## Supplementary Information for "Soft Conductive Hydrogel Micropillar For Electrophysiological Recording"

Yuxin Liu<sup>1†</sup>, Allister F. McGuire<sup>2†</sup>, Hsin-Ya Lou<sup>2</sup>, Thomas L. Li<sup>2</sup>, Jeffrey B.-H. Tok<sup>3</sup>, Bianxiao Cui<sup>2</sup>\*, Zhenan Bao<sup>3</sup>\*

<sup>1</sup>Department of Bioengineering, Stanford University, Stanford, California 94305, USA

<sup>2</sup>Department of Chemistry, Stanford University, Stanford, CA 94305, USA

<sup>3</sup>Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA

\* Corresponding author. E-mail: zbao@stanford.edu; bcui@stanford.edu

<sup>†</sup> These authors contributed equally to this work.



**Figure S1.** Impedance spectra over frequency (a) and cyclic voltammetry (scan rate at 50mV/s) (b) comparison for three-dimensional ECH micropillar on Pt electrode (Black line; with ECH micropillar) and planar Pt electrode (Red line; without ECH micropillar).



**Figure S2.** Proposed schematic illustration of the anisotropic swelling of PEDOT:PSS. (A) The PEDOT:PSS micelles, which have a PSS-rich shell and PEDOT-rich core, are drop cast onto the substrate. During the water evaporation process in drop casting, the PEDOT:PSS micelles are deformed by thickness reduction in the out of the plane direction, forming a "pancake"-like morphology (B) Interconnected nanostructure is induced in the polymer by ionic liquid 4-(3-Butyl-1-imidazolio)-1-butanesulfonic acid triflate. (C) Anisotropic swelling occurs in the out of the plane direction. The interconnected polymer nanostructure prevents dissolution of micropillar.



**Figure S3.** (a) Schematic illustration of the mechanical perturbation experiment injecting 10  $\mu$ l PBS solution towards the IrOx micropillar. (b) Optical microscope image of an IrOx micropillar when 10  $\mu$ l of PBS solution is injected at various times. 0 s (i), 2 s (ii), 4 s (iii), 6 s (iv), 8 s (v), 10 s (vi). There is no measurable rotation or bending of IrOx micropillar observed. Scale bars: 5  $\mu$ m.



**Figure S4.** Electrochemical impedance of the pillar during bending. (A) Surface plot of electrochemical impedance at various frequencies and bending curvature. The ECH pillar (cross sectional area: 1 mm<sup>2</sup>; height: 4.3 mm) was bent in PBS solution during electrochemical impedance measurement. (B) Normalized impedance of the pillar at various bending radii for frequency at 1 Hz, 10 Hz, 100 Hz, 1 kHz and 10 kHz.



**Figure S5** (a) Photo of soft multielectrode array (S-MEA) with cell culture media and HL-1 cells. (b) Inverted microscope image of HL-1 seeded on the ECH MEA. (c) Impedance spectra of the same electrode before and after seeding of HL-1 cells. The increased impedance suggests the formation of tight sealing at cell-electrode interface. Shaded area denotes s.d., N = 60.



**Figure S6**. Extracellular recording with ECH micropillars for HL-1 cells paced at 1 Hz (paced voltage of 1 V, 200  $\mu$ s square wave pulse). Red bar: pulse of electrical stimulation



**Figure S7**. Stress-strain curve of ECH (6 mm  $\times$  6 mm with thickness of 0.05 mm) compared to a stiff substrate, glass (5 mm  $\times$  8.7 mm with thickness of 0.9 mm), and Matrigel (a gelatinous protein mixture used as extracellular matrix for cell culture; 5.3 mm  $\times$  86.3 mm with thickness of 0.05 mm).