Supporting Information 1: Cellular elements included in blood-derived cultures (BDCs) across

control and patients.

Evaluation of cellular elements included in blood-derived cultures (BDCs)

Prospective project CHARActerization of Circulating Tumor cells and EXpansion
(CHARACTEX) enrols oncologic patients at University Magna Graecia form 2013. 275 patients
diagnosed with all grade and stage of cancer were enrolled to monitor circulating tumour cells
(CTCs) and /or to assess treatment planning and resistance, and 57 volunteer healthy subjects for
early cancer diagnosis (update 2017). Sixty subjects without glucose dysmetabolism were
selected from CHARACTEX-cohort ( ). Twenty-four healthy subjects (12 female, 12
male) constituted control group (mean age 44ys), and forty patients (29 female and 11 male) with
a diagnosis of cancer (mean age 58ys). Clinical data are detailed in Data file S1 and S2
respectively. According to our original protocol*®, we isolated CTCs by working-cell-phase
previously identified for colon, lung, breast, pancreas and glioblastoma®*34. The cells isolated
from working-phases were seeded in a specific culture medium and expanded for 14ds. First
screening on expanded cells was non-haematological (CD45"9) and haematological cells
(CD45P%) phenotype evaluation ( ). In control group the media of
percentage (media + Standard deviation, SD) of CD45P% was of 94+4, and CD45"™¢ was of 6+4.
In the patient’s group was of 37£12 CD45P% and 63+12 CD45"9. Comparative analysis between
the two clinical groups showed a highly significant difference of p=0,004 for prevalent CD45"
in the patients ‘group®. Moreover, within the patients group CD45"9 cells increased in patients
with high histological grade (p=0,02) ( ).

Analysis of phenotype and proliferation rate in BDCs across patients.

Cytometric analysis on population of CD45"¢ found in the patients’ BDC was performed
( ). The marker panel adopted is not exclusive to cancer cells.
Nevertheless, it is a valid tool in the context of the multipanel approach. Each marker was

analysed in order to estimate the mean of percentage of cells positive (mean + Standard error of



the mean) and the mean fluorescence intensity (MFI) quantified after a titration curve optimized
for each antibody used in the panel. PCA-maps displaying 5000 cells in patients and control
BDCs ( ). Events corresponding to circulating cancer cells were grouped
in P2-8 clusters and in P1 were grouped events corresponding to circulating non haematological
cells. Each cluster is coloured according to their normalized markers expression on PCA-maps.
The endothelial phenotype CD45"9CD146P* was presented in a mean of 4,39+ 0,6834 cells
particularly in NSCLC and glioblastoma (r=0, 36). CD45"9Pan-CKP® and CD45"¢CD326P%
phenotype was recognized in a mean of 23+2,6 and of 4+0,5 cells prevalently in breast, colon,
lung and thyroid tumours (r=-0,5). CD45"%VimentinP® and CD45"CFibronectin®® markers was
found in a mean of 10+1,4 and 10+1 cells with a prevalence of vimentin in melanoma and
glioblastoma (r=0,5) and fibronectin in breast cancer (r=0,4). Cancer stem like phenotype,
CD45"™9CD44P% in a mean of 2,7+0,4 and CD45™CD133°* in 2+0,3 cells and their expression
increased with the grade (r=0,4). Epithelial mesenchymal transition phenotype CD45"¢Pan-
CkP%FibronectinP® was found in 5,6+1,1 cells increasing with grade and stage (r=0,5 and r=0,6).
The analysis of proliferation rate of the expanded cells were performed with the cytometric
evaluation of the cell cycle phase distribution focusing on the S-phase as indicator of the
percentage of cultivated circulating cells ongoing to cell-division. In BDC of cancer patients
showed an S-phase of 52,7583 to 62,8767(%) at 95% of confidence interval a standard deviation
of 15,8 correlated with the grade and stage of disease (r=0,5 and 0,6) (

).
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Supporting Figure S1. Metabolic, phenotypic and characterization of cellular elements included in bloodderived

cultures. A) Pathway through which 2-Oxos, methylglyoxal and glyoxal, formed during metabolisms leading to the formation of
glycation-end-products. B) Prevalence of CD45neg cells (p=0,004) in BDCs of cancer patients C) Haematological (CD45pos)
and non-haematological (CD45negPanCKpos ) cells cultivated in vitro. D) PCA-maps displaying events corresponding to

circulating cancer cells grouped in P2-8 clusters and circulating non haematological cells in P1. Each cluster is coloured



according to their normalized markers expression on PCA-maps E)Box and Whisker Plot detailing the frequency of CTCs

grouped in grade. F-G) Distribution of cell cycle S-phase percentage in cancer BDC. Scale bars 100 mm

