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Supplementary Table 

  

 

Parameter Interval for simulation Interval from Huang and 

Ferrell  [1] 

Interval from Bhalla and Iyengar 

[2] 

k1, k2 [6.3, 600] min−1   [150, 150] min−1   [6.3, 600] min−1   

a1, a2 [18.018, 2500] 𝑛𝑀 min−1   [2500, 2500] 𝑛𝑀 min−1   [18.018, 4545.45] 𝑛𝑀 min−1   

d1, d2 [25.2, 2400] min−1   [600, 600] min−1   [25.2, 2400] min−1   

ET [0.3, 224]𝑛𝑀 [0.3, 120] 𝑛𝑀 [3.2, 224] 𝑛𝑀 

ST [3, 1000] 𝑛𝑀 [3, 1200] 𝑛𝑀 [100, 100] 𝑛𝑀 

Table S1. For each of the parameters of the cycle, we indicate the interval considered for simulation 
and the intervals given in the paper by Huang and Ferrel and in that by Bhalla and Iyengar. This 
criterion for sampling intervals for a CM cycle was taken from [4]. 
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1. Ligand-receptor system 

The simplest binding model is a receptor 𝑅 that binds a ligand 𝐿 forming a complex 𝐶, and is described by 
the following reaction: 

𝑅 + 𝐿(𝑡) 

𝑘𝑜𝑛

⇄
𝑘𝑜𝑓𝑓

𝐶 (S1) 

Using mass action kinetics and the conservation relation 𝑅𝑇𝑂𝑇 = 𝑅 + 𝐶, the dynamics of the complex 𝐶 is 
described by the following differential equation: 

𝑑𝐶

𝑑𝑡
= 𝑘𝑜𝑛𝐿(𝑡)(𝑅𝑇𝑂𝑇 − 𝐶) − 𝑘𝑜𝑓𝑓𝐶 ,  (S2) 

where R was obtained from the conservation relation, 𝑅 = 𝑅𝑇𝑂𝑇 − 𝐶, to reduce the number of variables. 
We introduced the following definitions: 𝑥(𝑡𝑛) = 𝐿(𝑡𝑛)/𝐾𝐷 is the amount of ligand relative to the 
dissociation constant for the binding-unbinding reaction (𝐾𝐷 = 𝑘𝑜𝑓𝑓/𝑘𝑜𝑛), 𝑦 = 𝐶/𝑅𝑇 is the amount of 

ligand-receptor complex relative to the total amount of receptors, and 𝑡𝑛 = 𝑡/𝑡𝑟𝑒𝑓 is the time expressed in 

units of a reference time 𝑡𝑟𝑒𝑓 = 1/𝑘𝑜𝑓𝑓. x, y, and tn are dimensionless variables and transform equation 

(S2) into: 

𝑑𝑦

𝑑𝑡𝑛
 =  𝑥(𝑡𝑛)(1 − 𝑦) − 𝑦    (S3) 

We further assumed that the amount of ligand increases following an exponential function characterized 
by a maximum value 𝐿𝑚𝑎𝑥 and a characteristic time 𝜏𝐿, resulting in 𝑥𝑚𝑎𝑥 = 𝐿𝑚𝑎𝑥/𝐾𝑑 and 𝜏𝐿𝑛 = 𝜏𝐿/𝑡𝑟𝑒𝑓, 

which connects the time-scale associated with the ligand accumulation (𝜏𝐿) with that of the binding-
unbinding process (𝑡𝑟𝑒𝑓 = 1/𝑘𝑜𝑓𝑓): 

𝑥(𝑡𝑛)  =  𝑥𝑚𝑎𝑥 (1 –  𝑒𝑥𝑝(– 𝑡𝑛 /𝜏𝐿𝑛))   (S4) 

 

We here consider two limit cases: fast stimulation with slow binding/unbinding and slow stimulation with 
fast binding/unbinding.  

1a. Ligand-receptor system: fast ligand accumulation and slow binding/unbinding (𝜏𝐿𝑛  <<  1)  

For 𝜏𝐿𝑛  <<  1, equation S4 is reduced to 𝑥(𝑡𝑛)  ≅  𝑥𝑚𝑎𝑥 , so this limit case resembles the system we 
described in [3] and in the Introduction of this paper, i.e, a receptor R interacting with a step-like temporal 
profile of ligand L. The solution of equation S2 is, then: 

𝑦(𝑡𝑛, 𝑥) =
𝑥

1+𝑥
(1 − 𝑒(−𝑡𝑛(1+𝑥)))   (S5) 

The steady-state of equation S5, which is obtained by taking the limit 𝑡𝑛 → ∞, has an 𝑛𝐻  =  1 and 𝐸𝐶50  =
 1. We are interested in obtaining the 𝐸𝐶50 and 𝑛𝐻 for 𝑦 versus 𝑥, for any given time, which will result in 
two relationships: 𝐸𝐶50(𝑡𝑛) and 𝑛𝐻(𝑡𝑛).  

