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Appendix Figure 1.  Flow-chart of the smoking history generator (SHG). 
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Appendix Figure 2. Smoking input data for the smoking history generator (SHG) under 
the status quo scenario. The area in yellow represents years and ages of smoking 
parameters covered by the underlying National Health Interview Survey (NHIS) data, 
and the area in green represents projected parameters using the fitted Age-Period-
Cohort model. 

 
 
 
 
 



 
 
Appendix Figure 3. Annual smoking initiation and cessation probabilities for selected 
birth cohorts (BCs) under the status quo scenario by sex. An interactive version of the 
figure can be found at  
https://resources.cisnet.cancer.gov/projects/ - shg/sbc2/tool?figure=appendix_fig_3. 
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Appendix Figure 4. Annual mean cigarettes per day for selected birth cohorts (BCs) 
under the status quo scenario by sex. An interactive version of the figure can be found at  
https://resources.cisnet.cancer.gov/projects/ - shg/sbc2/tool?figure=appendix_fig_4. 
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Appendix Figure 5. Prevalence of current and former smokers for selected birth cohorts 
(BCs) under the status quo scenario by sex. An interactive version of the figure can be 
found at  
https://resources.cisnet.cancer.gov/projects/ - shg/sbc2/tool?figure=appendix_fig_5. 
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Appendix Figure 6.  Age-adjusted lung cancer mortality rates per 100,000 over 1969-
2010. Each model was calibrated to the observed US lung cancer mortality data from 
1969-2000 (solid lines), and predicted lung cancer mortality rates for years 2001-2010 
(dashed lines).  The 2000 US standard population was used to calculate the age-
adjusted rates.  The black dots represent the observed US lung cancer mortality rates, 
and the lines prediction from four independent models: Georgetown University (GT), 
Massachusetts General Hospital and Harvard Medical School (MGH-HMS), University of 
Michigan (UM), Yale University (YU). 
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Appendix Figure 7. Age-adjusted lung cancer mortality rates per 100,000 for 1964-2065 
under the status quo scenario. Each model (GT, MGH-HMS, UM and YU) was calibrated 
to the observed US lung cancer mortality data from 1969-2010 (solid lines), projected 
lung cancer mortality rates for 1964-1968 and 2011-2065 (dashed lines). The 2000 US 
population was used as the standard to calculate age-adjusted rates.  The black dots 
represent the observed US lung cancer mortality rates, and the lines prediction from four 
independent models: Georgetown University (GT), Massachusetts General Hospital and 
Harvard Medical School (MGH-HMS), University of Michigan (UM), Yale University (YU). 
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Appendix Figure 8. Age-adjusted lung cancer mortality rates per 100,000 for 1964-2065 
under the optimistic, (a) & (b) and pessimistic, (c) & (d) scenarios. The line represents 
the mean age-adjusted lung cancer mortality rate across four CISNET-Lung models, and 
the shaded area shows the range of age-adjusted lung cancer mortality rates per 
100,000 across four models. The 2000 US population was used as the standard to 
calculate age-adjusted rates.  
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Appendix Figure 9. Population and lung cancer deaths from the University of Michigan 
(UM) model. Number and percentage of US men aged 30-84 by smoking status for 
1964-2065 (left panels) and number and percentage of lung cancer deaths by smoking 
status for 1964-2065 (right panels), under the status quo scenario.  
 



 
 
Appendix Figure 10. Population and lung cancer deaths from the University of Michigan 
(UM) model. Number and percentage of US women aged 30-84 by smoking status for 
1964-2065 (left panels) and number and percentage of lung cancer deaths by smoking 
status for 1964-2065 (right panels), under the status quo scenario.  
 



 
Appendix Figure 11. Number of lung cancer deaths by smoking status among US men 
with ages 30-84 under the status quo scenario obtained from four CISNET-Lung models: 
Georgetown University (GT), Massachusetts General Hospital and Harvard Medical 
School (MGH-HMS), University of Michigan (UM), Yale University (YU). 
   



 
 
Appendix Figure 12. Percentage of lung cancer deaths by smoking status among US 
men with ages 30-84 under the status quo scenario obtained from four CISNET-Lung 
models: Georgetown University (GT), Massachusetts General Hospital and Harvard 
Medical School (MGH-HMS), University of Michigan (UM), Yale University (YU). 
 



 
Appendix Figure 13. Number of lung cancer deaths by smoking status among US 
women with ages 30-84 under the status quo scenario obtained from four CISNET-Lung 
models: Georgetown University (GT), Massachusetts General Hospital and Harvard 
Medical School (MGH-HMS), University of Michigan (UM), Yale University (YU). 
 

