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S1 Materials and Methods

S1.1 RNA secondary structure prediction

We considered two folding algorithms: RNAplfold (Bernhart et al., 2006) and RNAprofiling (Rogers
and Heitsch, 2014), and we compared their results on binding sites for two proteins with different
structural preferences: PUM2, an RBP that prefers ss-RNA; and Staufen1, known to bind ds-RNA.
We predicted RNA secondary structures for PUM2 and Staufen1 binding sites derived from in vivo
PAR-CLIP and RIPiT data, respectively (Hafner et al., 2010; Ricci et al., 2014). We extended
the core regions with maximum 25, 50, 75 or 150 nucleotides on each side, using either genomic
coordinates in the case of intronic sequences, or the highest expressed isoform that contains the
peak for the exonic ones. First, we compared RNAplfold predictions in multiple parameter settings,
and then we compared the RNA secondary structure predictions of RNAplfold vs. RNAprofiling.

S1.1.1 RNAplfold predictions depend on parameters

RNAplfold is a tool from ViennaRNA package that predicts RNA single-strandedness using free
energy minimization and locally stable secondary structures. It associates the best structure to
each sliding window over the stretch of RNA of interest, and then outputs the average base pair
probabilities. RNAplfold has two important parameters: the size of the window (W ) and the
maximum base pair span (L). Multiple applications of RNAplfold use the values (W,L) = (80, 40)
(see (Li et al., 2010; Kazan et al., 2010; Marin and Vanicek, 2011; Lekprasert et al., 2011)), while
(Lange et al., 2012) recommend that W = L+ 50 in order to have each base present in at least 51
windows.

We selected a wide range of parameters: L ∈ [30, 150] and W ∈ [L,L + 100], resulting in 143
(W,L) pairs, and we applied RNAplfold on 3974 PUM2 and 4666 Staufen1 peaks. In the folding
step, we extended the peaks with maximum 150 bp on each side, after which we discarded the
flanking regions and we analyzed only the initial binding sites with the associated RNA structures.
Fig. S1 shows the percent of bases that were predicted to correspond to ds-RNA (bases that have
the predicted unpaired probability < 0.5). RNAplfold predicts on average 13% more paired bases
for Staufen1 binding sites than for PUM2 binding sites, a result consistent with the reported binding
preferences for the two RBPs. We note that in both sets the results show a clear trend of more
base pairs as the parameter values increase. This is also in agreement with the reported behaviour
of multiple structure prediction tools, namely that the prediction accuracy for individual base-pairs
decreases with respect to span length and/or window length (Doshi et al., 2004; Kiryu et al., 2011;
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Lange et al., 2012). Given this correlation between the parameter size and the percent of paired
bases for both sets, it is unclear what the “optimal” parameter values might be. Looking at just two
widely used parameter values, (W,L) ∈ {(80, 40), (150, 100)}, we observe an unsettling difference of
11.1% for PUM2 and 9.3% for Staufen1 in the number of paired RNA bases.

S1.1.2 Comparative analysis

Given the performance of RNAplfold with different parameter settings, we looked for another tool
for RNA structure prediction, and we selected RNAprofiling, which has a different approach to
RNA folding. RNAprofiling is an ensemble-based method that balance abstraction and specificity
by identifying local dominant combinations of base pairs. It uses a statistical sample of 1000
RNA secondary structures from the Boltzmann ensemble of possible RNA secondary structures
associated with a given RNA sequence. The tool then focuses on the arrangement of helices at
the substructure level and reports the most frequent double-stranded regions. We consider a base
to be paired only if it is contained in a helix that is present in more than half of the ensemble of
secondary structures. RNAprofiling has no parameters, the results being influenced only by the
length of the input sequence. We tested it with three different sizes for the flanking regions of the
RBP binding sites: 25, 50 and 75 and we compared the results with RNAplfold predictions for
(W,L) ∈ {(80, 40), (150, 100), (200, 150)}.

