
Supporting Information 1: Cellular elements included in blood-derived cultures (BDCs) across 

control and patients. 

 

Evaluation of cellular elements included in blood-derived cultures (BDCs)  

Prospective project CHARActerization of Circulating Tumor cells and EXpansion 

(CHARACTEX) enrols oncologic patients at University Magna Graecia form 2013. 275 patients 

diagnosed with all grade and stage of cancer were enrolled to monitor circulating tumour cells 

(CTCs) and /or to assess treatment planning and resistance, and 57 volunteer healthy subjects for 

early cancer diagnosis (update 2017). Sixty subjects without glucose dysmetabolism were 

selected from CHARACTEX-cohort (Data file S1). Twenty-four healthy subjects (12 female, 12 

male) constituted control group (mean age 44ys), and forty patients (29 female and 11 male) with 

a diagnosis of cancer (mean age 58ys). Clinical data are detailed in Data file S1 and S2 

respectively. According to our original protocol13, we isolated CTCs by working-cell-phase 

previously identified for colon, lung, breast, pancreas and glioblastoma8,13,14. The cells isolated 

from working-phases were seeded in a specific culture medium and expanded for 14ds. First 

screening on expanded cells was non-haematological (CD45neg) and haematological cells 

(CD45pos) phenotype evaluation (Supporting Figure S1b-c). In control group the media of 

percentage (media  Standard deviation, SD) of CD45pos was of 944, and CD45neg was of 64. 

In the patient’s group was of 3712 CD45pos and 6312 CD45neg. Comparative analysis between 

the two clinical groups showed a highly significant difference of p=0,004 for prevalent CD45neg 

in the patients ‘group15. Moreover, within the patients group CD45neg cells increased in patients 

with high histological grade  (p=0,02) (Supporting Figure S1b).  

 

 

Analysis of phenotype and proliferation rate in BDCs across patients.  

Cytometric analysis on population of CD45neg found in the patients’ BDC was performed 

(Supporting Figure S1d-e). The marker panel adopted is not exclusive to cancer cells. 

Nevertheless, it is a valid tool in the context of the multipanel approach. Each marker was 

analysed in order to estimate the mean of percentage of cells positive (mean ± Standard error of 



the mean) and the mean fluorescence intensity (MFI) quantified after a titration curve optimized 

for each antibody used in the panel. PCA-maps displaying 5000 cells in patients and  control 

BDCs (Supporting Figure S1d). Events corresponding to circulating cancer cells were grouped  

in P2-8 clusters and in P1 were grouped events corresponding to circulating non haematological 

cells. Each cluster is coloured according to their normalized markers expression on PCA-maps. 

The endothelial phenotype CD45negCD146pos was presented in a mean of 4,39± 0,6834 cells 

particularly in NSCLC and glioblastoma (r=0, 36). CD45negPan-CKpos and CD45negCD326pos 

phenotype was recognized in a mean of 232,6 and of 40,5 cells prevalently in breast, colon, 

lung and thyroid tumours (r=-0,5). CD45negVimentinpos and CD45negFibronectinpos markers was 

found in a mean of 101,4 and 101 cells with a prevalence of vimentin in melanoma and 

glioblastoma (r=0,5) and fibronectin in breast cancer (r=0,4). Cancer stem like phenotype, 

CD45negCD44pos in a mean of 2,70,4  and CD45negCD133pos  in 20,3 cells and their expression 

increased with the grade (r=0,4). Epithelial mesenchymal transition phenotype CD45negPan-

CkposFibronectinpos was found in 5,61,1 cells increasing with grade and stage (r=0,5 and r=0,6).  

The analysis of proliferation rate of the expanded cells were performed with the cytometric 

evaluation of the cell cycle phase distribution  focusing on the S-phase as indicator of the 

percentage of cultivated circulating cells ongoing to cell-division.   In BDC of cancer patients 

showed an S-phase of 52,7583 to 62,8767(%) at 95% of confidence interval a standard deviation 

of 15,8 correlated with the grade and stage of disease (r=0,5 and 0,6) (Supporting Figure S1f-

g).  