To obtain these functions we need to solve the same equation with different values. Hence, we define a 

real number 𝜖  as the corresponding fraction: 𝜖 = 0.5 for the EC50, 𝜖 = 0.1  for the EC10 and 𝜖 = 0.9 for the 

EC90. Then, 

𝑦(𝑡𝑛, 𝑥𝜖) =
𝑥𝜖

1+𝑥𝜖
[1 − exp(−𝑡𝑛(1 + 𝑥𝜖))] = 𝜖,  (S6) 
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where 𝑥𝜖 is the value of the input that gives 𝜖 as the output (e.g. for 𝜖 = 0.5 , 𝑥𝜖 = 𝐸𝐶50). From equation 

S6 we can easily compute the time as a function of the remaining variables (i.e. the inverse function) 

 

𝑡𝑛 = −
1

1+𝑥𝜖
log (

𝑥𝜖(1−𝜖 )−𝜖

𝑥𝜖
)    (S7) 

 

Based on this last expression, EC50 versus time results in the plot we show in Fig. 1D in the main text. 
According to this plot, 𝐸𝐶50 decreases when time increases, reaching a value of 1 at binding equilibrium.  

The Hill coefficient is defined as  

𝑛𝐻 = 𝑙𝑜𝑔10(81)/𝑙𝑜𝑔10(𝐸𝐶90/𝐸𝐶10)   (S8) 

We obtained an approximated 𝑛𝐻 = 1.4 in the limit of low values of 𝑡𝑛. This value is achieved by deriving 
𝑡𝑛(𝐸𝐶90) and 𝑡𝑛(𝐸𝐶10) in the same way we derived 𝑡𝑛(𝐸𝐶50), and neglecting terms as follows: 

 

𝑡𝑛 =
−1

(1+𝐸𝐶10)
log (

𝐸𝐶100.9−0.1

𝐸𝐶10
) ~

−1

(1+𝐸𝐶10)
log(0.9)   (S9.a) 

𝑡𝑛 =
−1

(1+𝐸𝐶90)
log (

𝐸𝐶900.1−0.9

𝐸𝐶90
) ~

−1

(1+𝐸𝐶90)
log(0.1)   (S9.b) 

 

These approximations are valid because at short times (𝑡𝑛 << 1), both 𝐸𝐶90 and 𝐸𝐶10 are much greater 
than one, similar to the behavior of 𝐸𝐶50 (Figure 1D, main text). From the last two formulas we obtained 
the ratio 𝐸𝐶90/𝐸𝐶10: 

𝐸𝐶90

𝐸𝐶10
=

− log(0.1)−𝑡𝑛

−log(0.9)−𝑡𝑛
    (S10) 

Which results in 21.85 when 𝑡𝑛  is neglected, using equation (S8) this leads to 𝑛𝐻 = 1.42.  This approximated 
result indicates that the sensitivity goes from about 1.4, in the limit of low values of 𝑡𝑛to 1, in the limit of 
𝑡𝑛 → ∞, and it means that before reaching equilibrium the sensitivity is higher than when equilibrium is 
reached. 

1b. Ligand-receptor system: slow ligand accumulation with fast binding/unbinding 

It is convenient, in this section, to re-define the dimensionless time so that it is expressed relative to the 
slowest time-scale in the system (𝜏𝐿, ligand accumulation time). In this way:  𝑡∼ = 𝑡/𝜏𝐿   , resulting in  

 𝜅
𝑑𝑦

𝑑𝑡∼  =  𝑥(𝑡~)(1 − 𝑦) − 𝑦   (S11) 

 

where, as before, 𝑥(𝑡~) = 𝐿(𝑡~)/𝐾𝐷 is the normalized input and 𝑦 = 𝐶/𝑅𝑇 is the normalized output. 𝜅 =
1/(𝑘𝑜𝑓𝑓𝜏𝐿) is a dimensionless parameter that is a ratio of the time characterizing the binding-unbinding 

reaction and the time characterizing ligand accumulation. We consider the limit of slow ligand accumulation 
with fast binding/unbinding, thus, 𝜅 ≪ 1. In this limit, the (binding) reaction is fast, equilibrating rapidly 
and remaining in near-equilibrium even as the variable 𝑥 slowly changes. Thus, we take the quasi-steady-
state approximation 𝜅 𝑑𝑦/𝑑𝑡∼  = 0, resulting in: 
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𝑦(𝑡∼, 𝑥(𝑡∼)) =
𝑥(𝑡∼)

1+𝑥(𝑡∼)
    (S12) 

The steady-state of the input-output curve is, as before, 𝑥/(1 + 𝑥), a hyperbolic curve characterized by 
𝐸𝐶50 = 1 and dynamic range 𝐸𝐶90/𝐸𝐶10 = 81. However, if we consider the time-dependent input-output 
curve, 𝑖. 𝑒., 𝑦 versus 𝑥 for a given time 𝑡∼, we find a time-dependent 𝐸𝐶50:  

𝐸𝐶50  =
1

1−𝑒𝑥𝑝(−𝑡∼)
   (S13) 

Interestingly, in this case the dynamic range is 81 (and thus 𝑛𝐻 = 1) for every value of 𝑡~. 
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2. Covalent modification cycles 

1a. Mechanistic description and parameter values 

A covalent modification cycle (CM) may be described by the following reactions: 