We used the Paired/Unpaired predictions to define the following similarity metric between two
foldings a, b of the same sequence of length w:

Sim(a, b) =
1

w

w∑
i=1

si, with si =

{
1, if ai 6= bi
0, if ai = bi

(1)

where a = {a1, a2, . . . , aw} and b = {b1, b2, . . . , bw}. A similarity score of 0 denotes identical
structures, while a score of 0.3 means that the two predicted structures disagree in 30% of their
positions. We compared the structures predicted by the two tools, each in three settings, for PUM2
and Staufen1 binding sites. The average similarity scores are depicted in Fig S2A. We note that
the similarity between structure predictions for PUM2 (above the main diagonal) and Staufen1
(below the diagonal) has the same trend, with smaller values for comparisons between the same
tool or between parameter settings with simmilar window lengths. The results that disagree the
most (around 30%) correspond to the following pairs:

• RNAprofiling with shortest sequences (25 bp padding) & RNAplfold with the longest param-
eters (W = 200, L = 150), and

• RNAprofiling with longest sequences (75 bp padding) & RNAplfold with the shortest param-
eters (W = 80, L = 40).

The structural predictions that agree the most acros different tools (23-24%) correspond to simmilar
folding sequences:

• short sequences: RNAprofiling with 25 bp padding & RNAplfold with W = 80, L = 40, and

• mid-range sequence: RNAprofiling with 50 bp padding & RNAplfold with W = 150, L = 100.

We also analyzed the percent of bases that were predicted to correspond to ds-RNA (Fig S2B).
Staufen1 binding sites have an average 12% more paired bases than PUM2 sites, a trend consistent
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with the binding preferences shown by these RBPs. However, the secondary structure predicted by
RNAplfold is correlated with the parameters used, longer values yielding more paired bases, while
RNAprofiling predictions are quite stable with respect to the length of flanks.

We used RNAprofiling for all SSMART results reported here, but the user can compute sec-
ondary structures with any tool, if then the predicted structures are properly encoded into the input
sequences. In order to predict secondary structures relevant to the experimental data, we apply
the folding algorithm either on the RNA oligos in the case of RNAcompete data, or on extended
peaks in the case of CLIP datasets (±50 bp). The extension is performed using either genomic
coordinates in the case of intronic sequences, or the highest expressed isoform (from RNA-seq data)
that contains the peak for the exonic ones. The extended RNA sequences are used only in the
structure prediction step, after which only the core sequences are associated with the secondary
structures in SSMART input files.

S1.2 The objective function in regression setting

The random set scoring function used by SSMART is defined by:

SRS(mj) =

1
nj

∑
i:xij=1 yi − µ
σj

(2)

µ =
1

n

n∑
i=1

yi, σ
2
j =

n− nj
nj(n− 1)

 1

n

∑
i

y2
i −

(
1

n

∑
i

yi

)2


The associated optimization problem is:

m̂RS = arg max
mj∈M

SRS(mj) (3)

where M is the set of putative motifs {m1, . . . ,mp}, and m̂RS is the best guess at the optimal
binding motif m∗.

Another approach is to use a regression score (LR score). This is more computationally de-
manding but can account for some, potentially relevant, confounder information, like di-nucleotide
frequencies or sequence length. In order to describe the regression framework, we will rewrite the
random set score from Eq. (2). We make the following notations:

µ =
1

n

n∑
i=1

yi, σ2 =
1

n

n∑
i=1

(yi − µ)2

y∗i = yi − µ, Aj =
n− nj
n− 1

ej =
1

nj

∑
i:xij=1

y∗i , σ̂j
2 =

σ2

nj

Then we have
SRS(mj) = Aj ×

ej
σ̂j

(4)

with the top predicted motif m̂RS described by Eq. (3).

3



Now we can define a linear regression model for the binding interactions, that closely resembles
the random set scoring strategy described above. Let the regression coefficient for motif mj be
denoted βj , then a simple linear model for binding is:

y∗i = xijβj + εi,with εi ∼ N(0, σ2) (5)

We estimate the regression coefficient with classical ordinary least squares (OLS): βOLSj =
1
nj

∑
i:xij=1 y

∗
i and we define the motif enrichment score as follows:

SLR(mj) =
βOLSj

σ̂j
=

1

Aj
× SRS(mj) (6)

The top motif is in this case:
m̂LR = arg max

mj∈M
SLRj (7)

Note that if the size of the motif target set is small relative to the number of all input sequences
(nj << n), Aj ≈ 1 and SLRj ≈ SRSj .