Supporting Information 2 Clustering analysis of a second cohort of 9 samples

A cohort of 9 subjects signed by ** in Data file S1 were analysed by SeOCET. This cohort
were composed by 5 subjects affected by non-cancerous inflammatory disease and 4
healthy subjects. Data suggested that the cultivated cells isolated from the liquid biopsy
performed in subjects with no inflammation displayed a higher Ps rather than the cancer
patients and were grouped within the subset of control samples.
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Supporting figure S2A. All sensors and voltage V5
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Supporting figure S2B: sensors 5 and voltage V5




Supporting Information 3 Statistical analysis of SeOECT data

Principal Components Analysis of SeOECT data. On the basis of ANOVA results, PCA was
carried out both for modulation and time constant outputs, including independents outputs from
the different five sensors and excluding from the dataset the measurements performed at Vgate
values non significantly associated to the “label” of the samples, in order to avoid the
introduction of “noise” in the data modelling procedure. Also in this case only “C” (control) and
“P” (patients) samples were included in the analysis. PCA performed on modulation outputs
acquired at V3, V4 and V5 Vgate values gave good result in terms of PC extraction, as the
eigenvalues resulted >1 for the first 3 components, with a cumulative explained variance of 95.7
% ( ). PCA performed on tau outputs acquired at V4 and V5 Vgate
values also gave good result in terms of PC extraction, as the eigenvalues resulted >1 for the first
2 components, with a cumulative explained variance of 92.4 % (Table S4). The weights of the
single variables on the extracted components were used in order to select the “best six”
experimental outputs, in terms of discrimination capability among C and P values. A matrix
scatterplot of the modulation outputs extracted from PC1 ( ) evidences
not only a good clustering of C and P samples but also a good placement of the intermediate
samples, so indicating the high prediction power of the model. The matrix scatterplot of the
modulation outputs extracted from PC2 ( ) also evidences a very good
sample clustering. Analogously, the matrix scatterplot of the time constant outputs extracted
from PC1 ( ) and PC2 ( ) evidences the high

predictive power of time constant values.
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Supporting Figure S3. PCA analysis allows to reduce the dimensionality of a data set and extract the variables that
more contribute to its variation. Here, we show the best six combinations of sensor number S and voltage V resulting from
sorting the first PC1 and second PC2 principal components extracted from the modulation (a-b) and time constant (c-d) output of

the device.



jth Percent of = Cumulative

component = Eigenvalue variance Percentage variable PC1 PC2 PC3
1 11.4402 76.268 76.268 slv3 0.190022 -0.0515569 -0.689042
2 1.78469 11.898 88.166 slv4 0.285689 -0.0162998 -0.18482
3 1.13313 7.554 95.720 s1vb 0.282102 0.0615145 -0.210798
4 0.294974 1.966 97.686 s2v3 0.260835 -0.212158 -0.285159
5 0.162759 1.085 98.771 s2v4 0.286176 -0.119242 -0.0451314
6 0.113434 0.756 99.528 S2v5 0.286119 -0.00370142 -0.149452
7 0.0303883 0.203 99.730 s3v3 0.246771 -0.355175 0.126657
8 0.0229278 0.153 99.883 s3v4 0.277697 -0.157418 0.231658
9 0.008542 0.057 99.940 s3v5 0.289525 0.0285232 0.0313399
10 0.00559911 0.037 99.977 s4v3 0.242603 -0.301909 0.327332
11 0.00319476 0.021 99.999 s4v4 0.26761 -0.108955 0.33615
12 0.000203604 0.001 100.000 s4v5 0.282603 0.0636058 0.142628
13 0.0 0.000 100.000 s5v3 0.233629 0.407585 0.0863358
14 0.0 0.000 100.000 s5v4 0.229227 0.431557 0.146506
15 0.0 0.000 100.000 s5v5 0.177754 0.568219 0.0290691

Supporting Table S3.1 PCA modulation variables. Principal components analysis performed on modulation outputs

acquired at V3, V4 and V5 values of Vgate. We show, for the first 15 components, eigenvalue number, percentage and cumulative
percentage of variation, and associated first, second and third principal components. We observe that the first 11 components

retain the 99.999% of the information content of the output signal.