𝐸𝑎 + 𝑆

𝑎1

⇌
𝑑1

𝐸𝑎  𝑆
𝑘1

⇀  𝑆∗ + 𝐸𝑎   (S14.a) 

𝐸𝑑 + 𝑆∗

𝑎2

⇌
𝑑2

𝐸𝑑𝑆∗
𝑘2

⇀  𝑆 + 𝐸𝑑   (S14.b) 

where 𝐸𝑎 is the kinase, 𝐸𝑑  is the phosphatase, S the unmodified substrate, S* the modified substrate, 𝐸𝑎𝑆 
the complex between S and the enzyme that modifies the substrate (for example, if the enzyme were a 
kinase, by adding a phosphate group), and 𝐸𝑑𝑆∗  the complex between S* and the enzyme that removes 
the modification (for example a phosphatase). ai are the association rates, di the dissociation rates, and ki 
the catalytic rates (𝑖 = 1 for the forward reaction and 𝑖 = 2 for the reverse reaction).  

Applying the law of mass action, the kinetic equations governing the time evolution of such a system are: 

𝑑𝐸𝑎

𝑑𝑡
= −𝑎1 ∙ 𝑆 ∙ 𝐸𝑎 + (𝑑1 + 𝑘1) ∙  𝐸𝑎𝑆  (S15.a) 

𝑑𝑆

𝑑𝑡
= −𝑎1 ∙ 𝑆 ∙ 𝐸𝑎 + 𝑘2 ∙ 𝐸𝑑𝑆∗ + 𝑑1 ∙ 𝐸𝑎𝑆  (S15.b) 

𝑑𝑆∗

𝑑𝑡
 = 𝑘1 ∙ 𝐼𝑆 + 𝑑2 ∙ 𝐸𝑑𝑆∗ − 𝑎2 ∙ 𝐸𝑑 ∙  𝑆∗   (S15.c) 

𝑑𝐸𝑑

𝑑𝑡
= −𝑎2 ∙ 𝑆∗ ∙  𝐸𝑑  + (𝑑2 + 𝑘2) ∙ 𝐸𝑑𝑆∗   (S15.d) 

𝑑𝐸𝑎𝑆

𝑑𝑡
= 𝑎1 ∙ 𝐸𝑎 ∙ 𝑆 − (𝑑1 + 𝑘1) ∙ 𝐸𝑎𝑆   (S15.e) 

𝑑𝐸𝑑𝑆∗

𝑑𝑡
= 𝑎2 ∙ 𝐸𝑑 ∙ 𝑆∗ − (𝑑2 + 𝑘2) ∙ 𝐸𝑑𝑆∗   (S15.f) 

and, consequently, the conservation relations are 

𝑆𝑇 = 𝑆 + 𝑆∗ + 𝐸𝑎𝑆 + 𝐸𝑑𝑆∗   (S16.a) 

𝐸𝑑 𝑇
= 𝐸𝑑 + 𝐸𝑑𝑆∗    (S16.b) 

𝐸𝑎 𝑇
= 𝐸𝑎 + 𝐸𝑎𝑆    (S16.c) 

We scanned parameter values randomly with log uniform distribution within the intervals defined on Table 
S1 and following the approach described in the Methods section.  

 

Kinetic rates for the examples included in Figure 3 B-I  

For the Zeroth order regime:   

𝑎1 = 1401.7 𝑛𝑀 min−1  , 𝑎2 = 1075.6 𝑛𝑀 min−1   

𝑑1 = 1027.1𝑚𝑖𝑛−1 , 𝑑2 = 942.05𝑚𝑖𝑛−1 

𝑘1 = 279.24𝑚𝑖𝑛−1 , 𝑘2 = 125.2424𝑚𝑖𝑛−1 

𝑆𝑇 = 97.53 𝑛𝑀, 𝐸𝑑 𝑇
= 10.12 𝑛𝑀 

𝐾𝑎 = 0.0096, 𝐾𝑑 = 0.0102  
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For the First order regime:  

𝑎1 = 39.44 𝑛𝑀 min−1  , 𝑎2 = 30.12 𝑛𝑀 min−1   

𝑑1 = 1280.5𝑚𝑖𝑛−1 , 𝑑2 = 1172.9𝑚𝑖𝑛−1 

 𝑘1 = 547.6𝑚𝑖𝑛−1 , 𝑘2 = 344.19𝑚𝑖𝑛−1  

𝑆𝑇 = 0.49 𝑛𝑀, 𝐸𝑑 𝑇
= 0.78 𝑛𝑀   

𝐾𝑎 = 93.21, 𝐾𝑑 = 101.32  

1b. Michaelis-Menten approximation  

Using the Michaelis-Menten approximation and assuming that the total amount of substrate is ST=S+S* 

(in this sum we neglected the amount of substrate bound to the activating and deactivating enzymes), the 

system can be described by the equation: 

    
𝑑𝑦

𝑑𝑡𝑛
 =

𝑥(𝑡𝑛)(1−𝑦)

𝐾𝑎+(1−𝑦)
−

𝑦

𝐾𝑑+𝑦
   (S17) 

where x=(k1 Ea)/(k2 Ed) is the input to this system, expressed as the ratio of the maximum velocities of 

the activating and deactivating enzymatic reactions, with catalytic rate constants k1 and k2 ; y=S*/ST is the 

output, the fraction of active substrate; 𝐾𝑎 = 𝐾𝑚,𝑎/𝑆𝑇 and 𝐾𝑑 = 𝐾𝑚,𝑑/𝑆𝑇 are the Michaelis-Menten 

constants relative to the total amount of substrate; and time is expressed in units of a reference time  

tref=ST/(k2 Ed), so that tn=t/tref. . 