 

 

Supporting Figure S1. Metabolic, phenotypic and characterization of cellular elements included in bloodderived 

cultures. A) Pathway through which 2-Oxos, methylglyoxal and glyoxal, formed during metabolisms leading to the formation of 

glycation-end-products. B) Prevalence of CD45neg cells (p=0,004) in BDCs of cancer patients C) Haematological (CD45pos) 

and non-haematological (CD45negPanCKpos ) cells cultivated in vitro. D) PCA-maps displaying events corresponding to 

circulating cancer cells grouped in P2-8 clusters and circulating non haematological cells in P1. Each cluster is coloured 



according to their normalized markers expression on PCA-maps E)Box and Whisker Plot detailing the frequency of CTCs 

grouped in grade. F-G) Distribution of cell cycle S-phase percentage in cancer BDC. Scale bars 100 mm  

 

 

 

 

 

Supporting Information 2 Clustering analysis of a second cohort of 9 samples 

 

A cohort of 9 subjects signed by ** in Data file S1 were analysed by SeOCET. This cohort 

were composed by 5 subjects affected by non-cancerous inflammatory disease and 4 

healthy subjects. Data suggested that the cultivated cells isolated from the liquid biopsy 

performed in subjects with no inflammation displayed a higher Ps rather than the cancer 

patients and were grouped within the subset of control samples.  

 

 

 

 



 Supporting figure S2A. All sensors and voltage V5 

 

Supporting figure S2B: sensors 5 and voltage V5 

  



 

Supporting Information 3 Statistical analysis of SeOECT data 

Principal Components Analysis of SeOECT data. On the basis of ANOVA results, PCA was 

carried out both for modulation and time constant outputs, including independents outputs from 

the different five sensors and excluding from the dataset the measurements performed at Vgate 

values non significantly associated to the “label” of the samples, in order to avoid the 

introduction of “noise” in the data modelling procedure. Also in this case only “C” (control) and 

“P” (patients) samples were included in the analysis. PCA performed on modulation outputs 

acquired at V3, V4 and V5 Vgate values gave good result in terms of PC extraction, as the 

eigenvalues resulted >1 for the first 3 components, with a cumulative explained variance of 95.7 

% (Supporting Table S3.1, S3.2). PCA performed on tau outputs acquired at V4 and V5 Vgate 

values also gave good result in terms of PC extraction, as the eigenvalues resulted >1 for the first 

2 components, with a cumulative explained variance of 92.4 % (Table S4). The weights of the 

single variables on the extracted components were used in order to select the “best six” 

experimental outputs, in terms of discrimination capability among C and P values. A matrix 

scatterplot of the modulation outputs extracted from PC1 (Supporting Figure S3a) evidences 

not only a good clustering of C and P samples but also a good placement of the intermediate 

samples, so indicating the high prediction power of the model. The matrix scatterplot of the 

modulation outputs extracted from PC2 (Supporting Figure S3b) also evidences a very good 

sample clustering. Analogously, the matrix scatterplot of the time constant outputs extracted 

from PC1 (Supporting Figure S3c) and PC2 (Supporting Figure S3d) evidences the high 

predictive power of time constant values. 

 

 

 



 

Supporting Figure S3. PCA analysis allows to reduce the dimensionality of a data set and extract the variables that 

more contribute to its variation. Here, we show the best six combinations of sensor number S and voltage V resulting from 

sorting the first PC1 and second PC2 principal components extracted from the modulation (a-b) and time constant (c-d) output of 

the device. 

 

 

 

 

 

 

 

 

 

 

 



 

ith 

component Eigenvalue 

Percent of 

variance 

Cumulative 

Percentage variable PC1 PC2 PC3 

1 11.4402 76.268 76.268 s1v3 0.190022 -0.0515569 -0.689042 

2 1.78469 11.898 88.166 s1v4 0.285689 -0.0162998 -0.18482 

3 1.13313 7.554 95.720 s1v5 0.282102 0.0615145 -0.210798 

4 0.294974 1.966 97.686 s2v3 0.260835 -0.212158 -0.285159 

5 0.162759 1.085 98.771 s2v4 0.286176 -0.119242 -0.0451314 

6 0.113434 0.756 99.528 s2v5 0.286119 -0.00370142 -0.149452 

7 0.0303883 0.203 99.730 s3v3 0.246771 -0.355175 0.126657 

8 0.0229278 0.153 99.883 s3v4 0.277697 -0.157418 0.231658 

9 0.008542 0.057 99.940 s3v5 0.289525 0.0285232 0.0313399 

10 0.00559911 0.037 99.977 s4v3 0.242603 -0.301909 0.327332 

11 0.00319476 0.021 99.999 s4v4 0.26761 -0.108955 0.33615 

12 0.000203604 0.001 100.000 s4v5 0.282603 0.0636058 0.142628 

13 0.0 0.000 100.000 s5v3 0.233629 0.407585 0.0863358 

14 0.0 0.000 100.000 s5v4 0.229227 0.431557 0.146506 

15 0.0 0.000 100.000 s5v5 0.177754 0.568219 0.0290691 

Supporting Table S3.1 PCA modulation variables. Principal components analysis performed on modulation outputs 

acquired at V3, V4 and V5 values of Vgate. We show, for the first 15 components, eigenvalue number, percentage and cumulative 

percentage of variation, and associated first, second and third principal components. We observe that the first 11 components 

retain the 99.999% of the information content of the output signal. 

