based upon the refinement of the XYZ-centroids of 9001 reflections above 20 $\sigma(I)$ with 9.039° < 2 θ < 141.7°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.914.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P2₁/c, with Z = 8 for the formula unit, $C_{16}H_{23}NO_4$. The final anisotropic full-matrix least-squares refinement on F² with 563 variables converged at R1 = 3.41%, for the observed data and wR2 = 8.42% for all data. The goodness-of-fit was 1.044. The largest peak in the final difference electron density synthesis was 0.228 e⁷/Å³ and the largest hole was -0.245 e⁷/Å³ with an RMS deviation of 0.041 e⁷/Å³. On the basis of the final model, the calculated density was 1.267 g/cm³ and F(000), 1264 e⁷.

CCDC 1534702 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Identification code	α-methyl-β-hydroxylactam 54			
Chemical formula	C ₁₆ H ₂₃ NO ₄			
Formula weight	293.36 g/mol			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal size	0.116 × 0.227 × 0.246 mm			
Crystal habit	colorless irregular prism			
Crystal system	monoclinic			
Space group	P 1 21/c 1			
Unit cell dimensions	a = 9.2770(5) Å	α = 90°		
	b = 32.3108(18) Å	β = 113.1263(17)°		
	c = 11.1622(6) Å	γ = 90°		
Volume	3077.0(3) Å ³			
Z	8			
Density (calculated)	1.267 g/cm ³			
Absorption coefficient	0.739 mm ⁻¹			
F(000)	1264			

Supplementary Table 5. Sample and crystal data for α -methyl- β -hydroxylactam 54.

Supplementary Table 6. Data collection and structure refinement for for α -methyl- β -hydroxylactam 54.

Theta range for data collection	2.73 to 71.17°		
Index ranges	-11≤h≤11, -39≤k≤39, -13≤l≤1	3	
Reflections collected	52524		
Independent reflections	5853 [R(int) = 0.0232]		
Coverage of independent reflections	98.2%		
Absorption correction	multi-scan		
Structure solution technique	direct methods		
Structure solution program	XT, VERSION 2014/4		
Refinement method	full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	5853 / 0 / 563		
Goodness-of-fit on F ²	1.044		
Δ/σ _{max}	0.001		
Final R indices	5679 data; I>2σ(I)	R1 = 0.0341, wR2 = 0.0836	
	all data	R1 = 0.0348, wR2 = 0.0842	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0.0406P) ² +1.2059P] where P=(F_{o}^{2} +2 F_{c}^{2})/3		
Largest diff. peak and hole	0.228 and -0.245 eÅ ⁻³		
R.M.S. deviation from mean	0.041 eÅ ⁻³		