 



 
Appendix Figure 14. Percentage of lung cancer deaths by smoking status among US 
women with ages 30-84 under the status quo scenario obtained from four CISNET-Lung 
models: Georgetown University (GT), Massachusetts General Hospital and Harvard 
Medical School (MGH-HMS), University of Michigan (UM), Yale University (YU). 
 
 
 

 
 
 
 
 
 
 
 



Appendix Table 1.  Mean age-adjusted lung cancer mortality rates per 100,000 and 
number of lung cancer deaths in thousands across four CISNET-Lung models for the US 
population aged 30-84 under three different smoking scenarios: Status quo, optimistic 
and pessimistic scenarios. The 2000 US population was used as the standard to 
calculate age-adjusted rates. The range in parenthesis represents the results under the 
optimistic and pessimistic scenarios.   
 

 Age-adjusted lung cancer mortality 
rates/100,000 

Number of lung cancer deaths 
(thousands) 

Years Men Women Both Men Women Both 

2025 51.6 
(51.6,51.6) 

40.9 
(40.8,40.9) 

45.7 
(45.6,45.7) 

64.8 
(64.8,64.8) 

60.8 
(60.7,60.8) 

125.6 
(125.5,125.6) 

2030 40.8 
(40.7,40.9) 

34.8 
(34.7,34.9) 

37.4 
(37.3,37.5) 

57.4 
(57.4,57.5) 

57.7 
(57.7,57.8) 

115.1 
(115.0,115.3) 

2035 32.2 
(32.1,32.4) 

29.6 
(29.5,29.8) 

30.7 
(30.6,30.9) 

48.2 
(48.1,48.4) 

52.0 
(51.9,52.2) 

100.2 
(99.9,100.6) 

2040 25.0 
(24.7,25.3) 

24.6 
(24.3,24.8) 

24.7 
(24.4,25.0) 

38.7 
(38.4,39.1) 

44.4 
(44.1,44.7) 

83.1 
(82.5,83.8) 

2045 19.6 
(19.1,20.1) 

20.0 
(19.6,20.5) 

19.8 
(19.3,20.3) 

29.9 
(29.3,30.6) 

35.2 
(34.7,35.8) 

65.2 
(64.1,66.4) 

2050 16.7 
(16.0,17.6) 

17.2 
(16.6,17.9) 

16.9 
(16.3,17.8) 

25.3 
(24.3,26.6) 

29.2 
(28.4,30.3) 

54.5 
(52.7,56.8) 

2055 15.5 
(14.4,16.8) 

15.9 
(15.0,17.0) 

15.7 
(14.7,16.9) 

24.2 
(22.6,26.3) 

27.4 
(26.0,29.2) 

51.6 
(48.6,55.4) 

2060 14.4 
(12.9,16.3) 

15.0 
(13.8,16.6) 

14.7 
(13.3,16.5) 

23.8 
(21.4,26.9) 

27.0 
(25.0,29.7) 

50.8 
(46.4,56.6) 

2065 13.4 
(11.6,15.8) 

14.4 
(12.9,16.3) 

13.9 
(12.2,16.0) 

23.4 
(20.3,27.6) 

26.9 
(24.2,30.6) 

50.4 
(44.5,58.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Materials and Methods 
 
Projection of smoking pattern under the status quo scenario 
 
Under the status quo scenario, we assumed that the current smoking patterns continue 
into the future. For years not covered by the data, smoking initiation probabilities for 
ages 8 and older are obtained using the estimated parameters from the corresponding 
age-period-cohort model, holding period effects fixed at the estimated level for the 2015 
for subsequent years and cohort effects at the estimated level for the 1997 birth cohort. 
Analogously, cessation probabilities and smoking intensity for ages 15 and older are 
kept at the value estimated for the 1985 birth cohort. The implication of extrapolating the 
‘status quo’ projections in this way is that cross-sectional estimates of current smoking 
prevalence will continue to decline until everyone born before 2015 is deceased, but this 
decline will slow down substantially as those born before 2015 represent progressively 
smaller portions of the US population (Figure 1 in the main text). Under this operational 
definition, status quo represents a future where patterns of smoking initiation, cessation 
and intensity through 2015 will continue into the future.  It does not, however, take into 
account any unrealized potential of recent tobacco control efforts, or any potential back-
sliding if efforts are not continued.  

 
 
Model calibration adjusting for temporal factors 
 
Each CISNET-Lung model developed its own dose-response module in order to 
compute an age-specific lung cancer incidence or mortality given simulated US smoking 
data from the SHG by sex and birth cohort. Since these dose-response modules were 
built based on a specific cohort or registry data, it could not entirely capture lung cancer 
incidence or mortality pattern in the general US population. Therefore, each model made 
further adjustment for other temporal factors such as birth cohort and/or period. The 
cohort and/or period effects capture the influence of factors that affect lung cancer 
incidence or mortality independently of smoking, age and sex, such as changes in 
exposures to other relevant risk factors, improvements in treatment, or the impact of 
other preventive interventions. Two models (UM, YU) adjusted for both period and birth 
cohort, and the other two models (GT, MGH-HMS) only for birth cohort. More details are 
shown in the individual model descriptions below.  
 

