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Methods

Network structure of Phsior

The parameters of Phsior were achieved by being trained on a set of proteins consisting of 8,000
chains and it was tested using 2,586 chains. Phsior consists of seven layers (as illustrated in Fig
2), which are set to use in this study. The first layer is a convolutional layer containing sixteen
feature maps, each of which has a kernel of 5 x 5. In the input to each first layer neuron, features
are filtered by the kernel. Then, it is followed by a max-pooling layer to pick up larger-scale detail,
which outputs the maximum value in each 3 X 3 pixel square from the previous outputs. Again,
another convolutional layer consisting of 32 kernels of 1 x 1 is the third layer, followed by a same
size convolutional layers as previous one with 48 feature maps. The sixth and seventh layers are the
fully connected layers to generate 4 neurons producing the final outputs. Finally, a TANH activation
function is applied to the neuron output to filter the results.

Training and test of Phsior

In the training phase, we initialized the all kernels weights in Phsior using a uniform distribution
of near-zero values. Log squared residual (log((y — v')?)) between the Phsior output and the real-
values of torsion angles (¢, 1) is used as the loss function. To optimize the parameters, we use
stochastic gradient descent with a batch size of 32. By default, the neural network is trained for
200 echoes. The learning rate is set to 0.01 in the first iteration and decreased by 0.005 after each
iteration. In all the convolutional layers, we set the stride of the filters to a default value, that is
1. Since the size of the proposed Phsior is not so large, dropout was not used in building the
predictor. To train the network, Nesterov Accelerated Gradient algorithm [1] was employed to find
the parameters of the network for the given training and test data sets. Phsior is trained using
35 x 24 pixel matrix extracted from protein sequences for each amino acid. The features in the
matrix include PSSM, SS, and SA, which are the data used to train the CNN in Phsior. On the
other hand, we normalized the data in the test protein chains and launched the Phsior to validate its
performance. The predictive performance of the Phsior was demonstrated on the eighteen proteins
as show in Fig 3 and S2 Fig.

Constraint of torsion angels

Since the Upside runs the simulations dependent on the Ramachandran map distribution [2, 3],
in this study, we applied the predicted torsion angles (¢, ¥’) as constraints to launch the Upside
simulations from an extended structure. For the :th residue, we defined a range for the torsional
angle ¢; as follows,
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Similarly, the range of ; is obtained as follows,
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Potential for contacted residues

The residue-contacts were calculated using the Eq. (3), and then we convert the probabilities of
contact between pairwise residues to an energy potential as follows,

Eq
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where r and ry are distance of pairwise C, atoms and threshold, respectively. FE, is the score
computed from pImDCA. The score Ej is illustrated in Fig 4 and S3 Fig. wy is the width of the
potential, while FEj, is initial energy of residue contacts converted from the strength between the
pairwise residues.

Structure clustering

Using the proposed protocol, for each protein sequence, the Upside was launched 500 simulations
to generate a total of 25,000 models. Among the top 50 models generated by the Upside for
each simulation trajectory, there will be many structures of similar folds. Moreover, two models of
similar folds can also be found in two different trajectories. Therefore, it is necessary to classify the
structures into a much smaller number of distinct clusters. In this study, we used fast_protein_cluster
software [4] to cluster the structures into five groups, and the centroid model in the largest cluster
were selected as our ”blind predicted models” as shown in Fig 7 and S4 Fig.

Computational time and comparison

In the developed NiDelta, we launched the molecular dynamics (MD) simulation on each bench-
mark protein on computer clusters, in which each node is configured with 20 Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30GHz, and the computational time is illustrated in S1 Fig. For example, the
running time on the largest protein (MBP, PDB ID: 1IDMB) of 370 residues is 43917.3 CPU sec-
onds, about 12.2 CPU hours. Accordingly, the developed approach is much faster than the classical
MD-based methods for protein structure prediction.
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