 

ith component Eigenvalue 

Percent of 

variance 

Cumulative 

Percentage variable PC1 PC2 

1 6.07762 60.776 60.776 s1v4 0.30065 -0.366565 

2 3.1625 31.625 92.401 s1v5 0.328011 -0.31955 

3 0.528367 5.284 97.685 s2v4 0.314965 -0.2595 

4 0.162881 1.629 99.314 s2v5 0.356354 -0.256252 

5 0.027911 0.279 99.593 s3v4 0.385435 0.12205 

6 0.0182766 0.183 99.776 s3v5 0.379521 0.155319 

7 0.0132279 0.132 99.908 s4v4 0.219424 0.465654 

8 0.00674187 0.067 99.975 s4v5 0.357639 0.0926309 

9 0.00212805 0.021 99.997 s5v4 0.316689 0.330719 

10 0.000341372 0.003 100.000 s5v5 0.0829861 0.506659 



 

Supporting Table S3.2 PCA time constant variables. Principal components analysis performed on time constant 

outputs acquired at V4 and V5 values of Vgate. We show, for the first 10 components, eigenvalue number, percentage and 

cumulative percentage of variation, and associated first PC1 and second PC2 principal components. We observe that the first 9 

components retain the 99.997% of the information content of the output signal.  

 

 

 

Supporting Information 4. The clustering algorithm  

We partitioned elements into groups using a density based clustering algorithm18. The 

algorithm classifies elements into categories on the basis of their similarity. Cluster centers 

are determined as those points in the set with higher density than their neighbors and by a 

relatively large distance from points with higher densities. To do so, per each point 𝑜 in the 

set: 

(i) we determine its density 𝜌(𝑜) as the number of points that are closer than a cut off 

distance 𝛿𝑐𝑜 to 𝑜; 

(ii) find the subset 𝑠 𝜖 𝑆 of points in the dataset with densities 𝜌(𝑠) > 𝜌(𝑜); 

(iii) find the point 𝑎 𝜖 𝑆 with minimum distance to 𝑜, this distance is 𝛿𝑚𝑖𝑛(𝑜): the 

minimum distance of 𝑜 from points with higher densities than 𝑜. 

After operations from (i) to (iii), we derive a diagram where the density 𝜌 is reported 

against 𝛿𝑚𝑖𝑛(𝑜) per each element in the data set. Points in the set with higher density than 

their neighbors and by a relatively large distance from points with higher densities emerge 

as singularities in the diagram, an example of which is reported in Supporting figure S4.1. 

These points are the cluster centers. Each point in the set is attributed to different clusters 

on the basis a minimum distance criterion: a point 𝑏 is attributed to a cluster 𝐺𝑖 if the 

minimum distance of 𝑏 to 𝐺𝑖 is the smaller among all the minimum distances calculated 

with the remaining clusters. Thus clusters are constructed per accumulation. The cluster 

centers represent the seeds of the clusters. 

Here, we found that the totality of tumor and non-tumor samples is partitioned in the 

modulation/time plane into two separate groups – with all tumor samples gathered in the 

same cluster (say 𝐴), and all non-tumor samples gathered in the other clusters (say 𝐵). This 

is relevant because unsupervised clustering (i) finds, without prior knowledge, that there 

are two groups with some internal correlation in the data set (reflecting the initial number 

of sample categories, i.e. tumor and non-tumor) and (ii) associates all elements of a 

category to the same cluster (revealing that clusters have internal consistency and that 

clustering reflects physical differences between categories). 



Suppose now to have 𝐴 and 𝐵 (actually, we have 𝐴 and 𝐵 – they are the distributions of 

measured tumor and non tumor samples as in Figures 3f and 5 of the main text). Then, we 

have an additional measure of the unknown (undetermined) sample 𝑐. Suppose that 𝑐 is a 

tumor sample. If 𝑐 falls within the convex closure of 𝐴, then the algorithm would assign 𝑝 

to the correct cluster 𝐴 with 100% confidence. If 𝑝 falls outside the convex closure of 𝐴, 

we can assign 𝑐 to 𝐴 with probability 𝑝 and 𝑐 to 𝐵 with probability 𝑒 = 1 − 𝑝. The closer 𝑐 

to the border of 𝐵, the greater 𝑒. We can calculate 𝑝 and 𝑒 on a statistical basis. 