 
Individual Models 
 
 
Georgetown University (GT) model 
 
The Georgetown model is a macro level model that uses population data by age and sex  
Lung cancer mortality is first calculated by using the two-stage clonal expansion model 
developed based on CPS-II data for the role of smoking duration, intensity and time 
since quit for former smokers. Separate estimates of predicted lung cancer rates by age 
and sex are developed for current, former and never smokers, and then aggregated over 
the smoking groups for each age and sex. To correct for variations by cohort and age 
(where the cohort effects reflect temporal effects), regression models are then estimated 



that allow for deviations in the predictions of lung cancer death rates from historical lung 
cancer death rates. A specification which allowed for an interaction of the predicted lung 
cancer rates with age and age-squared and cohort and cohort-squared along with 
independent cohort and cohort-squared variables best fit the data on lung cancer death 
rates, and were used as our final models. The model then projected the future cohort 
effects based on the estimates from the observed data. 
 
Methods used to predict lung cancer death rates by smoking-related factors 
 
To incorporate the role of smoking duration and intensity in lung cancer mortality, we 
used the two-stage clonal expansion (TSCE) model as applied by Hazelton et al. (1). 
They estimated a series of non-linear equations that related the lung cancer death rate 
to rates of initiation, cell division/apoptosis of initiated cells, and malignant conversion of 
initiated cells, which, in turn, were a function of smoking intensity and duration. Separate 
models were developed using CPS-I and CPS-II data, and the model based on the CPS-
II data was used for the current study. 
 
Data from Smoking History Generator (SHG) on smoking intensity, age of initiation and 
years since quit by age, sex, and year were applied to the TSCE models to determine 
lung cancer death rates separately for never, current, and former smokers. The 
population by smoking status were derived by Holford et al. (2–4) using age-period-
cohort models applied to National Health Interview Survey data from 1965 to 2015. For 
current and former smokers, intensity was measured as the mean number of cigarettes 
smoked per day. Smoking duration was measured as the current age minus the age of 
smoking initiation for current smokers, and as the current age minus the sum of age of 
smoking initiation and the number of years quit for former smokers.   
 
Lung cancer mortality rates were estimated for each age, sex and year (1969-2010) by 
smoking status (current, former and never). Death rates for males and females were 
separately applied by smoking status, age and year to the population in the respective 
categories (measured by prevalence by smoking status multiplied by the total 
population) to obtain total deaths. The deaths were summed over the 3 smoking status 
categories to obtain predicted total lung cancer deaths by age, sex and year. They were 
then divided by the relevant population to obtain overall lung cancer mortality rates.  
Historical lung cancer rates by age, sex and year were also obtained from the National 
Center for Health Statistics.  
 
Comparison of Predicted to Historical Rates 
 
The TSCE used CPS-II data, which is not representative of the U.S. population and may 
be subject to misclassification error. Consequently, the predictions may be biased for the 
population at large, and the extent of bias may vary over time if smoking or non-smoking 
risks (e.g. air pollution, radon, or second hand smoke) vary over time.  
 
 To detect and correct for potential biases, we estimated regression models that allow for 
deviations in the predictions of lung cancer death rates from historical lung cancer death 
rates.  These models were estimated using data for each age 30 to 84 for each of the 
years from 1969 to 2000 to calibrate the model. We then validated the model by 
comparing predicted estimates by age and sex to actual lung cancer rates for the years 
2001 through 2010.  
 



We began with a simple model that regressed the historical lung cancer rate (HLCR) on 
the predicted lung cancer rates (PLCR) and intercept, which showed clear indication of a 
systematic error related to age and year.  Since age, period and cohort are collinear, we 
focused on age and cohort, where age is known to affect lung cancer rates (5,6), and 
cohort to distinguish if smoking risks vary over time.  We considered age, age2 and age3 

and cohort, cohort2 and cohort3 sequentially to the equations, and found that the cubed 
term added little explanatory power and did not reduce correlation of the error terms.  
The resulting basic equation where a=each individual age and t=year was:  
 
HLCRa,t = b0 + [b1 + b2Agea,t + b3Agea,t

2 + b4Cohort a,t + b5Cohorta,t 
2] PLCRa,t + ea,t,  (1) 

 
The first term in brackets (b1) indicates general biases in the TSCE estimates (unrelated 
to age or year), the next two terms correct the predictions of the smoking models for 
linear(b2) and non-linear(b3) biases in age, followed by linear(b4) and non-linear(b5) 
biases by cohort.  The cohort coefficients were used to consider the changing 
relationship of smoking to lung cancer over time. 
 