As in the full mechanistic description, we assumed that the activating enzyme increases following an 

exponential function. This function is characterized by a maximum value Ea,max and a characteristic time Ea, 

resulting in: 

 

    𝑥(𝑡𝑛) = 𝑥𝑚𝑎𝑥  (1 − 𝑒𝑥𝑝(− 𝑡𝑛 𝜏𝐸𝑎,𝑛  ⁄ )) (S18) 

where 𝑥𝑚𝑎𝑥 =
𝑘1 𝐸𝑎,𝑚𝑎𝑥 

𝑘2 𝐸𝑑
 and 𝜏 𝐸𝑎,𝑛 = 𝜏𝐸𝑎/𝑡𝑟𝑒𝑓 . 

Notably, simulation results in the four situations considered (first- or zero-order, fast or slow input) 

(Fig. S1) are in complete agreement with the results obtained with the full mechanistic description 

presented in the main text:  

1) the input-output curve shifted from right to left over time;  

2) when the stimulus increased slowly, the leftward shift in the input-output curve was correspondingly 

slow;  

3) the shift is faster in zero-order, indicating that there is less time for PRESS when the enzymes are 

saturated; 

4) while the nH decreased with time in the first-order regime, it increased in the zero-order regime, from 
about 1 towards its final high steady-state value (~25 in our simulation). Regarding the first-order regime, 
we noted in the main text that 𝑛𝐻(𝑡) has a fast increase up to 1.42 and then decreases to 1. This initial 
increase up to 1.42, which does not appear in the Michaelis-Menten version, is probably due to the 
intermediary steps (complex formation): at short times, the overall rate of output production depends more 
on complex formation than catalysis itself. 
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Figure S1: Covalent modification (CM) cycles, with a Michaelis-Menten description, are shifters. A. Top. Diagram 
of the enzymatic cycle. Bottom. Plot of the dynamics of Ea and Ed for exponential accumulation of Ea. B-E. Time 
courses of y curves for different values of input, xmax (in a heatmap scale). F-I. Input-output curves at different 
times (in a heatmap scale). Ka=Kd=100 indicates that the CM cycle is in first order, while Ka=Kd=0.01, indicates it is 
in zeroth order. 𝜏𝐸𝑎𝑛 = 0.01 indicates the input rises fast while 𝜏𝐸𝑎𝑛 = 100 indicates it rises slowly. In B-E, xmax 
goes from 0.1 to 100 (0.1, 0.21, 0.46, 1, 2.15, 4.64, 10, 21.54, 46.42, 100); in F and G, xmax goes from 0.1 to 1000 
(0.1, 0.28, 0.77, 2.15, 6, 16.68, 46.42, 129.15, 359.38, 1000); in H, xmax goes from 0.1 to 10 (0.1, 0.16, 0.27, 0.46, 
0.77, 1.29, 2.15, 3.59, 5.99, 10); and in I xmax goes from 1 to 100 (1, 1.66, 2.78, 4.64, 7.74, 12.91, 21.54, 35.93, 

59.94, 100). J-L. Time courses of EC50 (J) or nH (K and L) for fast (Ea,n = 0.01) or slow (Ea,n = 100) rising input, in the 
first-order (Ka=Kd=100) or zeroth-order (Ka=Kd=0.01) regimes. 
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3. Composing Shifters: A ligand-receptor activates a covalent modification cycle. 

The full set of reactions for this model is composed of those for a ligand receptor (LR) system and those for 
a CM cycle, with an extra reaction involving the binding of the receptor and the substrate without the ligand 
(S19b). This last reaction does not lead to product formation. The reactions are as follows:  

 

𝐿 + 𝑅

𝑘𝑜𝑛

⇄
𝑘𝑜𝑓𝑓

𝑅𝐿    (S19.a) 

𝑆 + 𝑅

𝑎1

⇄
𝑑1

𝑅𝑆    (S19.b) 

 

𝐿 + 𝑅𝑆

𝑘𝑜𝑛

⇄
𝑘𝑜𝑓𝑓

𝑅𝐿𝑆
𝑘1

⟶𝑆∗ + 𝑅𝐿   (S19.c) 

 

𝑆 + 𝑅𝐿

𝑎1

⇄
𝑑1

𝑅𝐿𝑆
𝑘1

⟶𝑆∗ + 𝑅𝐿  (S19.d) 

 

𝑆∗ + 𝐸𝐷

𝑎2

⇄
𝑑2

𝐸𝑆∗
𝑘2

⟶𝑆 + 𝐸𝐷  (S19.e) 

 

 

 

For step stimulation, we described the system with the following differential equations:  