This framework can be extended to account for features of the input sequences that may be
unrelated to motif binding. One such potential confounder is the sequence length, and other
important features can be derived from the nucleotide content, like the di-nucleotide counts. If we
consider q additional confounders, the regression covariates for motif mj are defined by the following
matrix: Zj = (xj , c1, c2, . . . , cq), where xj represents the column vector of motif matches xij , and
ck ∈ Rn, k ∈ {1, . . . , q} are the confounders. We denote the corresponding regression coefficients
with β0j , β1j , . . . βqj , with βkj ∈ R, k ∈ {0, . . . , q}. Then the model can be expressed with the
matrix notation as:

Y ∗ = Zjβj + ε,where ε ∼ N(0, σ2In×n) (8)

In the typical case there are a large number of input sequences and therefore a large number of
sample points to use in the estimation process. Also, we need to score a large number of motif
candidates, therefore we need a computationally efficient estimator for the regression coefficients,
with good statistical properties. We use the simple OLS estimator βOLSj = (ZTj Zj)

−1ZTj Y
∗, that

provide fast solutions for small to moderate q values. The corresponding motif scoring function is
a straightforward generalization of the univariate regression case:

SLR(mj) =
βOLSj

σ̂j
,with σ̂j

2 = (Σ̂β̂j
)11 (9)

where (Σ̂β̂j
)11 represents the first diagonal element in the covariance matrix for the parameter

estimate βOLSj .
We optimized this scoring function in the case of the analyzed CLIP datasets, using as con-

founders the sequence length and the di-nucleotide counts. For the RNAcompete datasets we
optimized the random set scoring function since all the input RNA sequences have the same length
and were generated artificially with an uniform model.

S1.3 Update rules in the search strategy

Given a motif m, a set of candidate motifs is constructed by applying small variations to m: in
length, sequence, or structure. The k-mer m is extended to 16 new (k+ 1)-mers, by independently
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adding one letter from Abasic at one of its end. If k > 4, the length of the motif is reduced and
2 new (k − 1)-mers are considered. Then a large set of new k-mers are obtained by changing one
letter at a time in terms of structural change or increasing/decreasing sequence degeneracy. Briefly,
for each position j in m, the following rules are applied:

• if m[j] ∈ {A,C,G, T, a, c, g, t} then four new motif candidates are constructed by replacing
m[j], in turns, with its structural complement and the three letters that encode for it and one
other nucleotide, keeping the original structure; for example A will become a, M, R, W, and
g will become G, k, r, s;

• if m[j] ∈ {W,K,R, Y, S,M,w, k, r, y, s,m} then three new k-mers are obtained with m[j]
set to either its structural complement, or to one of the nucleotides it encodes, in the same
structural context; for example R will become r, A, G;

• if m[j] ∈ {W,K,R, Y, S,M,w, k, r, y, s,m} and j /∈ {1, k} then a fourth candidate is obtained
by setting m[j] = N or m[j] = n, depending on the case;

• if m[j] ∈ {N,n} then 10 new motifs are considered by changing m[j] to one letter from either
{A,C,G, T,W,K,R, Y, S,M}, or {a, c, g, t, w, k, r, y, s,m}.

For example (4k + 18) candidate motifs are generated for a k-mer with no sequence degeneracies,
or for a k-mer with double degeneracy in two middle positions. In the case of a k-mer with double
degeneracy at its ends, (4k + 16) new motifs are considered.

S1.4 Visualization of motif clusters

The k-mer motifs obtained in the search procedure are then clustered in a post-processing step. For
a better understanding of this step, SSMART plots all unique evolved motifs and the similarity
between them in two ways: as a heatmap and as a network graph (see Fig. S3). The similarity
is computed with the metric defined for the post-processing step. The heatmap plot depicts all
pair-wise similarities between the evolved k-mers, together with their hierarchical clustering. The
network graph provides a different perspective of the same data, filtering out the low similarities.
In both the heatmap and the network graph the motifs are colored according to the motif cluster
they belong to after the custom clustering procedure.

Fig. S3 contains the visualization of k-mers similarity for two libraies corresponding to PUM2
and FUS proteins. While for PUM2 the evolved motifs are more homogeneous, the ones for FUS
apear to be more disperse. Depending of the data, there can be small motif clusters (like Motif2 of
PUM2 with 4 k-mers or Motif3 of FUS with 5 k-mers), or clusters that incorporate many evolved
motifs (like the top PUM2 motif that contains almost half of the k-mers).

S1.5 Parameter optimization

While our tool and Zagros do not have parameters that need to be set, RNAcontext and GraphProt
have multiple parameters that influence their performance.

RNAcontext has three important parameters: the motif length w, the structural alphabet e and
the number of initializations s. The motif length is specified as a range, and RNAcontext uses
learned models for smaller motifs to initialize longer motif lengths. We set w to 4 − 10, a range
that is consistent with the SSMART possible motif lengths. For describing RNA structure, we
used the “PHIME” alphabet that consists of five different structures: paired (P), hairpin loop (H),

5



internal loop (I), multiloop (M), and external loop (E). For structure evaluations we considered the
paired probabilities. We set parameter s to 3, running the tool with 3 different initializations.