We assume 𝑐 is drawn by a Gaussian distribution with standard deviation 𝜎(𝐴) and mean 

𝜇 = �̅�(𝐴) ± 𝑧 𝜎(𝐴) √𝑛⁄   (𝑛 is the size of 𝐴, 𝜇 is the mean of the population, �̅� is the mean 

of sample 𝐴, 𝜎(𝐴) √𝑛⁄  is the standard error of the mean 𝑧 is the score associated to specific 

confidence intervals). 

We generate a large number 𝑁 of tentative 𝑐′𝑠 (𝑁 > 1000 Supporting Figure S4.2a). Then, 

we examine whether 𝑐 falls in the first (𝑐 → 𝐴) or in the second (𝑐 → 𝐵) group. 𝑝 is 

determined as the number of 𝑐 → 𝐴 events to 𝑁. Supporting Figure S4.2b reports 𝑝 as a 

function of the size of sample 𝐴 for different values of the confidence interval 𝑧. The 

method assigns the unknown sample to the correct cluster with 100% reliability (𝑝 = 1) 

and 0% uncertainty (𝑒 = 0) for any initial sample with size 𝑛 > 2 and fixed confidence 

interval 𝐶𝐼 < 98% (𝑧 = 2.33). Fixing the confidence interval to 𝐶𝐼 = 99.99% (𝑧 = 3.29), 

the size of 𝐴 necessary for reaching 100% increases to 𝑛~15. Thus, for any sufficiently 

large initial tumor set, the method would diagnosis unknown, potentially tumor samples 

deterministically, i.e. with 𝑒 = 0. The analysis, here reported for the couple of 

variable 𝑆3𝜏 − 𝑆5𝑚, can be performed for any combination of modulation, time constant, 

and sensor number that maximize the system response, resulting from PCA post-

processing of data. 

 

Supporting Figure S4.1 



 

 

 

 

 

Supporting Figure S4.2 

 

 

 

 

 

 

Supporting Information 5 Clustering analysis of a third cohort of 8 samples 

In addition to data presented in the main text, we here show results relative a cohort of 8 

samples, independently measured by the OECT device. The samples are constituted by 2 control 

subjects, 6 patient subjects. Scatter plots of modulation vs time constant of the output of the 

sensor are reported in the Supporting Figure S5, measured at the sensor number S2 and voltage 

V4 (a), sensor number S3 and voltage V5 (b), sensor number S5 and voltage V4 (c). Clustering 

of data using non Euclidean metrics as explained in the main text, enables data classification of 



the sole patient (tumor) and control (healthy) subjects with 100% performance for case (a) and 

(b), and 87% performance for case (c). 

 

Supporting Figure S5 

 



 

Supporting Figure S5.2 

  



 

 

 

Supporting Tables 

 

 

Analyte Neutral mass (Da) 

Lysine 

MetSO 

CEL 

FL 

Arginine 

GOLD 

MG-H1 

MOLD 

G-H1 

Tyrosine 

Dityrosine 

Methionine 

3-Nitrotyrosine 

147.1 

166.1 

219.2 

291.0 

175.2 

327.1 

229.2 

341.2 

215.0 

182.1 

361.2 

150.0 

227.1 

 

Supporting Table S1 Detection of protein biomarkers through Mass-spectrometry. MG-derived AGEs (MGH1,CEL, 

MOLD and argpyrimidine) and Glyoxal-derived AGEs (G-H1, CML and GOLD) analysed by MS to extimate the different protein 

glycation behavieour related to disease presence. Abbreviations. Methionine sulphoxide (MetSO); Fructosyl-lisine residues (FL), 

N-(5-hydro-5-methyl-4-imidazolon-2yl)-ornithine (MG-H1);  N-(1-Carboxyethyl)lysine (CEL); Nδ-(5-hydro-4-imidazolon-2-

yl)ornithine(G-H1), N-(1-Carboxymethyl)lysine (CML) and (H8)-GOLD; methylglyoxal-derived lysine dimer (GOLD) 

 

 



 

Supporting Table S2. List of chemicals and reagents 