 

𝑑𝑅

𝑑𝑡
 =  −𝑘𝑜𝑓𝑓 ∙ 𝐿/𝐾𝐷 ∙ 𝑅 + 𝑘𝑜𝑓𝑓 ∙ 𝑅𝐿 − 𝑆 ∙ 𝑅 ∙ 𝑎1 + 𝑅𝑆 ∙ 𝑑1   (S20.a) 

𝑑𝑅𝐿

𝑑𝑡
 =  𝑘𝑜𝑓𝑓 ∙ 𝐿/𝐾𝐷 ∙ 𝑅 − 𝑘𝑜𝑓𝑓 ∙ 𝑅𝐿 − 𝑎1 ∙ 𝑆 ∙ 𝑅𝐿 + (𝑘1 + 𝑑1) ∙ 𝑅𝐿𝑆  (S20.b) 

𝑑𝑆

𝑑𝑡
 =  𝑑1 ∙ 𝑅𝐿𝑆 + 𝑘2 ∙ 𝐸𝑆∗ − 𝑎1 ∙ 𝑅𝐿 ∙ 𝑆 − 𝑆 ∙ 𝑅 ∙ 𝑎1 + 𝑅𝑆 ∙ 𝑑1   (S20.c) 

𝑑𝑆∗

𝑑𝑡
 =  𝑘1 ∙ 𝑅𝐿𝑆 + 𝑑2 ∙ 𝑆∗𝐸 − 𝑎2 ∙ 𝐸 ∙ 𝑆∗     (S20.d) 

𝑑𝑅𝑆

𝑑𝑡
  =  −𝐿/𝐾𝐷 ∙ 𝑘𝑜𝑓𝑓 ∙ 𝑅𝑆 + 𝑅𝐿𝑆 ∙ 𝑘𝑜𝑓𝑓 − 𝑅𝑆 ∙ 𝑑1 + 𝑆 ∙ 𝑅 ∙ 𝑎1   (S20.e) 

𝑑𝑅𝐿𝑆

𝑑𝑡
 =  −𝑅𝐿𝑆 ∙ 𝑘𝑜𝑓𝑓 + 𝑅𝑆 ∙ 𝐿/𝐾𝐷 ∙ 𝑘𝑜𝑓𝑓 + 𝑎1 ∙ 𝑆 ∙ 𝑅𝐿 − (𝑘1 + 𝑑1)𝑅𝐿𝑆  (S20.f) 

𝑑𝑆∗𝐸

𝑑𝑡
 =  𝑎2 ∙ 𝑆∗ ∙ 𝐸 − (𝑘2 + 𝑑2) ∙ 𝐸𝑆∗      (S20.g) 

𝑑𝐸𝑑

𝑑𝑡
 =  (𝑑2 + 𝑘2) ∙ 𝐸𝑆∗ − 𝑎2 ∙ 𝑆∗ ∙ 𝐸,      (S20.h) 
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together with the conservation relations  

𝑅𝑇 = 𝑅 + 𝑅𝑆 + 𝑅𝐿 + 𝑅𝐿𝑆    (S21.a) 
𝐸𝑇 = 𝐸𝐷 + 𝐸𝑆∗      (S21.b) 
𝑆𝑇 = 𝑆 + 𝑆∗ + 𝑅𝐿𝑆 + 𝐸𝑆∗ + 𝑅𝑆   (S21.c) 

 

where 𝐾𝐷 = 𝑘𝑜𝑓𝑓/𝑘𝑜𝑛 is the dissociation constant for the ligand-receptor reaction, 𝑅𝑇 is the total amount 

of receptor, 𝑘𝑜𝑓𝑓 is the unbinding rate for the ligand-receptor reaction, 𝑅𝑆 is the inactive receptor-substrate 

complex, 𝑅𝐿 is the ligand-receptor complex and the active enzyme for the CM cycle, 𝑆𝑇 the total amount 
of substrate, 𝐸𝑑 is the amount of free deactivating enzyme. 𝑆∗ is the substrate in its active form and 𝑆 the 
substrate in its inactive form. The substrate 𝑆 binds the receptor in either of its two forms: free (𝑅) or 
bounded to the ligand (𝑅𝐿). Binding and unbinding rates for the substrate to R and RL are 𝑎1 and 𝑑1, 
respectively. We assume that R binds L and S independently. Hence, the kinetic rates are identical. Finally, 
S* is produced and the enzyme (𝑅𝐿𝑆) released, with rate 𝑘1. Similarly, 𝑆∗ binds reversible to its deactivating 
enzyme 𝐸𝑑 with rates 𝑎2  and 𝑑2, forming the intermediate complex 𝐸𝑆∗, and releasing 𝑆 and 𝐸𝑑 with rate 
𝑘2. Time is dimensionless, 𝑡𝑛 = 𝑡/𝑡𝑟𝑒𝑓 with 𝑡𝑟𝑒𝑓 = 𝑆𝑇/ (𝑘1 𝐸𝑑) being a reference time. We define, as in the 

main text, the dimensionless Michaelis-Menten parameters 𝐾𝑎 = 𝐾𝑚,𝑎/𝑆𝑇, and 𝐾𝑑 = 𝐾𝑚,𝑑/𝑆𝑇, being 𝐾𝑚,𝑎 
and 𝐾𝑚,𝑑 the dimensional values of the Michaelis-Menten constants. 
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4. Cascade of covalent modification cycles 