GraphProt has six parameters that can be optimized in a dedicated step, using program option
−ls. For each motif and type of structure used in the synthetic datasets, we ran the optimization
procedure on a separate set of sequences and used the optimized values for all datasets in each
category. However, the motif recovery rates with the default parameters were better than those
obtained with prior parameter optimization (see Table S3), therefore all results reported in the
main text correspond to the default values.

S1.6 Amount of noise in the synthetic data

In our analyses we generated synthetic datasets that contain specific implanted motifs in various
proportions of structured/unstructured binding sites. In addition to the “positive” sequences, we
added some noise to each of our 2000 datasets. While for the “primary” synthetic datasets we added
in each case 500 noise sequences, as described in the main text, we also generated “secondary” sets
with the same positives, but with only 200 noise sequences. When we randomly associated binding
scores to sequences in the second datasets, we chose a different distribution, making sure that the
200 noise sequences will be in the bottom 400 scores. Throughtout the paper, the implicit synthetic
datasets are the “primary” sets.

The comparison of tool performance on the synthetic datasets with different amount and dis-
tribution of noise is presented in Table ??. For all tools, the recovery rates are better for the case
with less noise, but the difference is ussualy bellow 3%. The only exception is RNAcontext, with a
15% drop in sequence motif recovery for the “primary” datasets (2000 positives & 500 negatives).
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S2 Supplementary figures and tables

Table S1: 10 randomly selected PWMs from the RBP compendium. These PWM were used to
generate the synthetic datasets used for evaluation. IC refers to information content.

Motif Average IC Consensus RBP
M159 0.6 1.4693 WGCAUGM A2BP1, RBFOX2, RBFOX3
M147 0.6 1.3348 GACAGAN CNOT4
M056 0.6 1.253 ACAACRR SRSF3
M021 0.6 1.2086 AGGAURA G3BP2
M232 0.6 1.1782 UUUUUUU ELAVL1, ELAVL3
M162 0.6 1.0972 AGAAANU PABPC5
M108 0.6 1.0967 UUUGUUU ELAVL1, ELAVL3
M242 0.6 1.0365 CCAAAUU HNRNPR, SYNCRIP
M054 0.6 0.9501 GCGCGCG RBM8A
M168 0.6 0.6589 GURGUKU PSPC1, SFPQ

Table S2: Biological datasets used in the main text of the manuscript to compare motifs recovered
from in vivo and in vitro data.

Protein CLIP SRA accession number RNAcompete ID
ELAVL1 SRR189777 RNCMPT00032
QKI SRR048969 RNCMPT00047
FMR1 SRR527727 RNCMPT00016
LIN28A SRR531465 RNCMPT00162
LIN28A SRR458759
LIN28A SRR764666
FUS SRR070449 RNCMPT00018
PUM2 SRR048968
ROQUIN SRR857933
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Table S3: Comparison of motif recovery rates for GraphProt and Zagros obtained with default
parameters and/or in sequence-only mode. All results correspond to the secondary set of synthetic
data, each dataset with 2000 positives and 200 negatives.

Motif GraphProt Zagros
With param.
optimization

Default
params

Default params
& sequence-only

Sequence-
structure mode

Sequence-only

Sequence 93.65 97.4 95.2 100 96.1
Structure 72.3 74.45 20.55 19.35 24.3

Table S4: Comparison of motif recovery rates on two set of synthetic data: the primary one having
datasets with 2000 positives and 500 negatives (in a triangular distribution), and the secondary one
having datasets with 2000 positives and 200 negatives (situated among the bottom 400 sequences).

Motif Synthetic data SSMART SSMART-seq RNAcontext GraphProt Zagros
Sequence 2000 pos & 500

neg (triang)
91.75 92.05 58.14 94.84 100

Sequence 2000 pos & 200
neg (bottom)

92.2 94.59 73.2 97.4 100

Structure 2000 pos & 500
neg (triang)

88.65 14.75 50.03 73.25 15.25

Structure 2000 pos & 200
neg (bottom)

89.2 22.23 56.3 74.45 19.35

Table S5: The cutoffs used to distinguish between “recovered” and “not recovered” motifs on two
set of synthetic data: (A) for the primary synthetic data (2000 positives and 500 negatives), and
(B) the secondary synthetic data (2000 positives and 200 negatives). The tools marked with “-
seq” correspond to sequence-only mode, while the “*” marks the GraphProt run with optimized
parameters.