Percent of Cumulative

i component Eigenvalue variance Percentage variable PC1 PC2
1 6.07762 60.776 60.776 slv4 0.30065 -0.366565
2 3.1625 31.625 92.401 s1vs 0.328011 -0.31955
3 0.528367 5.284 97.685 s2v4 0.314965 -0.2595
4 0.162881 1.629 99.314 s2v5 0.356354 -0.256252
5 0.027911 0.279 99.593 s3v4 0.385435 0.12205
6 0.0182766 0.183 99.776 s3vb 0.379521 0.155319
7 0.0132279 0.132 99.908 sdv4 0.219424 0.465654
8 0.00674187 0.067 99.975 s4v5 0.357639 0.0926309
9 0.00212805 0.021 99.997 sb5v4 0.316689 0.330719
10 0.000341372 0.003 100.000 s5v5 0.0829861 0.506659



Supporting Table S3.2 PCA time constant variables. Principal components analysis performed on time constant
outputs acquired at V4 and V5 values of Vgate. We show, for the first 10 components, eigenvalue number, percentage and

cumulative percentage of variation, and associated first PC1 and second PC2 principal components. We observe that the first 9

components retain the 99.997% of the information content of the output signal.

The clustering algorithm

We partitioned elements into groups using a density based clustering algorithm?8, The
algorithm classifies elements into categories on the basis of their similarity. Cluster centers
are determined as those points in the set with higher density than their neighbors and by a
relatively large distance from points with higher densities. To do so, per each point o in the
set:

(i) we determine its density p(o) as the number of points that are closer than a cut off
distance 4., t0 o;

(ii) find the subset s € S of points in the dataset with densities p(s) > p(0);

(iii) find the point a € S with minimum distance to o, this distance is §,,;,,(0): the
minimum distance of o from points with higher densities than o.

After operations from (i) to (iii), we derive a diagram where the density p is reported
against 8,,;, (0) per each element in the data set. Points in the set with higher density than
their neighbors and by a relatively large distance from points with higher densities emerge
as singularities in the diagram, an example of which is reported in Supporting figure S4.1.
These points are the cluster centers. Each point in the set is attributed to different clusters
on the basis a minimum distance criterion: a point b is attributed to a cluster G; if the
minimum distance of b to G; is the smaller among all the minimum distances calculated
with the remaining clusters. Thus clusters are constructed per accumulation. The cluster
centers represent the seeds of the clusters.

Here, we found that the totality of tumor and non-tumor samples is partitioned in the
modulation/time plane into two separate groups — with all tumor samples gathered in the
same cluster (say A), and all non-tumor samples gathered in the other clusters (say B). This
is relevant because unsupervised clustering (i) finds, without prior knowledge, that there
are two groups with some internal correlation in the data set (reflecting the initial number
of sample categories, i.e. tumor and non-tumor) and (ii) associates all elements of a
category to the same cluster (revealing that clusters have internal consistency and that
clustering reflects physical differences between categories).



Suppose now to have A and B (actually, we have A and B — they are the distributions of
measured tumor and non tumor samples as in Figures 3f and 5 of the main text). Then, we
have an additional measure of the unknown (undetermined) sample c. Suppose that c is a
tumor sample. If ¢ falls within the convex closure of A, then the algorithm would assign p
to the correct cluster A with 100% confidence. If p falls outside the convex closure of A4,
we can assign ¢ to A with probability p and c to B with probability e = 1 — p. The closer ¢
to the border of B, the greater e. We can calculate p and e on a statistical basis.

We assume c is drawn by a Gaussian distribution with standard deviation g(A) and mean
u=x(A)+z a(Ad)/Vn (nisthe size of 4, u is the mean of the population, X is the mean
of sample A4, a(A)/+/n is the standard error of the mean z is the score associated to specific
confidence intervals).

We generate a large number N of tentative ¢'s (N > 1000 Supporting Figure S4.2a). Then,
we examine whether c falls in the first (c — A) or in the second (c — B) group. p is
determined as the number of ¢ — A events to N. Supporting Figure S4.2b reports p as a
function of the size of sample A for different values of the confidence interval z. The
method assigns the unknown sample to the correct cluster with 100% reliability (p = 1)
and 0% uncertainty (e = 0) for any initial sample with size n > 2 and fixed confidence
interval CI < 98% (z = 2.33). Fixing the confidence interval to CI = 99.99% (z = 3.29),
the size of A necessary for reaching 100% increases to n~15. Thus, for any sufficiently
large initial tumor set, the method would diagnosis unknown, potentially tumor samples
deterministically, i.e. with e = 0. The analysis, here reported for the couple of

variable S5 — Sem, can be performed for any combination of modulation, time constant,
and sensor number that maximize the system response, resulting from PCA post-
processing of data.
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Supporting Information 5 Clustering analysis of a third cohort of 8 samples

In addition to data presented in the main text, we here show results relative a cohort of 8

samples, independently measured by the OECT device. The samples are constituted by 2 control

subjects, 6 patient subjects. Scatter plots of modulation vs time constant of the output of the

sensor are reported in the Supporting Figure S5, measured at the sensor number S2 and voltage

V4 (a), sensor number S3 and voltage V5 (b), sensor number S5 and voltage V4 (c). Clustering

of data using non Euclidean metrics as explained in the main text, enables data classification of



the sole patient (tumor) and control (healthy) subjects with 100% performance for case (a) and

(b), and 87% performance for case (c).