The mechanistic model of a cascade of CM cycles is based on a three-tier mitogen activated protein kinase 
cascade, captured by the following reactions:  

𝐾𝐾𝐾 + 𝐸1

𝑎1

⇄
𝑑1

𝐾𝐾𝐾∗ ⋅ 𝐸1

𝑘1

⟶𝐾𝐾𝐾∗ + 𝐸1     (S22.a) 

𝐾𝐾𝐾∗ + 𝐸2

𝑎2

⇄
𝑑2

𝐾𝐾𝐾∗ ⋅ 𝐸2

𝑘2

⟶𝐾𝐾𝐾 + 𝐸2     (S22.b) 

𝐾𝐾 + 𝐾𝐾𝐾∗

𝑎3

⇄
𝑑3

𝐾𝐾 ⋅ 𝐾𝐾𝐾∗
𝑘3

⟶𝐾𝑃 + 𝐾𝐾𝐾∗    (S22.c) 

𝐾𝐾𝑃 + 𝐾𝐾𝑃′𝑎𝑠𝑒

𝑎4

⇄
𝑑4

𝐾𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒
𝑘4

⟶𝐾𝐾 + 𝐾𝐾𝑃′𝑎𝑠𝑒   (S22.d) 

𝐾𝐾𝑃 + 𝐾𝐾𝐾∗

𝑎5

⇄
𝑑5

𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗
𝑘5

⟶𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐾∗    (S22.e) 

𝐾𝐾𝑃𝑃 + 𝐾𝐾𝑃′𝑎𝑠𝑒

𝑎6

⇄
𝑑6

𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒
𝑘6

⟶𝐾𝐾𝑃 + 𝐾𝐾𝑃′𝑎𝑠𝑒   (S22.f) 

𝐾𝐾𝑃𝑃 + 𝐾

𝑎7

⇄
𝑑7

𝐾𝐾𝑃𝑃 ⋅ 𝐾
𝑘7

⟶𝐾𝐾𝑃𝑃 + 𝐾𝑃     (S22.g) 

𝐾𝑃 + 𝐾𝑃′𝑎𝑠𝑒

𝑎8

⇄
𝑑8

𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒
𝑘8

⟶𝐾 + 𝐾𝑃′𝑎𝑠𝑒     (S22.h) 

𝐾𝑃 + 𝐾𝐾𝑃𝑃

𝑎9

⇄
𝑑9

𝐾𝑃 ⋅ 𝐾𝐾𝑃𝑃
𝑘9

⟶𝐾𝑃𝑃 + 𝐾𝐾𝑃𝑃     (S22.i) 

𝐾𝑃𝑃 + 𝐾𝑃′𝑎𝑠𝑒

𝑎10

⇄
𝑑10

𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒
𝑘10

⟶ 𝐾𝑃 + 𝐾𝑃′𝑎𝑠𝑒    (S22.j) 

  

To simplify the notation, we avoided MAP in each variable (𝑀𝐴𝑃𝐾𝐾 is named 𝐾𝐾, and so on). Each of the 
three kinases has a dedicated phosphatase, termed after its substrate kinase with the suffix “P’ase”. In this 
model, the reactants in abundance (ATP, water, and so) are assumed to be constant, so they are included 
in the rate constants. 

The 10 reactions described above give rise to 18 differential equations: 

𝑑[𝐾𝐾𝐾]

𝑑𝑡
= −𝑎1[𝐾𝐾𝐾][𝐸1] + 𝑑1[𝐾𝐾𝐾 ⋅ 𝐸1] + 𝑘2[𝐾𝐾𝐾∗ ⋅ 𝐸2]   (S23.a) 

 
𝑑[𝐾𝐾𝐾⋅𝐸1]

𝑑𝑡
= 𝑎1[𝐾𝐾𝐾][𝐸1] − (𝑑1 + 𝑘1)[𝐾𝐾𝐾 ⋅ 𝐸1]     (S23.b) 

𝑑[𝐾𝐾𝐾∗]

𝑑𝑡
= −𝑎2[𝐾𝐾𝐾∗][𝐸2] + 𝑑2[𝐾𝐾𝐾∗ ⋅ 𝐸2] + 𝑘1[𝐾𝐾𝐾 ⋅  𝐸1] + (𝑘3 + 𝑑3)[𝐾𝐾 ⋅ 𝐾𝐾𝐾∗] −

𝑎3[𝐾𝐾𝐾∗][𝐾𝐾] + (𝑘5 + 𝑑5)[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗] − 𝑎5[𝐾𝐾𝑃][𝐾𝐾𝐾∗]    
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 (S5S23.c) 
𝑑[𝐾𝐾𝐾∗⋅𝐸2]

𝑑𝑡
= 𝑎2[𝐾𝐾𝐾∗] − (𝑑2 + 𝑘2)[𝐾𝐾𝐾∗ ⋅ 𝐸2]    (S23.d) 