We next estimated equations with the cohort terms grouped.  Out of the 85 cohorts 
observed from 1969 to 2000, we also distinguished cohort sub-groups (1-5, 6-14, 15-24, 
25-44, 45-54, 55-64, and 65-85, because of the similar pattern of error terms observed 
within those cohort groups (based on error terms in the equations with age variables). 
   
HLCRa,t = b0 +[b1 +b2Agea +b3Agea

2 + b4Cohort(1-5)a,t + b5Cohort (15-24) +b6*Cohort(25-
44)a,t + b7*Cohort(45-54)a,t + b8*Cohort(55-64)a,t + b9*Cohort(65+)a,t]*PLCR + ea,t.                                                                                          
(2) 
 
The coefficients have similar interpretations to equation (1).   
 
For each of the above models, we also considered the effect of non-smoking related age 
and cohort effects by including non-interacted age and cohort quadratic terms in the 
equations.  We found that the cohort-terms alone provided less biased predictions over 
the years 2001-2010 than the age terms alone, and that multicollinearity was induced 
when age terms were added to the cohort terms. As an alternative method for 
considering changes in the smoking and non-smoking risks over time, we estimated 
models with age and period effects, where the period effects were intended to capture 
changing risks over time.  The results implied similar variation in risk over time as those 
in the cohort model, but performed less well in terms of validation with actual lung cancer 
rates, R2 and systematic bias in the error terms.  
  
 
Massachusetts General Hospital and Harvard Medical School (MGH-HMS) model 
 
The Massachusetts General Hospital and Harvard Medical School (MGH-HMS) group's 
model is a microsimulation model which simulates an individual patient’s lung cancer 
development, progression, detection, treatment, and survival (7,8). The MGH-HMS 
model was developed to evaluate the clinical effectiveness and cost-effectiveness of 
low-dose computed tomography (CT) screening for lung cancer (9–13). The model has 
also been used to estimate the impact of reduced tobacco smoking on lung cancer 
mortality in the United States (14).  
 



The MGH-HMS model initially populates with disease-free individuals who then go 
through different health states according to monthly transition probabilities. In each 
monthly cycle, an individual may develop lung cancer, have an existing cancer grow, or 
develop symptoms or metastases. The risk of lung cancer is related to individuals’ 
smoking history, which is updated monthly (the model also includes cancers in non-
smokers). Smoking exposure is supplied by the Smoking History Generator, a module 
developed by CISNET(15). Lung cancers can be detected by an evaluation of 
symptoms, through incidental imaging, or by CT screening (with different tumor behavior 
for screen-detected cases). Individuals with suspected lung cancer receive diagnostic 
and staging tests, and then may undergo treatment. The screening module can be 
turned on or off to allow for analyses of treatment effectiveness for screen vs. non-
screen detected cases.  
 
Each hypothetical individual in the MGH-HMS model can develop up to three cancers 
from any of five lung cancer cell types (adenocarcinoma, large cell, squamous cell, small 
cell, and other). For each cell type, the monthly probability of cancer development is 
described by a logistic equation with seven natural history parameters including a type-
specific intercept, type-specific coefficients for age, age2, years of cigarette exposure 
(smoke-years, SY), an interaction term between SY and age2, the mean number of 
cigarettes smoked per day (cigarettes per day, CPD), and the years since quitting (YSQ) 
smoking. The natural history parameters related to unobservable events (i.e. the 
initiation of the first cancer cell) were estimated by calibrating the model using SEER 
registry data (cancer incidence by cell type, stage distribution at diagnosis, and stage-
specific survival), published cohort studies, and clinical trial data. The details of model 
calibration and validation of the original natural history parameters have been described 
in our previous publications (7,16).  
 
For this analysis, we used an age-cohort formalism to further capture the lung cancer 
mortality rates observed in the United States.  To account for the changes in 
unmeasured risk factors (in addition to the change in smoking pattern) experienced by 
different birth cohorts, we multiplied a sex-specific cohort coefficient, bBY, by the monthly 
probability of lung cancer development. The age-dependence of lung cancer mortality 
rate for the males born in 1930, our reference birth cohort, is driven by the logistic 
equation and the natural history parameters described above.  For other birth cohorts 
born between years 1900 and 1970, the values of bBY are determined by calibrating the 
model outputs to the observed lung cancer mortality rates stratified by 5-year birth cohort 
groups. The calibration of bBY was done using lung cancer mortality data prior to 
calendar year 2000.  Using the model to extrapolate mortality rate beyond calendar year 
2000, the values of bBY are fixed to the value of last birth year.  In the literature, age-
period-cohort method is often used to analyze cancer incidence or mortality (17,18). 
However, we decided not to include a period coefficient in our model to avoid overfitting 
the results and difficulties in extrapolating the model outputs beyond calendar year 2000. 
 