A)

Motif finder Sequence Structure
SSMART 0.8082 0.7188
SSMART-seq 0.8206 0.8725
RNAcontext 0.6995 0.7366
GraphProt 0.6599 0.8232
Zagros 0.817 0.8908

B)

Motif finder Sequence Structure
SSMART 0.8115 0.7095
SSMART-seq 0.8095 0.7607
RNAcontext 0.7008 0.7359
GraphProt 0.6602 0.8175
GraphProt* 0.6514 0.8222
GraphProt-seq 0.5874 0.7551
Zagros 0.818 0.8659
Zagros-seq 0.9092 0.7448
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A PUM2 percent of paired bases

W \ L 30 40 50 60 70 80 90 100 110 120 130 140 150

L 0.187 0.279 0.337 0.376 0.408 0.43 0.448 0.462 0.474 0.483 0.49 0.496 0.501

L+10 0.243 0.313 0.359 0.394 0.418 0.438 0.453 0.466 0.476 0.483 0.491 0.496 0.506

L+20 0.276 0.334 0.376 0.405 0.426 0.444 0.458 0.47 0.478 0.485 0.491 0.502 0.513

L+30 0.304 0.358 0.393 0.417 0.437 0.453 0.465 0.476 0.483 0.489 0.499 0.512 0.525

L+40 0.321 0.374 0.405 0.428 0.446 0.46 0.47 0.481 0.488 0.496 0.509 0.523 0.532

L+50 0.331 0.384 0.415 0.436 0.452 0.465 0.475 0.485 0.494 0.507 0.521 0.53 0.537

L+60 0.338 0.391 0.422 0.442 0.458 0.47 0.48 0.492 0.505 0.518 0.528 0.536 0.54

L+70 0.344 0.397 0.427 0.447 0.462 0.474 0.487 0.502 0.516 0.526 0.533 0.538 0.542

L+80 0.348 0.401 0.431 0.45 0.465 0.481 0.497 0.514 0.524 0.531 0.537 0.541 0.544

L+90 0.352 0.405 0.434 0.453 0.471 0.492 0.509 0.522 0.529 0.534 0.539 0.543 0.546

L+100 0.355 0.408 0.436 0.459 0.482 0.503 0.517 0.527 0.533 0.537 0.541 0.544 0.548

B Staufen1 percent of paired bases

W \ L 30 40 50 60 70 80 90 100 110 120 130 140 150

L 0.372 0.451 0.498 0.53 0.553 0.571 0.582 0.593 0.603 0.609 0.618 0.623 0.629

L+10 0.412 0.473 0.511 0.539 0.56 0.573 0.585 0.596 0.604 0.612 0.619 0.624 0.632

L+20 0.443 0.491 0.525 0.549 0.566 0.579 0.59 0.599 0.608 0.615 0.621 0.629 0.635

L+30 0.463 0.505 0.536 0.557 0.573 0.585 0.595 0.604 0.611 0.617 0.625 0.632 0.639

L+40 0.474 0.516 0.544 0.563 0.578 0.59 0.599 0.606 0.613 0.621 0.628 0.637 0.642

L+50 0.481 0.522 0.55 0.568 0.582 0.593 0.601 0.609 0.617 0.626 0.633 0.639 0.645

L+60 0.487 0.526 0.554 0.571 0.586 0.596 0.604 0.613 0.621 0.63 0.636 0.642 0.649

L+70 0.491 0.529 0.557 0.574 0.588 0.598 0.609 0.617 0.626 0.633 0.638 0.645 0.652

L+80 0.493 0.533 0.559 0.576 0.59 0.602 0.613 0.622 0.629 0.635 0.641 0.648 0.656

L+90 0.496 0.535 0.561 0.578 0.593 0.606 0.617 0.625 0.632 0.638 0.644 0.651 0.658

L+100 0.498 0.536 0.563 0.581 0.597 0.61 0.619 0.628 0.634 0.641 0.647 0.653 0.661

Figure S1: RNAplfold predictions with different values for parameters W (window length) and L
(maximum base pair span). The numbers presented in a heatmap-like manner correspond to the
percent of paired nucleotides. The values in boxes correspond to three parameter settings widely
used in the literature: (W,L) ∈ {(80, 40), (150, 100), (200, 150)}. (A) Predictions for PUM2 binding
sites. (B) Predictions for Staufen1 binding sites.