Supplementary Table 7. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for α -methyl- β -hydroxylactam 54. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
O1A	0.41488(9)	0.57762(2)	0.43376(7)	0.02165(17)
O2A	0.43762(9)	0.60291(3)	0.21674(8)	0.02852(19)
O3A	0.38570(10)	0.56748(3)	0.97629(9)	0.0311(2)
O4A	0.76172(9)	0.49479(2)	0.32652(8)	0.02435(18)
N1A	0.28955(10)	0.57250(3)	0.31166(8)	0.01818(19)
C1A	0.31634(12)	0.58468(3)	0.20678(10)	0.0194(2)
C2A	0.19181(13)	0.57426(3)	0.07397(10)	0.0202(2)
C3A	0.26872(13)	0.54564(4)	0.00492(11)	0.0243(2)
C4A	0.33760(13)	0.50631(4)	0.08235(12)	0.0255(2)
C5A	0.21540(13)	0.47714(4)	0.09868(11)	0.0228(2)
C6A	0.27237(13)	0.45405(3)	0.22862(12)	0.0238(2)
C7A	0.30375(13)	0.48240(3)	0.34759(11)	0.0223(2)
C8A	0.16213(12)	0.50812(3)	0.33487(10)	0.0179(2)
C9A	0.02966(13)	0.48857(3)	0.33947(10)	0.0189(2)
C10A	0.89515(12)	0.51103(3)	0.32328(10)	0.0189(2)
C11A	0.89140(13)	0.55377(3)	0.30307(10)	0.0200(2)
C12A	0.02201(13)	0.57352(3)	0.30012(10)	0.0192(2)
C13A	0.15615(12)	0.55095(3)	0.31503(10)	0.0171(2)
C14A	0.41124(15)	0.61869(4)	0.48182(11)	0.0244(2)
C15A	0.12557(15)	0.61429(4)	0.99930(12)	0.0296(3)
C16A	0.75788(15)	0.45111(4)	0.34510(12)	0.0258(2)
O1B	0.77179(9)	0.83300(3)	0.58778(8)	0.02488(18)
O2B	0.52013(10)	0.78503(3)	0.52102(8)	0.0287(2)
O3B	0.46121(10)	0.70684(3)	0.59967(8)	0.02595(18)
O4B	0.10494(9)	0.85875(2)	0.19138(7)	0.02165(17)
N1B	0.71956(10)	0.81713(3)	0.68201(8)	0.01899(19)
C1B	0.59642(12)	0.79086(3)	0.63818(10)	0.0190(2)
C2B	0.55919(12)	0.76759(3)	0.74082(10)	0.0177(2)
C3B	0.57819(13)	0.72085(3)	0.72101(11)	0.0212(2)
C4B	0.74179(14)	0.70999(4)	0.72833(12)	0.0251(2)
C5B	0.87494(14)	0.71762(4)	0.86206(12)	0.0262(3)
C6B	0.02825(14)	0.73172(4)	0.85469(13)	0.0287(3)
C7B	0.02233(13)	0.77538(4)	0.79737(12)	0.0245(2)
C8B	0.96929(12)	0.80771(3)	0.86898(10)	0.0183(2)
C9B	0.06719(12)	0.81850(3)	0.99659(10)	0.0185(2)
C10B	0.01676(12)	0.84623(3)	0.06728(10)	0.0174(2)
C11B	0.86671(12)	0.86349(3)	0.01178(10)	0.0182(2)

	x/a	y/b	z/c	U(eq)
C12B	0.77032(12)	0.85379(3)	0.88523(10)	0.0176(2)
C13B	0.82146(12)	0.82625(3)	0.81413(10)	0.0169(2)
C14B	0.68351(15)	0.86921(4)	0.52767(12)	0.0277(3)
C15B	0.39505(13)	0.77825(4)	0.73198(12)	0.0241(2)
C16B	0.26343(13)	0.84427(4)	0.25018(11)	0.0244(2)

Supplementary Table 8. Bond lengths (Å) for α -methyl- β -hydroxylactam 54.

O1A-N1A	1.4114(11)	O1A-C14A	1.4368(13)
O2A-C1A	1.2357(13)	O3A-C3A	1.4319(14)
O3A-H3OA	0.86(2)	O4A-C10A	1.3579(13)
O4A-C16A	1.4290(14)	N1A-C1A	1.3475(14)
N1A-C13A	1.4333(14)	C1A-C2A	1.5167(14)
C2A-C15A	1.5308(16)	C2A-C3A	1.5459(16)
C2A-H2A	0.965(13)	C3A-C4A	1.5287(18)
СЗА-НЗА	0.969(13)	C4A-C5A	1.5391(16)
C4A-H4A	0.998(15)	C4A-H4B	0.959(15)
C5A-C6A	1.5287(17)	C5A-H5A	0.992(14)
C5A-H5B	0.996(14)	C6A-C7A	1.5438(16)
C6A-H6A	1.007(14)	C6A-H6B	0.987(14)
C7A-C8A	1.5134(15)	C7A-H7A	0.996(15)
C7A-H7B	0.976(14)	C8A-C13A	1.3990(15)
C8A-C9A	1.4005(15)	C9A-C10A	1.3924(15)
C9A-H9A	0.965(14)	C10A-C11A	1.3975(16)
C11A-C12A	1.3812(16)	C11A-H11A	0.958(14)
C12A-C13A	1.3948(15)	C12A-H12A	0.960(14)
C14A-H14A	0.957(16)	C14A-H14B	0.974(14)
C14A-H14C	0.975(16)	C15A-H15A	0.974(16)
C15A-H15B	1.009(17)	C15A-H15C	0.958(17)
C16A-H16A	0.996(15)	C16A-H16B	0.983(16)
C16A-H16C	0.983(15)	O1B-N1B	1.4157(11)
O1B-C14B	1.4345(15)	O2B-C1B	1.2327(13)
O3B-C3B	1.4361(13)	O3B-H3OB	0.90(2)
O4B-C10B	1.3644(13)	O4B-C16B	1.4330(13)
N1B-C1B	1.3514(14)	N1B-C13B	1.4354(13)
C1B-C2B	1.5191(15)	C2B-C15B	1.5261(15)
C2B-C3B	1.5463(15)	C2B-H2B	0.963(13)
C3B-C4B	1.5283(16)	C3B-H3B	0.984(14)
C4B-C5B	1.5384(16)	C4B-H4C	1.018(15)
C4B-H4D	0.952(16)	C5B-C6B	1.5260(18)
C5B-H5C	1.001(14)	C5B-H5D	0.990(16)
C6B-C7B	1.5410(18)	C6B-H6C	0.969(16)
C6B-H6D	0.979(15)	C7B-C8B	1.5105(15)
C7B-H7C	0.987(15)	C7B-H7D	0.972(15)
C8B-C13B	1.3981(15)	C8B-C9B	1.3997(15)
C9B-C10B	1.3907(15)	C9B-H9B	0.961(14)
C10B-C11B	1.3983(15)	C11B-C12B	1.3787(15)