 
University of Michigan (UM) model  
 
The University of Michigan model was developed within the framework of the Two-Stage 
clonal expansion  (TSCE) model, which represents the process of carcinogenesis in 
three phases. In the first phase (initiation), a susceptible stem cell acquires one or more 
mutations resulting in an initiated cell, which has partially escaped growth control. In the 
second phase (promotion), initiated cells undergo clonal expansion, either 



spontaneously or in response to endogenous or exogenous promoters. Finally, in the 
third phase (malignant conversion), one of the initiated cells acquires further mutational 
changes leading to a malignant cell. 
 
Smoking dose-response module 
 
The TSCE model and its extensions have been used for the analyses of various cancer 
sites, including lung(1,19), colon (20–22), esophagus (23), and pancreas (21).  
For this study, we used the TSCE models built on lung cancer mortality data in Nurses' 
Health Study (NHS, 1976-2008) for women and Health Professionals’ Follow-up Study 
(HPFS, 1986-2008) for men. To model the effects of smoking on lung cancer risk, the 
model initiation, promotion, and malignant transformation parameters are assumed to 
alter during periods of smoking exposure through flexible dose-response relationships: 

𝜃(𝑡) = 𝜃0 × (1 + 𝜃1 × 𝑑(𝑡)𝜃2), 

where θ represents identifiable biological parameters in the TSCE model, θ0 the 
background rate, θ1 the dose-response coefficient, θ2 the non-linearity of the dose-
response, and d(t) smoking dose at time t. This dose-response relationship links the 
individual smoking history to the cell kinetic parameters in the TSCE model. Appendix 
Tables 2-3 present the TSCE model structure and estimated parameters.  

 
Appendix Table 2. Model parameters for background rate and smoking dose–response 
relationship 

Background variables  

X=107 Assume 107 normal stem cells in both lungs 

0 Background cell division rate (per cell per year) 

g0=0-0-0 Background net cell promotion rate (per cell per year) 

0=0 Background initiation rate; Background malignant 
transformation rate (per cell per year) 

tlag=5 years Fixed constant lag time 

Dose-response variables 

NHS* and HPFS† models 

i=0 Initiation rate (per cell per year); No dose-response 

gi=g0(1+p1dosei
p2) Net initiated cell promotion rate (per cell per year) 

i=0(1+p1dosei
p2) Initiated cell division rate (per cell per year) 

i=0(1+p3dosei
p4) Malignant transformation rate (per cell per year) 

* Nurses' Health Study; † Health Professionals Follow-Up Study 
 
 
Appendix Table 3. Parameter estimates for the NHS and the HPFS models 
Model 0 g0 0 (=0) p1 p2 p3 p4 

Lung Cancer mortality models  
NHS* 3.00 0.076 1.0310-7 0.20 0.50 0.05 0.60 

HPFS† 3.00 0.076 1.0310-7 0.33 0.35 0.21 0.18 

* Nurses' Health Study; † Health Professionals Follow-Up Study 
 
 
Prediction of lung cancer mortality in the US  
 
We used the smoking history generator (SHG) to simulate the entire US population with 
detailed individual level smoking histories from 1964-2065. Then we computed age-



specific lung cancer mortality by using the TSCE models built on the NHS and the HPFS 
studies. These studies, however, may not represent the general US population. In 
addition, our models do not incorporate other risk factors such as second hand smoke, 
exposure to radon gas, asbestos or other carcinogens, family history, chronic obstructive 
pulmonary disease, occupational exposure, and race, and socioeconomic status. As a 
result, a cohort-specific TSCE model does not predict lung cancer mortality in the US 
completely, and further calibration by adjusting for secular temporal trends was 
necessary; we used age-period-cohort (APC) models (24) for this purpose.  Standard 
methods of Poisson regression were used to estimate the 1-year period and 5-year birth 
cohort group effects in the APC models by fitting to the observed US lung cancer 
mortality data from 1969-2010.  
 
To project lung cancer mortality in the US over 1964-2065, we extrapolated 1969-2010 
period effects both backward (1964-1968) and forward (2011-2065) and also birth cohort 
effects accordingly. The UM model assumed that the cohort effect at birth year 1980 
remains the same for future birth cohorts, but extrapolated the period effects differently 
for current, former and never smokers because other interventions, such as low-dose 
computed tomography (CT) lung cancer screening and improvements in treatment, 
could affect lung cancer mortality trends differentially by smoking status. The model 
applied a trend attenuation approach, the Nordpred method (25,26), to extrapolate the 
period effects for current and former smokers in future years, but fixed at the value for 
the period 2010 for never smokers.   
 