Table S6: CLIP datasets used in the main text of the manuscript to compare different motif finders.
Protein Protocol Cell line Reference SRR accession number ID
ELAVL1 PAR-CLIP HEK293 Kishore et al. (2011) SRR189777 ELAVL1.1
ELAVL1 PAR-CLIP HEK293 Mukherjee et al. (2011) SRR248532 ELAVL1.2
ELAVL1 PAR-CLIP HeLa Lebedeva et al. (2011) SRR309285 ELAVL1.3A
ELAVL1 PAR-CLIP HeLa Lebedeva et al. (2011) SRR309286 ELAVL1.3B
PUM2 PAR-CLIP HEK293 Hafner et al. (2010) SRR048967 PUM2.A
PUM2 PAR-CLIP HEK293 Hafner et al. (2010) SRR048968 PUM2.B
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P25 P50 P75 W80.L40 W150.L100W200.L150

Param eters (P =  Padding, W =  Window length, L =  Maxim um  pair span)

20

30

40

50

60

70

80

RNAprofiling RNAplfold

RNAprofiling vs RNAplfold - percent  of paired bases

PUM2

Staufen1

A

B

RNAprofiling vs RNAplfold - similarity

PUM2 RNAprofiling RNAplfold

Staufen1 P25 P50 P75
W80
L40

W150
L100

W200
L150

RNAprofiling

P25 0.00 0.22 0.26 0.23 0.26 0.29

P50 0.25 0.00 0.19 0.26 0.23 0.25

P75 0.28 0.20 0.00 0.28 0.24 0.25

RNAplfold

W80.L40 0.24 0.28 0.31 0.00 0.20 0.25

W150.L100 0.27 0.24 0.24 0.21 0.00 0.11

W200.L150 0.30 0.26 0.25 0.24 0.12 0.00

Figure S2: RNAprofiling vs RNAplfold in different parameter settings (P = Padding, W = Window
length, L = Maximum pair span). (A) Average similarity between predicted structures. The
values above the diagonal correspond to PUM2, while the values below the diagonal correspond to
Staufen1. (B) Percent of paired bases for PUM2 and Staufen1 binding sites.

Table S7: P-values obtained with two-sample Kolmogorov-Smirnov tests on the Kendall tau cor-
relation coeficients for the motifs predicted for one specific RBP. The comparison is performed
between correlation of the motifs with datasets for the same protein and with datasets for the other
considered RBP.
Tool ELAVL1 seq motifs PUM2 seq motifs ELAVL1 seq-struct motifs PUM2 seq-struct motifs
SSMART 0.0001604 0.002797 0.0001604 0.002797
GraphProt 0.000002719 0.3357 0.00002447 0.002797
Zagros 0.000002719 0.06154 0.1256 0.002797
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Figure S3: Visualization of motif clusters. Data corresponds to PUM2 (top) and FUS (bottom)
proteins. The panel for each RBP contains a heatmap (left) and a network graph (right). Both
plots depict the pair-wise similarities between all unique evolved motifs (k-mers). The k-mers are
represented on rows and columns in the heatmap plot and as nodes in the network graph. They
are color-coded to match the motif cluster they are assign to in the post-processing step. In the
network graph, two motifs are connected by an edge if they have more than 90% similarity (thick
dark grey edge) or between 70%-90% similarity (thin light grey line). Similarities bellow 70% are
not depicted in this plot.
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Figure S4: Structural environments in synthetic data. The overall structure that corresponds to the
10 datasets generated for motif M147 is depicted for each type of structure A-T. For each position
in the motif, the light grey rectangle coresponds to the probability of being unpaired, while the
dark grey represents the paired probability.
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Figure S5: Distribution of similarity scores between predicted and implanted motifs in synthetic
datasets. The scores correspond to sequence motifs (left) and structure motifs (right). The sim-
ilarities computed for all synthetic sets are depicted in green (True pairs), while the background
consisting in the similarities between at possible pairs of predicted and implanted motifs are rep-
resented in blue. The vertical brown line represents the optimized cuttof for each tool. All motifs
that have scores to the rigth of this line are considered “recovered” by the motif finder.
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S3 SSMART results on RNAcompete datasets

The results reported here were obtained using SSMART 1.2 with the random set scoring function, since it is fast and
there is no need to acount for covariates. All oligos from an RNAcompete experiment have the same length and were
designed with a uniform nucleotide distribution.

