SUPPLEMENTARY INFORMATION

for

The 27 kDa *Trypanosoma brucei* Pentatricopeptide Repeat Protein is a G-tract Specific RNA Binding Protein

Pakoyo F. Kamba^{1,2,4}, David A. Dickson¹, Neil A. White¹, Jennifer L. Ekstrom¹, Donna J. Koslowsky², Charles G. Hoogstraten^{1*}

¹Department of Biochemistry and Molecular Biology; ²Graduate Program in Cell and Molecular Biology; ³Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824-1319, USA; ⁴Makerere University, Kampala, Uganda.

Table S1. Prediction of organellar localization of KRIPP11 by a variety of contemporary algorithms.

Localization tool	Targeting prediction
pTARGET	Mitochondrial
TargetLoc	Mitochondrial
DBSubLoc	Mitochondrial
SLPFA	Mitochondrial
Phobius	non-cytoplasmic
ESLPred	Mitochondrial
LOCtree	mitochondrial
CELLO: by amino acid composition	Mitochondrial
CELLO: by N-terminal peptide	non-mitochondrial
SHERLOC: by amino acid composition	Mitochondrial
SHERLOC: by N-terminal peptide	non-mitochondrial
pLOC: by amino acid composition	Mitochondrial
MultiLoc: by amino acid composition	non-mitochondrial
MultiLoc: by N-terminal peptide	Mitochondrial
TargetP 1.1	None
MitoProt II	None

Random region sequence ^a	Identified homooligomers
GGUAUAUGUUAGCUGGUC	
UCGGGCGGCUGAGGGUUCCC	
UCAGUACGUCUCCAUUGUUU	
AGGUAGCGGUGGUGGGAGCC	
CUCUAUGGGGCGUGUCAUUGA	G4
AGGCGGACAACUCGUGUUUG	
GGAUUUUCUUGGACCUCCAC	U4
GCUCGACCAAUUUUAGUUGU	U4
GAAAACGGGUGAGGUAAAUA	A4
UUGUAUGGUACACCGUUGGU	
UCGACUGAUUAAGAAGCGUU	
CGUCGGUACUUGCGCGUGCA	
GUGGCUCCAUACGAUUAAGG	
GGUGCUCCACGUCUCUUUG	
CGAGCUUGGCUUGGUCCUAC	
CAUCUAACGACAAUCGUCUG	
AUUUAGUGUCAACACGGUCA	
UAGUCGUUGCUGGAGGUUUU	U4
CAUCGUUUAAGAUCGGCUAC	
UGUUACCUGCUGUGUCAACC	
CGGUCGGUAGUUUAGGGAGA	
GGUUUGAAUUAAGUUUAUC	
GGCCACGCACUGAGACUCGGU	
GUUGUCGUGGUUCCGUACGG	
AUCGGGGCCAGGGUUGGUUG	G4
UUCUCGUGUCUCCGGGUGGU	
CGGGGUGGCAUUCGGGGGGG	G4; G8 ^b
AAGUGGUAGGUAGUCUGGAC	
AAGUGGUAGGUAGUCUGGAC	

Table S2. Randomized regions of sequenced clones from *in vitro* selection experiments targetingKRIPP11. The randomized regions are flanked by 5'-AA and 3'-GA dinucleotides.

UGGGUGCUGUUGGCCCGUCU GUGGCCUAGCACCCGCGGGU UCACUCUGAUCGAAUUCGCU UGUAUCCCGAAAAGAAUAU AAUGGAUGUUUUUGCAUAAU CGGUGCUUCUGUCGAGCCUUU GUCAAGAGACGUGUUAUUGA CACUAUGUCCAGCACUGUUAU CUUUGACUUCAGCCUCACUU CGGUUGUGCGUUAUUGGUCC GAUCUGAUUGCGUGCGUGCU GGAGUGCUAGUUUCCCCUCG UUGGAAUAUAUUCCUCCAGC GUCCGUCCUUCGUCUGGUGU UGUUAGCUUGUUUAUCCCUC GACUGCCGUUAAAGGAUGGU GGCCUGUACUCCUCUUUUGA CUAACGAUUUUUCUACAUGGG ACUCUAGUGGAAUUCGUAUG CGUCUUUGCGAGCAGCCACG UAAACCCUGGCUGGUUGCGU UCGUGGGGGGAAGACUUGAAU GACUGCCGUUAAAGGAUGGU GGCCUGUACUCCUCUUUUGA CUAACGAUUUUUCUACAUGGG CAUCUUAGAGCCGGUGUUCC CGAUGGCCGUACGAUAGACG CGAUGGCCGUACGAUAGACG CAAGAGGUGUCGGGGUAAAG UGUCUUAUUGUAUUUACAUG UAGCUCAUGCCUGGUUAUUU GUUCUUCGAAUGGGGCUAGA