Following the Nordpred method, the period effects for current and former smokers in 
future years were extrapolated out to eleven 5-year interval periods (2011-2015, 2016-
2020, 2021-2025,…,2061-2065). The linear drift estimated from the most recent 5-year 
period effects (2006-2010) was attenuated by 20%, 40%, 60%, and 80% for the first 
(2011-2015), second (2016-2020), third (2021-2025), and fourth (2026-2030) 5-year 
projection periods, respectively, and 100% for the remaining 5-year projection periods.  
A similar extrapolation scheme for the cohort and period effects was used for the model 
validation, and this approach provided good prediction on lung cancer mortality in future 
years. As an example, the Appendix Figure 6 shows the lung cancer mortality projection 
for years 2001-2010, using each group model calibrated to the US lung cancer mortality 
data from 1969-2000.     
 
Similarly, for the extrapolation of the period effects for 1964-1968, we assumed the 
same 5-year linear trend estimated from the period effects for 1969-1973.  
 
 
Yale University (YU) model 
 
The Yale Lung Cancer Model describes the impact of the distribution of exposure 
histories for cigarette smoking for cohorts of individuals as they grow older.   It makes 
use of (a) two-stage clonal expansion (TSCE) model of carcinogenesis which describes 
the quantitative relationship between smoking history and lung cancer mortality (27), (b) 
distribution of smoking history summaries, and (c) calibration that adjusts for 
discrepancies between mortality probabilities derived from (a) and (b) and observed 
mortality rates in the US population. Let Z(a,c) represent a summary of smoking history 

for individuals age a in cohort c, and l+(Z(a,c)) the overall lung cancer mortality rate 

estimated using TSCE and the estimated summary of smoking history for (a,c).  



Calibration of the rate is accomplished by introducing an estimated multiplicative factor 
that may either be a constant or a function of parameters that can depend on times from 
critical reference points, giving rise to an estimated calibrated rate for the population, 

  l+(a,c)* =q(a, p,c)l+(Z(a,c)), 

where  q(a, p,c) represents the calibration factor, which depends on age and cohort, as 

well as, period, p = a+c . 

 
Smoking history parameters 
 
Parameters used to characterize smoking history are based on a compartment model in 
which a subject begins to smoke at some point after which they may quit.  While this 
over simplifies a process that can be much more complex in reality, it does provide a 
useful characterization of the experience for most of the population. Summary 
parameters for smoking history in the US were derived from the National Health 
Interview Surveys (NHIS) and details are described by Holford et al.(3).  Histories for the 
population are summarized by estimates of the conditional probability of smoking 
initiation and cessation, prevalence of never, current and former smokers, and the 
distribution of smoking intensity.  Smoking intensity is given by a discrete distribution, 

g(k | a,c) for the cigarette per day categories (CPD) with approximate mean in the 

parenthesis: 
1. CPD≤5 (3) 
2. 5< CPD≤15 (10) 
3. 15<CPD≤25 (20) 
4. 25<CPD≤35 (30) 
5. 35<CPD≤45 (40) 
6. 45<CPD (60). 

These parameters are used in the two-stage clonal expansion model to estimate lung 
cancer mortality rates  by single year ages and by birth cohorts.  The surveys are cross-
section and not longitudinal, which makes it impossible to obtain some detail on 
changing practices that would be desirable, and this is an unavoidable limitation. 
 

Prevalence of ever, never, current and former smokers is represented by PE (a,c), 

PN (a,c), PC (a,c) and PF (a,c), respectively.  The smoking initiation probability, p(a,c) , 

is the conditional probability of smoking initiation at age a for cohort c, given not a 
smoker at a-1, i.e., 

                                 p(a,c) = Pr Smoker at a |Not smoker at (a-1),c{ }. 

It is related to the cumulative proportion of ever smokers at age a conditional on 
remaining alive, 

                  PE
*(a,c) =1- 1- p(i,c)[ ]

i=1

a

Õ =1- 1-PE
*(a-1,c)é

ë
ù
û 1- p(a,c)[ ],           (1)                                                     

where PE
*(0,c) = 0,  which is equivalent to the actuarial approach for estimating the 

survival curve.   
 