Table S8: Selected list of RNAcompete datasets on which SSMART was applied. They correspond to the selected RBPs
for the comparison between motif predictions on in vivo and in vitro data.

Protein RNAcompete ID GEO ID Results ID
FMR1 RNCMPT00016 GSM1011721 FMR1 RNCMPT00016
FUS RNCMPT00018 GSM1011691 FUS RNCMPT00018
FXR1 RNCMPT00161 GSM1011671 FXR1 RNCMPT00161
FXR2 RNCMPT00020 GSM1011674 FXR2 RNCMPT00020
IGF2BP2 RNCMPT00033 GSM1011697 IGF2BP2 RNCMPT00033
IGF2BP3 RNCMPT00172 GSM1011694 IGF2BP3 RNCMPT00172
ELAVL1 RNCMPT00032 GSM1011629 ELAVL1 RNCMPT00032
ELAVL1 RNCMPT00112 GSM1011563 ELAVL1 RNCMPT00112
ELAVL1 RNCMPT00117 GSM1011582 ELAVL1 RNCMPT00117
ELAVL1 RNCMPT00136 GSM1011621 ELAVL1 RNCMPT00136
ELAVL1 RNCMPT00274 GSM1138954 ELAVL1 RNCMPT00274
LIN28A RNCMPT00162 GSM1011679 LIN28A RNCMPT00162
QKI RNCMPT00047 GSM1011730 QKI RNCMPT00047
SRSF1 RNCMPT00106 GSM1011565 SF2 RNCMPT00106
SRSF1 RNCMPT00107 GSM1011574 SF2 RNCMPT00107
SRSF1 RNCMPT00108 GSM1011594 SF2 RNCMPT00108
SRSF1 RNCMPT00109 GSM1011595 SF2 RNCMPT00109
SRSF1 RNCMPT00110 GSM1011637 SF2 RNCMPT00110
SRSF7 RNCMPT00073 GSM1011738 SRSF7 RNCMPT00073
SRSF9 RNCMPT00067 GSM1011666 SFRS9 RNCMPT00067
SRSF9 RNCMPT00074 GSM1011739 SRSF9 RNCMPT00074

14



Protein ID Reported motif SSMART top 3 sequence-structure motifs

FMR1 RNCMPT00016

FUS RNCMPT00018

ELAVL1 RNCMPT00032

ELAVL1 RNCMPT00112

ELAVL1 RNCMPT00117

ELAVL1 RNCMPT00136

ELAVL1 RNCMPT00274

IGF2BP2 RNCMPT00033

IGF2BP3 RNCMPT00172

LIN28A RNCMPT00162
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Protein ID Reported motif SSMART top 3 sequence-structure motifs

QKI RNCMPT00047

SF2 RNCMPT00106

SF2 RNCMPT00107

SF2 RNCMPT00108

SF2 RNCMPT00109

SF2 RNCMPT00110

SRSF7 RNCMPT00073

SFRS9 RNCMPT00067

SRSF9 RNCMPT00074
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S4 SSMART results on CLIP datasets

The results reported here were obtained using SSMART 1.2 with the regression scoring.

Table S9: Full list of CLIP datasets on which SSMART was applied.
Protein Paper SRA acces-