A4 U5 C4 U4 U4: G4^b G5 U4 U4; $G4^{b}$

G4

GAACGAGUCCCACUCGGCCG CUACGUUUUCAUACUCUCGG CUGCGGGUUGAAUGCAUUAU **UUAUGCCCUUGCGAUCGCUC** GAUGCCCCCUGUCGGAUGUU UUCAAUUGUUUGUGGAGACA CUAAGAACUGGAUUUGAUAG ACUGGAUGCUUUUCGGCUAG CUAAGAACUGGAUUUGAUAG GGUUUUGGGUUGUUCGUAAU UUGUUAAUGCCUUAGGGAUG GGCUUCUUGAACGCAAUACU ACUGUAAUCGUAGGUGACUG **UUACUGCUUCGAAAUGAGAC** GGCAUGUAGUUGAAACUGAG CUGGUGAAAGGAGGGGUGAU CUGAGAUAAGCUAGAUCAC CUUCUAACAGUGGGUUGGUC CAAAGUGGCGUUAGUAAGGG UUUCACAUUAAGUCCUGCUG UGGGUCAUCUAACUGGCUAG GCUGUACAGUAUACUAGAUU AUGCUUAUGUAGAUCUACUU CAUAGAGUACUAGUAAUUGA GCUGCUGAGAAUCUGCUCUC GACGAGACCGGCUCGUCUGG AGGGCCCGUAUCUUGUUAAA AUAAGACGGCUGUGUGAAUG CUAUUGCAGGGUGUUGAGA UCUGAUAUGUCUCUGUGUUA GAAGGCGUAGCCUAAUCCUG GGAUGGUAUUGAGUCAUCAU

U4

C5

U4

U4

G4

UAAGAUAAACGCAUGAUUGC CGUUGUAAGGGGUUCAAUGU CGUUGUAAGGGGUUCAAUGU CGGCGCUGAUCGUAUGAGAG UUGAGGGAGCGGAUAUAGGU CGUUGUAAGGGGUUCAAUGU AUCCCCUUGUAUUGGCCCGU

C4

^a Random regions of 19 and 21 nucleotides represent single-base deletions and insertions during the selection process, respectively.

^bIncludes 3'-G from the constant region.

Gene	G-tract	Number of Gs within tract	Longest poly(G)
1) ND7	GGAGGAGAGGGG	9	4
	GAGGGGAAGAGC	7	4
	CCGAGAAGGGGG	7	5
	GAGGGGAAGGGG	9	4
	GGGGCGAGCAGG	8	4
	GAGGGGGGAGGGG	10	5
	GAGAGAGAGGGG	8	4
	GCGGCGGGGCAG	8	4
	GGGGGCCGCGAG	8	5
	GAGGGGAGAGUC	7	4
GGGG	GGGGGGGGGGGA	11	11
	GGGGGGGGGCCGG	10	8
	GAGGAAUGGGGG	8	5
	GAGGGGGACCGUA	6	4
2) ND8	GGAAGGUGGGGA	8	4
	GGGGGAGAGCGG	9	5
	GGGGGGGGAGGGG	11	7
	GGAAGGGGAGCA	7	4
	GGAGGGGAGCCA	7	4
	GAGGGGGAGAGA	8	5

Table S3. Non-overlapping 12-mer guanosine RNA tracts (G-tracts) with at least fourconsecutive guanosines in *T. brucei* pre-edited transcripts of pan-edited mRNA genes.

	GGGGAGAAGGGG	9	4
3) ND9	GGGGAGAGGGUU	8	4
	GGGGAGAGGAGG	9	4
	AGGGGGGCGAGGG	9	5
	GGGGCGGGGGGG	11	7
	GCGGGGGGAACGC	7	5
	GAGGAGGGGGGG	10	7
	GGAUCCAAGGGG	6	4
	GGGGGGGGAGGAG	10	7
4) COIII	AAGGGGAGGGGG	9	5
	GGAGGAGGGGGA	9	5
	AGGGGAGGGGAG	9	4
	GGAGAGGGGAGG	9	4
	GGAGGGGUUGGG	9	4
	GAGAGGGGGGGG	10	8
	GGGGUGGGCAAA	7	4
	GAGGGGGGGAGAG	9	6
	CGGGGGGAAAGGG	8	5
5) ATPase A6	GGGGGGGGAGGGG	11	7
	GGGGAAGAGGAG	8	4
	GGGGAGAGGCGG	9	4
	GGAUAAGAGGGG	7	4
	AAGGGGAAAUGG	6	4

	GGGGGAGGAGAG	9	5
6) CR3	AAGGAUUGGGGG	7	5
7) CR4	GGGGCAAGGGUG	8	с Д
/) СКЧ		7	Т
	AUUUUUUUUU	/	6
	GGGGGAGAGGAA	8	5
	GGGGGUUUGGGG	9	5
	GAAGGGGAGAAG	7	4
	AAAUUGAAGGGG	5	4
	UUGAUUGGGGGG	7	6
	GGGGAGAAAGUG	7	4
	GGGGUGGGGGAG	10	5
	GGGGAGAGGGGG	10	5
8) ND3	GGGGGGGCGGGGU	10	6
	GGGGUGAAGGGA	8	4
	GGGGGGGAGAAGG	9	6
	GGGGAGGGAUCA	7	4
9) RPS12	GGGGACGGAGAG	8	4
	GGGAGGCGGGGA	9	4
	GAGGGUGGGGGG	10	6

Table S4. Non-overlapping 12-mer guanosine RNA tracts (G-tracts) with at least four
consecutive guanosines in <i>T. brucei</i> pre-edited transcripts of limited-editing mRNA genes.

