
Gober et al. 
(1992/1995)

Brun et al. (1994)

Nierman et al. (2001)

Quon et al. (1996)

Domian et al. (1996)
Curtis & Brun (2010)

Ely (1991)

Gahlmann & Moerner 
  (2014)

Figge et al.
  (2004)

Brown et al. (2008)

Evinger & Agabian (1977)

Poindexter (1964)

Oligotrophy
Aquatic

Genome
Review

Cell Biology / Methods

Figure S1. The citation record of all published research articles containing reference to Caulobacter 
displayed as a network diagram. Nodes are scaled by the total number of times a paper has been cited 
and coloured by the number of citations of all neighbouring nodes. The most cited articles were named 
and labeled by whether they attributed oligotrophic (yellow) or aquatic (light blue) characteristics to 
Caulobacter, and the general area of Caulobacter research: cell biology (brown), genomics (purple) and 
review articles (burgundy). 
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Figure S3. A maximum-likelihood phylogenetic tree based on a multi-locus sequence alignment 
of all Caulobacter genomes and their closest relatives in Asticcacaulis, Phenylobacterium and 
Brevundimonas. The tree is based on 49 highly conserved Clusters of Orthologous Groups 
(COG) families. For methodological details consult the Supplementary Methods.
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Figure S4. Complete-linkage clustering of Caulobacter genomes based on the Bray-Curtis 
dissimilarity of carbohydrate-active gene content. 



Figure S5. A clustered heatmap showing the similarity of Caulobacter genomes (x-axis) based on 
signatures of oligotrophy and copiotrophy (i.e. a group of or an individual COG) as defined by 
Lauro et al., (2009). Genomes were designated above (red) or below (white) the median for each 
trait, according to the methods of  Lauro et al., (2009). The generalized gene content associated 
with oligotrophy (aqua-marine) or copiotrophy (purple) are shown.
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Figure S6. Maximum-likelihood phylogenetic tree of lovK, a photo-responsive histidine kinase, 
encoded in Caulobacter genomes. Twenty-three of the twenty-six genomes encoded the gene, miss-
ing in two SAGs and one isolate genome (groundwater isolate C sp. UKL13). The sequence align-
ment was based on 370 amino acids and branches were supported by 250 bootstrap permutations. 
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Figure S7. A series of case studies that demonstrate the associations of Caulobacter with (a) the capacity to decompose a variety 
of organic compounds, (b) the habitat distribution of near 100% identical Caulobacter sequences along a slope from forest soils 
to adjacent stream and ocean water and (c) a sensitivity to soil drying. Panel (a) displays data from a stable isotope probing 
experiment (Youngblut et al., 2018), in which sequencing was performed on 13C-enriched DNA from organisms which incorpo-
rated carbon from 13C-labeled compounds. The differential abundance of Caulobacter “OTU69” in ‘heavy’ DNA pools (post 
CsCl density centrifugation) derived from soil microcosms fed every substrates without 13C-label (i.e. 12C-control) versus those 
amended with substrates containing only 13C. Panel (b) shows the rank abundance of Caulobacter sequences in neighbouring 
soil (forest and wetland) and aquatic (stream and ocean) environments to assess the predominance of species overlap (Kellog et 
al., in preparation). No OTU clustering was performed on sequences, though pre-clustered was performed by mothur (‘pre.clus-
ter’) to reduce sequencing error; thus, each sequence may be representative of aggregate of sequences that differ by 1-2 bp (~ 
0.5% of 250 bp trimmed reads). Panel (c) demonstrates the significant reduction in relative abundance of Caulobacter in dried 
agricultural soil (t-test; BioProject: PRJNA347493). Two additional studies in the metagenome collection assessed the influence 
of moisture regimes, one moderating precipitation (PRJNA243310) and one soil wetting (PRJNA176825), but failed to provide 
sufficient metadata to be of use. 