Scatterl plot Clustering

| eontiel | 2| e S2v4
[

0.3 / . 0.3

0.2 OO o 0.2k ®

0.1 ® ® 0.1 o °
4 8 12 16 < (S) 4 8 12 16 - (S)
- savs | ™M savs | P
0.4 0.4
0.3 .. 0.3 ‘.
O |
0200 patient 0.2

0.1 Y o PY 0.1 o ©® °

4 8 12 16 ZOT(S) 4 8 12 16 20‘[(5)
m ssv4 | M ssv4 | C
0.4 0.4
03 O [ ] 03 o ®
0.2 ~ 0.2 ~

O
0.1 0.1
B ) & @ &

4 8 12 16 2024’5 4 8 12 1620241:

(s) (s)

Supporting Figure S5



0.8
0.6
0.4
unknown samples O
0.2
2 3 4 5 6
£(Sa)

0.9

0.85

0.8

7=1.64, CI=90% o)

7

z=3.29, CI=99.99%
z=2.58, CI=98%

7=1.96, CI=95%

0 5 10 15 20 25
size of A

Supporting Figure $5.2



Supporting Tables

Analyte Neutral mass (Da)
Lysine 147.1
MetSO 166.1

CEL 219.2
FL 291.0

Arginine 175.2
GOLD 327.1
MG-H1 229.2
MOLD 341.2

G-H1 215.0
Tyrosine 182.1
Dityrosine 361.2
Methionine 150.0
3-Nitrotyrosine 227.1

Supporting Table S1 Detection of protein biomarkers through Mass-spectrometry. MG-derived AGEs (MGH1,CEL,
MOLD and argpyrimidine) and Glyoxal-derived AGEs (G-H1, CML and GOLD) analysed by MS to extimate the different protein
glycation behavieour related to disease presence. Abbreviations. Methionine sulphoxide (MetSO); Fructosyl-lisine residues (FL),
N-(5-hydro-5-methyl-4-imidazolon-2yl)-ornithine (MG-H1);  N-(1-Carboxyethyl)lysine (CEL); No-(5-hydro-4-imidazolon-2-
yhornithine(G-H1), N-(1-Carboxymethyl)lysine (CML) and (H8)-GOLD; methylglyoxal-derived lysine dimer (GOLD)



REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD133 Clone 293C3 MACS Cat# 130-104-322
CD326 Clone EB A-1 Becton Dickinson Cat 563180
CD44 Clone G44-26 Becton Dickinson B Caf# 562991
CD146 Clone P1H12 Becton Dickinson Catz 564327
CD45 Clone 2D1 Becton Dickinson Catz 564327
FIBRONECTIN Clonel0/Fibronectin Becton Dickinson | Cat# 563098
VIMENTIN Clone RV202 Becton Dickinson Caf# 562338
PANCK Clone C-11 ABCAM Cat? Abl106166
7-AAD Life Technology Cat# A1310
SYTO 16 Life Technology Caf# 57378
Isotype CD133 MACS Caf#130-002-212
Isotype PANCK Clone 1F8 ABCAM Cat#ab91358
CD34 B ecton Dickinson Caf# 340441
CD49F Becton Dickinson Cat= 562932
CD134 Becton Dickinson Cat 557907
CD24 Becton Dickinson Cat= 550927
Anti-Methyigliox-adducts BIOLABS Caf# 5TA-011
Anti-mouse IgG, HRP-linked Antibody Cell Signaling Cat# 7076
Anti-p21 Cell Signaling Cat# 0003
Anti-rabbit IgG Cell Signaling Cat# A21070
Anfi-mouse 1gG Thermofisher Catr A-21052
Cell lines

CAL 62 DEMZ ACC-448
SKMEL-24 ATCC HTB-71
Critical Commercial Assays (KIT)

CycleTESTPLUS DNA Reagent Kit BD Becton Dickinson Cat# 340242
Profiler Cytokine Array Panel A RD Systems Cat® ARY003
IntraSure Kit BD Becton Dickinson Catz 641778
Bradford Protein-Assay Kit IT BIORAD Cat# 5000002

Cytokine & Growth Factors Array (CTK)

Randox Labs, UK

Cat= EV 3513

Supporting Table S2. List of chemicals and reagents