Gene	G-tract	Number of Gs within tract	Longest poly(G)
1) Cyb	AUAUGGGGUAGG	6	4
	GGGGAAGUGAAU	6	4
2) COII	NONE		
3) MURF2	NONE		

Table S5. Non-overlapping 12-mer guanosine RNA tracts (G-tracts) with at least fourconsecutive guanosines in *T. brucei* edited transcripts of both pan-edited and limited-editingmRNA genes.

Gene	G-tract	Number of Gs in tract	Longest poly(G)
1) ND3	NONE		
2) ND7	NONE		
3) ND8	NONE		
4) ND9	NONE		
5) ATPase A6	NONE		
6) COIII	NONE		
7) CR3	NONE		
8) CR4	NONE		
9) RPS12	NONE		
10) Cyb	UAUGGGGUAGGU	6	4
	UUUGGGGAAGUG	6	4
11) COII	NONE		
12) MURF2	NONE		

Table S6. Non-overlapping 12-mer guanosine RNA tracts (G-tracts) with at least four
consecutive guanosines in transcripts of <i>T. brucei</i> never-edited mitochondrial mRNA genes.

Gene	G-tract	Number of Gs in tract	Longest poly(G)
1) MURF5	NONE		
2) MURF1	NONE		
3) ND1	NONE		
4) COI	UGGUUUUUGGGG	6	4
	GUUGGUUGGGGG	8	5
5) ND4	NONE		
6) ND5	NONE		

Table S7. Non-overlapping 12-mer guanosine RNA tracts (G-tracts) with at least fourconsecutive guanosines in transcripts of *T. brucei* mitochondrial rRNA genes.

Gene	G-tract	Number of Gs in tract	Longest poly(G)
1) 12S rRNA	GUUUGAUUGGGG	6	4
2) 9S rRNA	NONE		

Table S8. Primers used in cloning and site-directed mutagenesis.

Primer code	Primer sequence (5' to 3')
CGH30	ACTTCCAGGGATCCGGTCACGTGTACGCCCTTC
CGH34	GCCTGCAGGTCGACTCAACCACGAGGTAAAGT
CGH69_F	CCACTTTACCTCGTGGTCACCACCACCACCA-
	CTGAGTCGACCTGCAG
CGH70_R	CTGCAGGTCGACTCAGTGGTGGTGGTGGTGGTGA-
	CCACGAGGTAAAGTGG
CGH67_F	GGATTTCAGAATTCGGATCTCACCACCACCA-
	CCACCACGAAAACCTGTACTTCCAGGG
CGH68_R	CCCTGGAAGTACAGGTTTTCGTGGTGGTGGT-
	GGTGGTGAGATCCGAATTCTGAAATCC
CGH77_F	TACTTCCAGGGATCCTGATGCGCTCTTGCAGCC
CGH78_R	GGCTGCAAGAGCGCATCAGGATCCCTGGAAGTA
	Primer codeCGH30CGH34CGH69_FCGH70_RCGH67_FCGH68_RCGH77_FCGH78_R

^aA plasmid containing a truncated form of KRIPP11 lacking the first two N-terminal PPR motifs (hence Δ NR2) was used as template for creation of MBPHis₆.

Round	[RNA] (µM)	[MBP] (µM) Counterselection	[PPR] (µM) Selection
1	18	-	8.02
2	30	3.00	2.05
3	15	-	3.14
4	30	3.04	2.19
5	30	-	3.21
6	30	3.10	0.64
7	30	-	2.18
8	30	2.11	2.09
9	30	-	1.11
10	5	0.50	0.83

Table S9. Stringency conditions for successive rounds of *in vitro* selection.

Figure S1. Anisotropy of interaction of KRIPP11 with RNA G-tracts having fewer than 12 guanosines. Each reaction contained 20 nM 5'-FLUO labeled ssRNA, RNA binding buffer (20 mM Tris-HCl, pH 7.5, 150 mM KCl, 5.0 mM MgCl₂, 1.0 mM DTT), and MBP-KRIPP11.

Figure S2. Original images for all gels. In the pages that follow, labels refer to the Figure and panel in the main text.

Figure 1D

Figure 1E

Figure 1F

Figure 2A

Figure 2B

Figure 2C

Figure 2D

Figure 2E

Figure 2F

Figure 3 G₉

Figure 3 G₆

Figure 3 $G_6C_2U_2A_2$

Figure 3 G₄

Figure 3 $G_4C_2U_3A_3$

Figure 3 (GGU)₄

Figure 7B

Figure 7C