C12B-H12B0.965(14)C14B-H14D0.961C14B-H14E0.954(16)C14B-H14F0.995C15B-H15D1.015(16)C15B-H15E0.964C15B-H15F1.007(16)C16B-H16D0.987C16B-H16E0.965(15)C16B-H16F0.995	C11B-H11B	0.977(14)	C12B-C13B	1.3937(15)
C14B-H14E0.954(16)C14B-H14F0.995C15B-H15D1.015(16)C15B-H15E0.964C15B-H15F1.007(16)C16B-H16D0.987C16B-H16E0.965(15)C16B-H16F0.995	C12B-H12B	0.965(14)	C14B-H14D	0.961(17)
C15B-H15D1.015(16)C15B-H15E0.964C15B-H15F1.007(16)C16B-H16D0.987C16B-H16E0.965(15)C16B-H16F0.998	C14B-H14E	0.954(16)	C14B-H14F	0.995(16)
C15B-H15F1.007(16)C16B-H16D0.987C16B-H16E0.965(15)C16B-H16F0.999	C15B-H15D	1.015(16)	C15B-H15E	0.964(16)
C16B-H16E 0.965(15) C16B-H16F 0.999	C15B-H15F	1.007(16)	C16B-H16D	0.987(16)
	C16B-H16E	0.965(15)	C16B-H16F	0.999(16)

Supplementary Table 9. Bond angles (°) for $\alpha\text{-methyl-}\beta\text{-hydroxylactam}$ 54.