sion number
Protocol Cell line Results ID

FMR1 Ascano et al. (2012) SRR527727 PAR-CLIP HEK293 FMR1 SRR527727
FMR1 Ascano et al. (2012) SRR527728 PAR-CLIP HEK293 FMR1 SRR527728
FUS Hoell et al. (2011) SRR070449 PAR-CLIP HEK293 FUS SRR070449
FUS Hoell et al. (2011) SRR070450 PAR-CLIP HEK293 FUS SRR070450
ELAVL1 Kishore et al. (2011) SRR189777 PAR-CLIP HEK293 ELAVL1 SRR189777
ELAVL1 Mukherjee et al. (2011) SRR248532 PAR-CLIP HEK293 ELAVL1 SRR248532
ELAVL1 Lebedeva et al. (2011) SRR309285 PAR-CLIP HeLa ELAVL1 SRR309285
ELAVL1 Lebedeva et al. (2011) SRR309286 PAR-CLIP HeLa ELAVL1 SRR309286
IGF2BP2 Hafner et al. (2010) SRR048957 PAR-CLIP HEK293 IGF2BP2 SRR048957
IGF2BP2 Hafner et al. (2010) SRR048958 PAR-CLIP HEK293 IGF2BP2 SRR048958
IGF2BP2 Hafner et al. (2010) SRR048959 PAR-CLIP HEK293 IGF2BP2 SRR048959
IGF2BP3 Hafner et al. (2010) SRR048962 PAR-CLIP HEK293 IGF2BP3 SRR048962
IGF2BP3 Hafner et al. (2010) SRR048963 PAR-CLIP HEK293 IGF2BP3 SRR048963
IGF2BP3 Hafner et al. (2010) SRR048964 PAR-CLIP HEK293 IGF2BP3 SRR048964
LIN28A Cho et al. (2012) SRR458758 CLIP-seq A3-1 LIN28A-mm SRR458758
LIN28A Cho et al. (2012) SRR458759 CLIP-seq A3-1 LIN28A-mm SRR458759
LIN28A Cho et al. (2012) SRR458760 CLIP-seq A3-1 LIN28A-mm SRR458760
LIN28A Wilbert et al. (2012) SRS352780 CLIP-seq H9 LIN28A SRS352780
LIN28A Wilbert et al. (2012) SRR531465 CLIP-seq HEK293 LIN28A SRR531465
LIN28A Hafner et al. (2013) SRR764666 PAR-CLIP HEK293 LIN28A SRR764666
LIN28B Graf et al. (2013) SRR850551 PAR-CLIP HEK293 LIN28B SRR850551
LIN28B Graf et al. (2013) SRR850552 PAR-CLIP HEK293 LIN28B SRR850552
LIN28B Hafner et al. (2013) SRR764667 PAR-CLIP HEK293 LIN28B SRR764667
LIN28B Hafner et al. (2013) SRR764668 PAR-CLIP HEK293 LIN28B SRR764668
LIN28B Hafner et al. (2013) SRR764669 PAR-CLIP HEK293 LIN28B SRR764669
PUM2 Hafner et al. (2010) SRR048967 PAR-CLIP HEK293 PUM2 SRR048967
PUM2 Hafner et al. (2010) SRR048968 PAR-CLIP HEK293 PUM2 SRR048968
QKI Hafner et al. (2010) SRR048969 PAR-CLIP HEK293 QKI SRR048969
QKI Hafner et al. (2010) SRR048970 PAR-CLIP HEK293 QKI SRR048970
ROQUIN Murakawa et al. (2015) SRR857933 PAR-CLIP HEK293 ROQUIN SRR857933
ROQUIN Murakawa et al. (2015) SRR857934 PAR-CLIP HEK293 ROQUIN SRR857934
SRSF1 Xiao et al. (2016) SRR2107150 PAR-CLIP HeLa SRSF1 SRR2107150
SRSF3 Xiao et al. (2016) SRR2107156 PAR-CLIP HeLa SRSF3 SRR2107156
SRSF7 Xiao et al. (2016) SRR2107152 PAR-CLIP HeLa SRSF7 SRR2107152
SRSF9 Xiao et al. (2016) SRR2107153 PAR-CLIP HeLa SRSF9 SRR2107153
ZFP36 Mukherjee et al. (2014) SRR1046759 PAR-CLIP HEK293 ZFP36 SRR1046759
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Protein ID SSMART top 3 sequence-structure motifs

FMR1 SRR527727

FMR1 SRR527728

FUS SRR070449

FUS SRR070450

ELAVL1 SRR189777

ELAVL1 SRR248532

ELAVL1 SRR309285

ELAVL1 SRR309286

IGF2BP2 SRR048957

IGF2BP2 SRR048958
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Protein ID SSMART top 3 sequence-structure motifs

IGF2BP2 SRR048959

IGF2BP3 SRR048962

IGF2BP3 SRR048963

IGF2BP3 SRR048964

LIN28A-mm SRR458758

LIN28A-mm SRR458759

LIN28A-mm SRR458760

LIN28A SRR531465

LIN28A SRR531465

LIN28A SRR764666

19



Protein ID SSMART top 3 sequence-structure motifs

LIN28B SRR850551

LIN28B SRR850552

LIN28B SRR764667

LIN28B SRR764668

LIN28B SRR764669

PUM2 SRR048967

PUM2 SRR048968

QKI SRR048969

QKI SRR048970

ROQUIN SRR857933
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Protein ID SSMART top 3 sequence-structure motifs

ROQUIN SRR857934

SRSF1 SRR2107150

SRSF3 SRR2107156

SRSF7 SRR2107152

SRSF9 SRR2107153

ZFP36 SRR1046759
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