Assay	Genotype	Phenotype	Reference
Starvation resistance	Lk and Lkr mutants	Increased survival	This study
	Lk > Lk RNAi	Increased survival	[1]
	DILP2 > Lkr RNAi	Increased survival a	This study
Desiccation resistance	Lk and Lkr mutants	Increased survival	This study
	Lk > Lk RNAi	Increased survival	[1]
	Lk > TrpA1	Decreased survival	[2]
	Lk; Gal80 ^{ts} > Ork	Increased survival	[2]
Water content	Lk and Lkr mutants	Increased	This study
	Lk > Lk RNAi	Increased	[1]
Proboscis extension	Lk mutant	Decreased	This study
reflex	LK > TNT	Decreased	This study
	Lkr mutant	Increased	This study
Blue dye feeding	Lk and Lkr mutants	No effect	This study
CAFE assay	Lk and Lkr mutants	Decreased	This study
	Lk > TrpA1	Decreased	[2]
	Lk; Gal80 ^{ts} > Ork	Decreased	[2]
	Lk > Lk RNAi	No effect	[1]
	Lk and Lkr mutants	Up to 48h: increased	[3]
		After 48h: decreased	
Negative geotaxis	Lk and Lkr mutants	No effect	This study
Locomotor activity	Lk and Lkr mutants	Decreased	This study
	Lk > Shi ^{ts}	No effect	[4]
	Lk > Kir2.1	Decreased	[4]
Metabolic rate	Lk and Lkr mutants	Decreased	This study
DILP2 peptide levels	Lk mutant	No effect	This study
	Lkr mutant	Increased	This study
DILP3 peptide levels	Lk and Lkr mutants	Increased	This study
DILP5 peptide levels	Lk and Lkr mutants	No effect	This study
DILP2 transcript	DILP2 > Lkr RNAi	No effect	This study
DILP3 transcript	DILP2 > Lkr RNAi	Increased ^b	This study
DILP5 transcript	DILP2 > Lkr RNAi	Decreased ^c	This study

^a Increased starvation survival observed for flies maintained as adults on normal, and high sugar and high protein diet only.

- Zandawala M, Marley R, Davies SA, Nässel DR. Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in *Drosophila*. Cell Mol Life Sci. 2018;75:1099–115. doi: 10.1007/s00018-017-2682-y. PubMed PMID: 29043393.
- 2. Liu Y, Luo J, Carlsson MA, Nässel DR. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in *Drosophila*. J Comp Neurol. 2015;523(12):1840-63. Epub 2015/03/04. doi: 10.1002/cne.23768. PubMed PMID: 25732325.
- 3. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, Waters C, et al. The leucokinin pathway and its neurons regulate meal size in *Drosophila*. Curr Biol. 2010;20(11):969-78. Epub 2010/05/25. doi: S0960-9822(10)00517-8 [pii]10.1016/j.cub.2010.04.039. PubMed PMID: 20493701; PubMed Central PMCID: PMC2896026.
- 4. Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci. 2016;19(4):587-95. doi: 10.1038/nn.4263. PubMed PMID: WOS:000372909800016.

^b *DILP*3 transcript is upregulated in flies maintained as adults on normal, and high sugar and high protein diet only.

^c *DILP5* transcript is down regulated in flies maintained as adults on normal diet.