105.9(14)	C3A-O3A-H3OA	109.72(8)	N1A-O1A-C14A
116.21(8)	C1A-N1A-O1A	117.41(9)	C10A-O4A-C16A
115.08(8)	O1A-N1A-C13A	128.35(9)	C1A-N1A-C13A
120.72(10)	O2A-C1A-C2A	122.22(10)	O2A-C1A-N1A
109.47(9)	C1A-C2A-C15A	117.05(9)	N1A-C1A-C2A
113.52(10)	C15A-C2A-C3A	107.25(9)	C1A-C2A-C3A
108.9(7)	C15A-C2A-H2A	110.5(7)	C1A-C2A-H2A
110.54(9)	O3A-C3A-C4A	107.1(7)	C3A-C2A-H2A
112.81(9)	C4A-C3A-C2A	110.81(9)	O3A-C3A-C2A
109.3(8)	C4A-C3A-H3A	105.4(8)	ОЗА-СЗА-НЗА
114.35(9)	C3A-C4A-C5A	107.6(8)	C2A-C3A-H3A
110.1(8)	C5A-C4A-H4A	108.2(8)	C3A-C4A-H4A
109.3(9)	C5A-C4A-H4B	107.3(9)	C3A-C4A-H4B
114.51(10)	C6A-C5A-C4A	107.5(12)	H4A-C4A-H4B
110.1(8)	C4A-C5A-H5A	107.0(8)	C6A-C5A-H5A
108.4(8)	C4A-C5A-H5B	108.8(8)	C6A-C5A-H5B
113.88(9)	C5A-C6A-C7A	107.8(11)	H5A-C5A-H5B
109.7(8)	C7A-C6A-H6A	107.4(8)	C5A-C6A-H6A
109.4(8)	C7A-C6A-H6B	109.0(8)	C5A-C6A-H6B
112.44(9)	C8A-C7A-C6A	107.3(11)	H6A-C6A-H6B
109.2(8)	C6A-C7A-H7A	108.9(8)	C8A-C7A-H7A
109.6(8)	C6A-C7A-H7B	109.3(8)	C8A-C7A-H7B
118.10(10)	C13A-C8A-C9A	107.3(11)	H7A-C7A-H7B
119.39(10)	C9A-C8A-C7A	122.49(10)	C13A-C8A-C7A
121.5(8)	C10A-C9A-H9A	120.99(10)	C10A-C9A-C8A
125.11(10)	O4A-C10A-C9A	117.5(8)	C8A-C9A-H9A
120.00(10)	C9A-C10A-C11A	114.89(10)	O4A-C10A-C11A
121.2(8)	C12A-C11A-H11A	119.60(10)	C12A-C11A-C10A
120.37(10)	C11A-C12A-C13A	119.2(8)	C10A-C11A-H11A
118.4(8)	C13A-C12A-H12A	121.2(8)	C11A-C12A-H12A
118.81(9)	C12A-C13A-N1A	120.93(10)	C12A-C13A-C8A
111.5(9)	O1A-C14A-H14A	120.25(9)	C8A-C13A-N1A
108.9(11)	H14A-C14A-H14B	102.1(8)	O1A-C14A-H14B
111.7(13)	H14A-C14A-H14C	109.9(9)	O1A-C14A-H14C
110.9(9)	C2A-C15A-H15A	112.3(12)	H14B-C14A-H14C
107.9(12)	H15A-C15A-H15B	110.5(9)	C2A-C15A-H15B
107.6(13)	H15A-C15A-H15C	111.3(10)	C2A-C15A-H15C
110.4(8)	O4A-C16A-H16A	108.5(13)	H15B-C15A-H15C
110.7(12)	H16A-C16A-H16B	105.2(9)	O4A-C16A-H16B