𝑑[𝐾𝐾]

𝑑𝑡
= −𝑎3[𝐾𝐾][𝐾𝐾𝐾∗] + 𝑑3[𝐾𝐾 ⋅ 𝐾𝐾𝐾∗] + 𝑘4[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒]  (S23.e) 

𝑑[𝐾𝐾⋅𝐾𝐾𝐾∗]

𝑑𝑡
= 𝑎3[𝐾𝐾][𝐾𝐾𝐾∗] − (𝑑3 + 𝑘3)[𝐾𝐾 ⋅ 𝐾𝐾𝐾∗]   (S23.f) 

𝑑[𝐾𝐾𝑃]

𝑑𝑡
= −𝑎4[𝐾𝐾𝑃][𝐾𝐾𝑃′𝑎𝑠𝑒] + 𝑑4[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] + 𝑘3[𝐾𝐾𝐾 ⋅ 𝐾𝐾𝐾∗] + 𝑘6[𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] +

𝑑5[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗] − 𝑎5[𝐾𝐾𝑃][𝐾𝐾𝑃′𝑎𝑠𝑒]     (S23.g) 
𝑑[𝐾𝐾𝑃⋅ 𝐾𝐾𝑃’𝑎𝑠𝑒]

𝑑𝑡
= 𝑎4[𝐾𝐾𝑃][𝐾𝐾𝑃′𝑎𝑠𝑒] − (𝑑4 + 𝑘4)[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒]  (S23.h) 

𝑑[𝐾𝐾𝑃⋅ 𝐾𝐾𝐾∗]

𝑑𝑡
= 𝑎5[𝐾𝐾𝑃][𝐾𝐾𝐾∗] − (𝑑5 + 𝑘5)[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗]   (S23.i) 

𝑑[𝐾𝐾𝑃𝑃]

𝑑𝑡
= 𝑘5[𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗] − 𝑎6[𝐾𝐾𝑃𝑃][𝐾𝐾𝑃′𝑎𝑠𝑒] + 𝑑6[𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] − 𝑎7[𝐾𝐾𝑃𝑃][𝐾] + (𝑑7 +

𝑘7)[𝐾 ⋅ 𝐾𝐾𝑃𝑃] + (𝑑9 + 𝑘9)[𝐾𝑃 ⋅ 𝐾𝐾𝑃𝑃] − 𝑎9[𝐾𝑃][𝐾𝐾𝑃𝑃]   (S23.j) 
𝑑[𝐾𝐾𝑃𝑃⋅𝐾𝐾𝑃′𝑎𝑠𝑒 ]

𝑑𝑡
= 𝑎6[𝐾𝐾𝑃𝑃][𝐾𝐾𝑃′𝑎𝑠𝑒] − (𝑑6 + 𝑘6)[𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] (S23.k) 

𝑑𝐾

𝑑𝑡
= −𝑎7[𝐾][𝐾𝐾𝑃𝑃] + 𝑑7[𝐾𝐾 ⋅ 𝐾𝐾𝑃𝑃] + 𝑘8[𝐾𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒]   (S23.l) 

𝑑[𝐾⋅𝐾𝐾𝑃𝑃]

𝑑𝑡
= 𝑎7[𝐾][𝐾𝐾𝑃𝑃] − (𝑑7 + 𝑘7)[𝐾 ⋅ 𝐾𝐾𝑃𝑃]    (S23.m) 

𝑑[𝐾𝑃]

𝑑𝑡
 = k7[K ⋅  KKPP] − a8[𝐾𝑃][𝐾𝑃′𝑎𝑠𝑒] + 𝑑8[𝐾𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒] − 𝑎9[𝐾𝑃][𝐾𝐾𝑃𝑃] + 𝑑9[𝐾𝑃 ⋅ 𝐾𝐾𝑃𝑃] +

𝑘10[𝐾𝑃𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒]        (S23.n) 
𝑑[𝐾𝑃⋅𝐾𝑃′𝑎𝑠𝑒]

𝑑𝑡
= 𝑎8[𝐾𝑃][𝐾𝑃′𝑎𝑠𝑒] − (𝑑8 + 𝑘8)[𝐾𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒]   (S23.o) 

𝑑[𝐾𝑃⋅𝐾𝐾𝑃𝑃]

𝑑𝑡
= 𝑎9[𝐾𝑃][𝐾𝐾𝑃𝑃] − (𝑑9 + 𝑘9)[𝐾𝑃 ⋅ 𝐾𝐾𝑃𝑃]   (S23.p) 

𝑑[𝐾𝑃𝑃]

𝑑𝑡
= −𝑎10[𝐾𝑃𝑃][𝐾𝑃′𝑎𝑠𝑒] + 𝑑10[𝐾𝑃𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒] + 𝑘9[𝐾𝑃 ⋅ 𝐾𝐾𝑃𝑃] (S23.q) 

𝑑[𝐾𝐾𝑃⋅𝐾𝑃′𝑎𝑠𝑒]

𝑑𝑡
= 𝑎10[𝐾𝑃𝑃][𝐾𝑃′𝑎𝑠𝑒] − (𝑑10 + 𝑘10)[𝐾𝑃𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒]  (S23.r) 