If smoking did not affect mortality then one would expect equation (1), which is 
conditional on remaining alive, to also hold in a population followed over time.  But, of 
course, mortality is affected by smoking so that the observed proportion of the 

population who have ever smoked at a particular age is given by PE (a,c) £ PE
*(a,c).  The 



relationship between cross-sectional and cumulative prevalence of ever smokers is 

given by the ratio, C(a,c) = PE (a,c) /PE
*(a,c) £1. Smoking cessation is assumed to be a 

function of age for each cohort.  The smoking cessation probability conditional on the 
subject being alive and currently smoking is 

                           q(a,c) = Pr Former smoker at a | Smoker at (a-1),c{ }.   . 

We assumed that q(a,c) = 0  for  a <15,  and the cumulative proportion of smokers in 

cohort c who had not ceased smoking by age a is given by 

                           Q(a,c) = 1-q(i,c)[ ]
i=15

a

Õ                                                         (2)                                     

For simplicity, we assumed that this quantity does not depend on the age an individual 
started smoking, number of cigarettes per day or other factors that may be related to an 
individual’s success in quitting. 
 
Current smokers represent ever smokers who have not quit, and given our assumption 
that this only depends on age for a given cohort, the prevalence is 

                           PC(a,c) = PE (a,c)Q(a,c).   

Former smokers are those who have smoked at some point in their lives, but quit before 
age a, and the proportion of these individuals is  

                          PF (a,c) = PE (a,c)-PC(a,c) = PE (a,c) 1-Q(a,c)[ ].   

Finally, the proportion of cohort c who have never smoked is the complement of those 
who ever smoked, 

                          PN (a,c) =1-PE (a,c).   

For a given age and cohort, the sets of current, former and never smokers are 
exhaustive, i.e., 

                           PC(a,c)+PF (a,c)+PN (a,c) =1. 

     
Estimate of lung cancer mortality 
 
The TSCE model depends on parameters estimated using follow-up data from the 
Health Professionals’ Follow-up Study (HPFS) for males and the Nurses’ Health Study 
(NHS) for females.  Moolgavkar et al. (1,20,28,29) proposed the TSCE model in which 
the carcinogenesis process is initiated in a cell that multiplies to form a clone of cells 
initiated for risk of developing into cancer cells (27). A second hit on one of these 
initiated cells transform it into a cancer cell that subsequently multiplies further until it 
forms a tissue mass that can be clinically identified as cancer.  The functional form for 
the TSCE model is complex, but it has been found to provide an excellent description of 
the effect of age on lung cancer incidence and mortality. 
 
To model the effect of smoking on lung cancer mortality rates, we regard the population 
as a mixture of never (N), current (C) and former (F) smokers, each with prevalence 

PN (a,c), PC(a,c)and PF (a,c) respectively, giving the overall rate 

 l+(a,c) = PN (a,c)lN (a,c)+PC(a,c)lC (a,c)+PF (a,c)lF (a,c),  (3) 

where lN (×)  is the rate for never smokers, lC (×)  and lF (×)  are the rates for the 

corresponding smoking categories of smokers, taking into account the distributions of 



exposure ages and intensities.  These models depend on age (a), age of smoking 

initiation ( aI ), age quit ( aQ ), and number of cigarettes smoked per day (d). 

 

Among those who never smoked, the mortality rate lN (a),  is a function of age alone 

which reflects the underlying effect of the aging process on lung cancer risk. 
 

For current smokers age a in cohort c, the distribution function for age of initiation, aI , is  

FI (aI | a,c), where  FI (0 | a,c) = 0and 

                        FI (aI | a,c) =1- 1-FI (aI -1| a,c)[ ] 1- p(aI -1| a,c)[ ]    

for 0 < aI £ a. This may be used to determine the probability density of initiation ages 

                       fI (aI | a,c) =
FI (aI | a,c)-FI (aI -1| a,c)

FI (a | a,c)
for aI =1,… ,a.     

The density function for smoking intensity is g(k | a,c)  for the k-th intensity level, and we 

assume that initiation age and smoking intensity are independent.  TSCE provides 

estimates of the lung cancer mortality rate, lC (aI,k)  for age at initiation, aI  and 

smoking intensity, k, which yields the overall rate for the mixture of exposures in the 
population,  

                        lC (a,c) = fI (i | a,c)g(k | a,c)lI (i,k).
k=1

6

å
i=1

a

å     

 

The cumulative distribution of cessation at 𝑎𝑄, given initiation at age aI , current age a, 

and cohort c is  

                       FQ(aQ | aI ,a,c) =1- 1-FQ(aQ -1| aI,a,c)éë ùû 1-q(aQ -1| aI,a,c)éë ùû,     

and the corresponding probability density function is  

       fQ(aQ | aI ,a,c) =
FQ(aQ | aI ,a,c)-FQ(aQ -1| aI ,a,c)

FQ(a | aI ,a,c)
for aQ = aI ,… ,a and aI =1,… ,a.    