O4A-C16A-H16C	110 5(8)	H16A-C16A-H16C	110 9(12)
H16B-C16A-H16C	108 9(12)	N1B-O1B-C14B	110.0(12)
C3B-O3B-H3OB	103.5(12)	C10B-O4B-C16B	117.80(9)
C1B-N1B-O1B	116.48(8)	C1B-N1B-C13B	128.52(9)
01B-N1B-C13B	114 18(8)	02B-C1B-N1B	122 10(10)
02B-C1B-C2B	121 25(10)	N1B-C1B-C2B	116 63(9)
C1B-C2B-C15B	110.87(9)	C1B-C2B-C3B	107.63(9)
C15B-C2B-C3B	112.21(9)	C1B-C2B-H2B	110.7(7)
C15B-C2B-H2B	108.4(7)	C3B-C2B-H2B	107.0(7)
O3B-C3B-C4B	110.17(9)	O3B-C3B-C2B	110.88(9)
C4B-C3B-C2B	112.53(9)	O3B-C3B-H3B	106.7(8)
C4B-C3B-H3B	108.7(8)	C2B-C3B-H3B	107.7(8)
C3B-C4B-C5B	114.66(10)	C3B-C4B-H4C	108.3(8)
C5B-C4B-H4C	110.8(8)	C3B-C4B-H4D	108.9(9)
C5B-C4B-H4D	108.6(9)	H4C-C4B-H4D	105.0(12)
C6B-C5B-C4B	113.93(11)	C6B-C5B-H5C	107.3(8)
C4B-C5B-H5C	111.2(8)	C6B-C5B-H5D	108.1(9)
C4B-C5B-H5D	109.3(9)	H5C-C5B-H5D	106.8(12)
C5B-C6B-C7B	114.43(9)	C5B-C6B-H6C	109.5(9)
C7B-C6B-H6C	108.6(9)	C5B-C6B-H6D	110.7(9)
C7B-C6B-H6D	106.5(9)	H6C-C6B-H6D	106.8(12)
C8B-C7B-C6B	112.30(10)	C8B-C7B-H7C	111.1(8)
C6B-C7B-H7C	109.4(8)	C8B-C7B-H7D	108.9(8)
C6B-C7B-H7D	108.4(9)	H7C-C7B-H7D	106.6(12)
C13B-C8B-C9B	118.15(10)	C13B-C8B-C7B	122.14(10)
C9B-C8B-C7B	119.65(10)	C10B-C9B-C8B	120.63(10)
C10B-C9B-H9B	120.4(8)	C8B-C9B-H9B	119.0(8)
O4B-C10B-C9B	124.47(10)	O4B-C10B-C11B	115.28(9)
C9B-C10B-C11B	120.25(10)	C12B-C11B-C10B	119.70(10)
C12B-C11B-H11B	121.2(8)	C10B-C11B-H11B	119.1(8)
C11B-C12B-C13B	119.98(10)	C11B-C12B-H12B	120.9(8)
C13B-C12B-H12B	119.1(8)	C12B-C13B-C8B	121.26(10)
C12B-C13B-N1B	118.82(9)	C8B-C13B-N1B	119.93(9)
O1B-C14B-H14D	111.1(9)	O1B-C14B-H14E	102.6(9)
H14D-C14B-H14E	109.7(13)	O1B-C14B-H14F	110.0(9)
H14D-C14B-H14F	109.6(13)	H14E-C14B-H14F	113.8(13)
C2B-C15B-H15D	109.1(9)	C2B-C15B-H15E	110.5(9)
H15D-C15B-H15E	106.8(12)	C2B-C15B-H15F	109.4(9)
H15D-C15B-H15F	111.5(12)	H15E-C15B-H15F	109.6(13)
O4B-C16B-H16D	105.3(9)	O4B-C16B-H16E	110.7(8)

H16D-C16B-H16E	109.4(12)	O4B-C16B-H16F	111.7(8)
H16D-C16B-H16F	110.7(12)	H16E-C16B-H16F	109.1(12)

Supplementary Table 10. Torsion angles (°) for α -methyl- β -hydroxylactam 54.

3.84(15)	C9B-C10B-O4B-C16B	-1.47(15)	C9A-C10A-O4A-C16A
-175.90(9)	C11B-C10B-O4B-C16B	179.15(9)	C11A-C10A-O4A-C16A
86.16(11)	C1B-N1B-O1B-C14B	86.27(11)	C1A-N1A-O1A-C14A
-103.30(10)	C13B-N1B-O1B-C14B	-100.05(10)	C13A-N1A-O1A-C14A
-63.10(13)	O2B-C1B-C2B-C15B	-63.04(14)	O2A-C1A-C2A-C15A
118.78(10)	N1B-C1B-C2B-C15B	118.19(11)	N1A-C1A-C2A-C15A
-75.4(12)	H3OB-O3B-C3B-C4B	-80.6(15)	H3OA-O3A-C3A-C4A
49.8(12)	H3OB-O3B-C3B-C2B	45.2(15)	H3OA-O3A-C3A-C2A

Supplementary Table 11. Anisotropic atomic displacement parameters (Å ²) for α -methyl- β -
hydroxylactam 54. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h ² a ² U ₁₁
$+ + 2 h k a^{2} b^{2} U_{12}$]