 
The square brackets indicate concentration of each species. In addition, there are seven conservation 
equations 

[𝐾𝐾𝐾𝑡𝑜𝑡] = [𝐾𝐾𝐾] + [𝐾𝐾𝐾∗] + [𝐾𝐾𝐾 ⋅ 𝐸1] + [𝐾𝐾𝐾∗ ⋅ 𝐸2] + [𝐾𝐾𝐾∗ ⋅ 𝐾] + [𝐾𝐾𝐾∗ ⋅ 𝐾𝑃]  
          (S24.a) 
[𝐸1𝑡𝑜𝑡] = [𝐸1] + [𝐾𝐾𝐾 ⋅ 𝐸1]       (S24.a) 
[𝐸2𝑡𝑜𝑡] = [𝐸2] + [𝐾𝐾𝐾∗ ⋅ 𝐸2]       (S24.b) 
[𝐾𝐾𝑡𝑜𝑡] = [𝐾𝐾] + [𝐾𝐾𝑃] + [𝐾𝐾𝑃𝑃] + [𝐾𝐾 ⋅ 𝐾𝐾𝐾∗] + [𝐾𝐾𝑃 ⋅ 𝐾𝐾𝐾∗] + [𝐾𝐾𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] +
[𝐾𝐾𝑃𝑃 ⋅ 𝐾𝐾𝑃′𝑎𝑠𝑒] + [𝐾𝐾𝑃𝑃 ⋅ 𝐾] + [𝐾𝐾𝑃𝑃 ⋅ 𝐾𝑃]    (S24.c) 
[𝐾𝐾𝑃′𝑎𝑠𝑒𝑡𝑜𝑡] = [𝐾𝐾𝑃′𝑎𝑠𝑒] + [𝐾𝐾𝑃′𝑎𝑠𝑒 ⋅ 𝐾𝐾𝑃] + [𝐾𝐾𝑃′𝑎𝑠𝑒 ⋅ 𝐾𝐾𝑃𝑃] (S24.d) 
[𝐾𝑡𝑜𝑡] = [𝐾] + [𝐾𝑃] + [𝐾𝑃𝑃] + [𝐾𝐾𝑃𝑃 ⋅ 𝐾] + [𝐾𝐾𝑃𝑃 ⋅ 𝐾𝑃] + [𝐾𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒] + [𝐾𝑃𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒] 
          (S24.e) 
[𝐾𝑃′𝑎𝑠𝑒𝑡𝑜𝑡] = [𝐾𝑃′𝑎𝑠𝑒] + [𝐾𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒] + [𝐾𝑃𝑃 ⋅ 𝐾𝑃′𝑎𝑠𝑒]    (S24.f) 
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Based on this system of equations, we computed Input-Output curves for the parameters listed on Table SI 
1  

Parameter Value 

Vmax 150 𝑚𝑖𝑛−1 

Km 0.3 μM 

r 4 

[KKKtot] 3 nM 

[KKtot],[Ktot] 1.2 μ M 

[KP′asetot] 120 nM 

[KKP’asetot], [E2tot] 3nM 

Table SI 1: Parameter values used in the simulation, the values were taken from Huang and Ferrell 1996 
[1] 

The reaction rates are only given as 𝐾𝑚 and 𝑉𝑚𝑎𝑥 in the literature. Thus, we estimated 𝑎𝑛 (enzyme binds 
substrate), 𝑑𝑛(enzyme releases substrate without modifying it) and 𝑘𝑛 (enzyme modifies and releases the 
substrate) according to the Michaelis-Menten formula and the additional assumption, that 𝑑𝑛 and 𝑘𝑛 have 

a constant ratio 𝑟𝑛  =  𝑘𝑛/𝑑𝑛 . Then the rate constants can be calculated by: 𝑑𝑛  =  𝑉𝑚𝑎𝑥,𝑛, 𝑎𝑛 =
𝑉𝑚𝑎𝑥

𝐾𝑚
(1 +

 𝑟) , 𝑘𝑛 = 𝑟𝑉𝑚𝑎𝑥,𝑛.  As proposed by[5], we choose  𝑟 = 4. 

We scanned 100 values of the input 𝐸1 from 10−3𝑁𝑚 for 1𝜇𝑀  in logarithmic scale for different times, the 
output was the concentration of the doubly phosphorylated MAPK,[𝐾𝑃𝑃]. We computed Input-Output 
curves using the ode23s function from Matlab to integrate. 
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5. Transcriptional regulation 

Time window and maximal EC50 correlation 

Analyzing the values of TW and ME for each parameter set, we found that they have a high correlation in 

the log-log space, 𝑐𝑜𝑟𝑟(𝑙𝑜𝑔10(𝑀𝐸), 𝑙𝑜𝑔10(𝑇𝑊)) = 𝜌 = 0.8562. 

In the main text we showed the results for the Maximal EC50 for all combinations of parameter pairs. Due 
to the high correlation just described, the heatmaps for the Time Window are qualitatively similar, and 
leads to similar conclusions (Figure S2).  

 

 

Figure S2: Time window in color scale for all different combination of parameter pairs. 
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