The chain rule yields the joint distribution of initiation and cessation times  

                      fIQ(aI,aQ | a,c) = fQ(aQ | aI,a,c) fI (aI | a,c).   

Using the estimate of this joint distribution, the overall rate for former smokers at age a 
and cohort c is as following:  

                                  lF (a,c) = fQ( j | i,a,c) fI (i | a,c)g(k | a,c)lIQ(i, j,k).
k=1

6

å
j=1

a

å
i=1

a

å  

    
Hence, we have estimates of the lung cancer mortality rate for never, current and former 
smokers, which are required to estimating the overall mortality rate at age a and cohort c 
from the TSCE model in equation (3). 
 
Calibration and validation 
 
An age-period-cohort (APC) model is employed to calibrate the carcinogenesis model in 

order to bring rates into conformity with rates for the overall population.  Let t = (a, p,c) 

represent a vector of temporal elements: age, period and cohort, respectively.  Smoking 



history for the population is represented by Z(t),  which depends on the estimated 

smoking histories obtained from NHIS surveys and the TSCE model, l Z(t){ }.  

Calibrated estimates are determined by estimating a multiplicative factor that depends 
on the temporal vector, 

                                        l* Z(t);t{ } =q(t)l Z(t){ },                                             (4)                

which is a log-linear function of the temporal elements, similar to the approach employed 
by Meza et al. (19), 

 q(a, p,c) = exp m +aa +p p +gc{ }.                             (5) 

The intercept, m , scales the rates so that the estimates from the model correspond 

overall with those observed in the US population.  Estimates of temporal elements for 

age ( ): 1,...,a a A = , period ( ): 1,...,p p P = , and cohort g
c
: c =1,...,C( )  provide the 

estimated calibration factor.  If temporal effects are all 0, then the model is in good 
temporal agreement with the population, and the extent to which these effects become 
parallel to the abscissa indicates the adequacy of the carcinogenesis model and the 
estimates of exposure histories to characterize temporal trend in the population rates.  
Poor agreement could result from either a limitation in the carcinogenesis model or an 
inaccurate estimate of exposure history for the population. 
 
The well recognized identifiability problem in APC models also applies to estimates of 
parameters in the calibration function, and the phenomenon has been discussed in 

considerable detail previously (30–34). In this form, logq  resembles an analysis of 

variance model, and the usual constraints imply that 

                                                     aa = p p = gc = 0,
c

å
p

å
a

å  

but the linear dependence among age, period, and cohort extends to indices for the 

three time effects, in that  c = p-a+A. Hence, the design matrix for a linear model that 

includes all three factors is not of full rank, and a unique set of parameters for a 
corresponding generalized linear model does not exist (30,31). The primary analysis 
assumes that the TSCE model accurately characterized the effect of age, a, so that  

aa = 0  for all a. 

 

Calibration requires fitting the APC model for q(×) to a function of the observed rates, 

and thus obtaining optimal estimates of the temporal parameters for calibration.  We 
assume that the number of lung cancer deaths, Y, has a Poisson distribution, and the 

denominator for the rate, D, is known.  The observed calibration factor, q̂ =Y /Dl, is the 

maximum likelihood estimate for the group, and the variance of the estimate would be  

Var(q̂) =q /Dl.  If we also assume a log-linear model for the calibration factor, then 

maximum likelihood estimates of the parameters can be obtained by fitting a generalized 

linear model in which the linear predictor, h , is related to the calibrated rate, l*  through 

the link function 

                                   h = logq = log l* / l( ) = m +aa +p p +gc.    

We specify a Poisson distribution for the response (i.e., the observed calibration factor) 

and introduce a scale weight equal to the denominator for the factor, Dl  (35–37).  

Estimates of the model parameters were obtained using PROC GENMOD in SAS.  



Estimates of a calibrated rate given a particular set of smoking exposure covariates, Z, 
employs both the estimated rate from the carcinogenesis model and the corresponding 
maximum likelihood estimate of the calibration factor for the given age, period, and 

cohort, q̂(a, p,c)l Z(a, p,c){ }. 

 
The observed mortality data in single-year age and period were used to calibrate the 
model beginning in 1969 and ending in 2010 (2000 in the case of the validation study).  
In order to project estimates to the range of interest, 1964-2065, it is necessary to 
extend the period and cohort effects from 1969 to 1964 and 2010 to 2065 (2000 to 2010 
for the validation study).  For the period effects, the linear trend estimated from periods 
2005-2010 was applied to extrapolate the effects for 2011-2013, and the period effect 
was held at the 2013 level afterwards. The model extrapolated the cohort effects for 
1991-2065 by applying the average of the parameters estimates for 1981-1990. 
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