	U 11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O1A	0.0213(4)	0.0199(4)	0.0159(4)	-0.0030(3)	-0.0012(3)	-0.0005(3)
O2A	0.0245(4)	0.0356(5)	0.0253(4)	-0.0076(4)	0.0096(3)	-0.0136(4)
O3A	0.0290(5)	0.0425(5)	0.0272(4)	-0.0066(4)	0.0167(4)	-0.0118(4)
O4A	0.0229(4)	0.0235(4)	0.0280(4)	0.0008(3)	0.0114(3)	-0.0027(3)
N1A	0.0172(4)	0.0190(4)	0.0136(4)	-0.0015(3)	0.0010(3)	-0.0016(3)
C1A	0.0186(5)	0.0185(5)	0.0198(5)	-0.0039(4)	0.0060(4)	-0.0025(4)
C2A	0.0176(5)	0.0251(6)	0.0165(5)	-0.0008(4)	0.0052(4)	-0.0048(4)
C3A	0.0209(5)	0.0339(6)	0.0191(5)	-0.0065(5)	0.0087(5)	-0.0081(5)
C4A	0.0197(5)	0.0300(6)	0.0292(6)	-0.0088(5)	0.0119(5)	-0.0022(5)
C5A	0.0188(5)	0.0230(6)	0.0255(6)	-0.0084(5)	0.0074(4)	-0.0014(4)
C6A	0.0188(5)	0.0178(5)	0.0322(6)	-0.0046(5)	0.0071(5)	0.0024(4)
C7A	0.0197(5)	0.0189(5)	0.0228(6)	0.0007(4)	0.0025(4)	0.0024(4)
C8A	0.0204(5)	0.0183(5)	0.0114(4)	-0.0005(4)	0.0022(4)	0.0022(4)
C9A	0.0240(5)	0.0158(5)	0.0146(5)	0.0004(4)	0.0051(4)	0.0001(4)
C10A	0.0210(5)	0.0214(5)	0.0135(5)	-0.0012(4)	0.0058(4)	-0.0019(4)
C11A	0.0207(5)	0.0204(5)	0.0182(5)	-0.0010(4)	0.0069(4)	0.0032(4)
C12A	0.0242(5)	0.0154(5)	0.0165(5)	-0.0005(4)	0.0061(4)	0.0016(4)
C13A	0.0194(5)	0.0180(5)	0.0119(5)	-0.0011(4)	0.0041(4)	-0.0011(4)
C14A	0.0303(6)	0.0203(6)	0.0206(6)	-0.0050(4)	0.0079(5)	-0.0032(5)
C15A	0.0298(6)	0.0322(7)	0.0242(6)	0.0065(5)	0.0077(5)	-0.0014(5)
C16A	0.0291(6)	0.0246(6)	0.0231(6)	0.0031(5)	0.0094(5)	-0.0064(5)
O1B	0.0254(4)	0.0312(4)	0.0214(4)	0.0057(3)	0.0129(3)	0.0009(3)
O2B	0.0329(5)	0.0322(5)	0.0152(4)	-0.0026(3)	0.0031(3)	-0.0087(4)
O3B	0.0254(4)	0.0261(4)	0.0241(4)	-0.0085(3)	0.0072(3)	-0.0090(3)
O4B	0.0179(4)	0.0256(4)	0.0172(4)	-0.0031(3)	0.0023(3)	0.0002(3)
N1B	0.0172(4)	0.0253(5)	0.0147(4)	0.0020(4)	0.0065(4)	-0.0021(4)
C1B	0.0179(5)	0.0199(5)	0.0168(5)	-0.0016(4)	0.0043(4)	0.0005(4)
C2B	0.0154(5)	0.0202(5)	0.0155(5)	-0.0026(4)	0.0039(4)	-0.0029(4)
C3B	0.0212(5)	0.0203(5)	0.0209(5)	-0.0041(4)	0.0070(4)	-0.0041(4)
C4B	0.0244(6)	0.0207(6)	0.0294(6)	-0.0072(5)	0.0096(5)	-0.0006(4)
C5B	0.0255(6)	0.0207(6)	0.0289(6)	0.0000(5)	0.0071(5)	0.0048(5)
C6B	0.0204(6)	0.0275(6)	0.0333(7)	-0.0086(5)	0.0052(5)	0.0082(5)
C7B	0.0154(5)	0.0329(6)	0.0260(6)	-0.0075(5)	0.0089(5)	-0.0001(4)
C8B	0.0150(5)	0.0195(5)	0.0213(5)	-0.0007(4)	0.0081(4)	-0.0026(4)
C9B	0.0128(5)	0.0193(5)	0.0215(5)	0.0016(4)	0.0048(4)	-0.0002(4)
C10B	0.0173(5)	0.0168(5)	0.0165(5)	0.0013(4)	0.0049(4)	-0.0035(4)
C11B	0.0190(5)	0.0151(5)	0.0210(5)	-0.0006(4)	0.0084(4)	-0.0003(4)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C12B	0.0140(5)	0.0158(5)	0.0219(5)	0.0035(4)	0.0058(4)	0.0001(4)
C13B	0.0150(5)	0.0182(5)	0.0163(5)	0.0010(4)	0.0047(4)	-0.0034(4)
C14B	0.0314(7)	0.0257(6)	0.0228(6)	0.0034(5)	0.0071(5)	-0.0021(5)
C15B	0.0168(5)	0.0281(6)	0.0260(6)	-0.0052(5)	0.0069(5)	-0.0018(4)
C16B	0.0161(5)	0.0359(7)	0.0181(5)	0.0011(5)	0.0035(4)	-0.0005(5)

Supplementary Table 12. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for α -methyl- β -hydroxylactam 54.

	x/a	y/b	z/c	U(eq)
H3OA	0.440(2)	0.5812(7)	0.046(2)	0.066(6)
H2A	0.1075(15)	0.5588(4)	0.0829(12)	0.015(3)
H3A	0.1888(15)	0.5382(4)	-0.0790(13)	0.018(3)
H4A	0.4167(17)	0.5146(4)	0.1695(14)	0.028(4)
H4B	0.3922(16)	0.4920(5)	0.0376(14)	0.029(4)
H5A	0.1209(16)	0.4930(4)	0.0918(13)	0.025(3)
H5B	0.1831(16)	0.4565(4)	0.0267(14)	0.025(3)
H6A	0.1898(16)	0.4330(4)	0.2229(13)	0.026(3)
H6B	0.3688(17)	0.4387(4)	0.2401(14)	0.027(3)
H7A	0.3343(17)	0.4651(5)	0.4276(15)	0.030(4)
H7B	0.3918(16)	0.5007(4)	0.3588(13)	0.022(3)
H9A	0.0352(16)	0.4591(5)	0.3540(13)	0.025(3)
H11A	-0.2013(16)	0.5689(4)	0.2932(13)	0.024(3)
H12A	0.0228(15)	0.6029(4)	0.2872(13)	0.022(3)
H14A	0.4317(17)	0.6392(5)	0.4286(15)	0.032(4)
H14B	0.4986(15)	0.6181(4)	0.5665(13)	0.018(3)
H14C	0.3112(19)	0.6235(5)	0.4890(15)	0.036(4)
H15A	0.2096(18)	0.6326(5)	0.0008(14)	0.032(4)
H15B	0.0610(18)	0.6295(5)	0.0398(16)	0.040(4)
H15C	0.0607(18)	0.6088(5)	-0.0901(16)	0.038(4)
H16A	-0.2359(16)	0.4360(5)	0.2696(15)	0.030(4)
H16B	-0.3429(18)	0.4458(5)	0.3520(15)	0.034(4)
H16C	-0.1567(17)	0.4427(4)	0.4269(14)	0.026(3)
H3OB	0.467(2)	0.7253(6)	0.5418(19)	0.056(5)
H2B	0.6333(15)	0.7745(4)	0.8269(13)	0.015(3)
H3B	0.5597(15)	0.7059(4)	0.7904(13)	0.020(3)
H4C	0.7608(16)	0.7260(4)	0.6573(14)	0.026(3)
H4D	0.7434(17)	0.6816(5)	0.7060(14)	0.032(4)
H5C	0.8446(16)	0.7391(4)	0.9125(14)	0.027(3)
H5D	0.8958(17)	0.6918(5)	0.9139(15)	0.033(4)
H6C	1.0587(17)	0.7122(5)	0.8029(15)	0.033(4)
H6D	1.1130(17)	0.7321(4)	0.9415(15)	0.030(4)
H7C	0.9538(17)	0.7750(4)	0.7037(14)	0.028(4)
H7D	1.1268(17)	0.7825(4)	0.8034(14)	0.029(4)
H9B	1.1710(16)	0.8071(4)	1.0339(13)	0.020(3)

	x/a	y/b	z/c	U(eq)
H11B	0.8327(15)	0.8826(4)	1.0634(13)	0.023(3)
H12B	0.6672(16)	0.8658(4)	0.8446(13)	0.023(3)
H14D	0.6991(18)	0.8909(5)	0.5904(16)	0.037(4)
H14E	0.7286(18)	0.8770(5)	0.4676(15)	0.035(4)
H14F	0.5700(18)	0.8623(5)	0.4857(15)	0.035(4)
H15D	0.3714(18)	0.7612(5)	0.7984(15)	0.034(4)
H15E	0.3175(18)	0.7710(5)	0.6474(16)	0.035(4)
H15F	0.3888(18)	0.8088(5)	0.7473(15)	0.036(4)
H16D	1.3101(18)	0.8592(5)	1.3338(16)	0.035(4)
H16E	1.3202(17)	0.8511(4)	1.1966(14)	0.028(4)
H16F	1.2682(16)	0.8137(5)	1.2648(14)	0.030(4)

Supplementary Table 13. Hydrogen bond distances (Å) and angles (°) for α -methyl- β -hydroxylactam 54.

	Donor-H	Acceptor-H	Donor-Acceptor	Angle
03A-H30A 02A	0.86(2)	2.04(2)	2.7804(12)	143.4(19)
C16A-H16A O3A	0.996(15)	2.546(15)	3.3543(15)	138.2(11)
O3B-H3OB O2B	0.90(2)	2.03(2)	2.7979(12)	143.3(17)
C9B-H9B O3B	0.961(14)	2.537(14)	3.4717(13)	164.4(11)
C12B-H12B O2A	0.965(14)	2.282(14)	3.2344(13)	169.1(11)
C14B-H14F O2B	0.995(16)	2.598(16)	3.1003(15)	111.2(11)

I. ¹H-NMR AND ¹³C-NMR SPECTRA

1.	Synthesis of olefin-containing benzannulated medium-ring lactams	S96
	a. Grignard addition products S7	S96
	b. Sakurai-type allylation products S8	S98
	c. Hydroboration-oxidation products S9	S102
	d. <i>N</i> -methoxyamide substrates 1	S106
	e. Olefin-containing benzannulated medium-ring lactams 3	S110
2.	Synthesis of bicyclic ketone precursors	S114
	a. Fluoroarvl ketones S17 and S18	S114
	b. Bromoaryl ketone S21	S120
	c. <i>N</i> -Tosyldihydroquinolinone S23	S122
	d. <i>N</i> -Tosylindoloketones S24 and S25	S123
3.	Synthesis of ketone-containing benzannulated medium-ring lactams	S125
	a. β-Hydroxyesters 6a, S28–S56	S125
	b. N-methoxyamide substrates 7a-d, 10a-d, 12a-c, 14a,b, 16, 18,	
	20a,b, 22, 24, 26, 28, 29, 32, 34, 36, 38, 40	S152
	c. Ketone-containing benzannulated medium-ring lactams 9a–d, 11a–d, 13a–c, 15a,b, 17, 19, 21a,b, 23, 25, 27, 30, 31, 33, 35, 37, 39, 41	S179
4.	Downstream modifications of ODRE scaffolds	S206
	a. α -Geminal dimethylation of bromoaryl- β -ketolactam 13c (47)	S206
	b. Sonogashira coupling of bromoaryl-β-ketolactam 17 (48)	S207
	c. Suzuki–Mivaura couplings of bromoarvl- β -ketolactam 13c (49–51)	S208
	d. Reductive cleavage of N–O bond in bromoarvl- β -ketolactam 13c (52)	S211
	e. Ketone reduction in α -methyl- β -ketolactam 53 (54)	S212
	f. Reductive amination of α -methyl- β -ketolactam 53 (55)	S214
		-

Guney et al.

Guney et al.

Guney et al.

