Science Advances

advances.sciencemag.org/cgi/content/full/4/11/eaat4517/DC1

Supplementary Materials for

Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields

Jonas Jägermeyr* and Katja Frieler

*Corresponding author. Email: jaegermeyr@uchicago.edu

Published 21 November 2018, *Sci. Adv.* **4**, eaat4517 (2018) DOI: 10.1126/sciadv.aat4517

This PDF file includes:

Fig. S1. Root mean square error of standardized country-level yield anomalies for maize and wheat.

Fig. S2. Observed and simulated historical maize and wheat yield anomaly time series.

Fig. S3. Sensitivity of mean explained variance to number of countries considered.

Fig. S4. Evaluation of available growing season inputs.

Fig. S5. Best-performing crop calendar per country.

Fig. S6. Evaluation of different climate inputs.

Fig. S7. Influences of heat waves and droughts on rainfed and irrigated yields.

Fig. S8. Observed and simulated influences of the 2003 European heat wave on maize yields.

Fig. S9. Effects of growing season adjustment on wheat rainfall deficit.

Table S1. Explained variances and RMSE of maize country-level yield anomalies.

Table S2. Explained variances and RMSE of wheat country-level yield anomalies.

Table S3. List of extreme events considered in this study.

Fig. S1. Root mean square error of standardized country-level yield anomalies for maize (a) and wheat (b). RMSE values between four different LPJmL simulations (see Table 1) and observed FAO yield anomaly time series (1980 – 2010) are highlighted for the 10 main producer countries showing highest weather sensitivity (see Table S1, S2 for all main producer countries). Statistical significance of the explained variance is indicated through chart symbols (large dots if p-value < 0.001; small dots if p-value < 0.1; circle if not significant, i.e. p-value ≥ 0.1). Mean RMSE values across displayed most weather-sensitive main producers (and across all main producers in brackets) are shown in the bottom-right corner.

Fig. S2. Observed and simulated historical maize and wheat yield anomaly time series. Simulated (yellow – red) and observed (gray) standardized yield anomalies from 1980 – 2010 for maize (left column) and wheat (right column) are shown for the most weather-sensitive main producers in Figure 1. Colored dots in each panel indicate the R^2 value between FAO observations and the respective LPJmL simulation with statistical significance in brackets ("***" if p < 0.001; "**" if p < 0.05; "*" p < 0.1; "n.s." if $p \ge 0.1$).

Growing season adjustment compared to water stress effect: (Scen4–Scen3) / (Scen3–Scen1)

Fig. S3. Sensitivity of mean explained variance to number of countries considered. Scen1 (LPJmL–NoWaterStress), Scen2 (LPJmL–Ref), Scen3 (LPJmL–WaterLimIrr), and Scen4 (LPJml–PHU) represent R^2 values between observed and simulated maize (**a**) and wheat (**b**) yield anomalies achieved by the respective model as in Figure 1, but here shown as cumulative ratios across an increasing number of countries, starting from the single most weather-sensitive country to all main producers. Red lines illustrates the overall model improvement realized in this study (i.e. LPJmL–Ref to LPJmL–PHU), shown as the ratio of Scen4 and Scen2. This underpins the statement in the main text that the explained variance in maize simulations roughly doubles across all main producer countries. The green line illustrates the increase in explained variance due to the growing season adjustment (i.e. LPJmL–WaterLimIrr to LPJmL–PHU) compared to the increase due to considering water stress (i.e. LPJmL–NoWaterStress to LPJmL–WaterLimIrr), shown as (*Scen4 – Scen3*)/(*Scen3 – Scen1*). This supports the statement in the main text that the explained variance for maize to about the same degree as the representation of water stress. For wheat, panel **b** highlights that the growing season adjustment toward the lower end of weather sensitivity.

Fig. S4. Evaluation of available growing season inputs. This figure shows the explained variance of country-level yield anomalies simulated with the LPJmL–PHU model, similar to Figure 1, but differentiating available growing season inputs, for maize (**a**) and wheat (**b**), respectively. "MIRCA maxarea" refers to the MIRCA growing season with the largest cropland area associated, "MIRCA winter" and "MIRCA spring" refer to winter or spring crops (only wheat), "MIRCA season 1 - 3" refer to the first, second, or third season listed. "LPJmL – Calculated" refers to growing seasons calculated by the LPJmL–Ref model used as input in LPJmL–PHU, and the "Best season" refers to the per-country selection of the season that leads to the highest correlation between simulated and observed yield anomalies across the seven previous options (the default setup for LPJmL–PHU in this paper as described in Table 1). The dashed line represents LPJmL–WaterLimIrr (LPJmL–Ref phenology but water constraints as in LPJmL–PHU) as shown in Figure 1. The difference between the red and the dashed line thus illustrates the model improvement solely due to spatially-resolved PHUs (i.e. without contributions from MIRCA2000 crop calendar dates). R^2 values in the top-right corner indicate the mean value across displayed countries.

Fig. S5. Best-performing crop calendar per country. For maize (**a**) and wheat (**b**), countries are associated with the crop calendar – i.e. MIRCA2000 or LPJmL-calculated – that leads to the highest correlation between simulated and observed yield anomalies when used as input in the LPJmL–PHU model (see Material and Methods). Main producer countries, that collectively provide \geq 90% of the respective global production, are highlighted through more saturated hues. Grid cells in which the respective crop is not simulated are masked. The legend table differentiates for both crops the main producer countries' cropland extent with respect to the best-performing crop calendar. Note that the MIRCA2000 dataset is compiled at subnational resolution in countries such as the USA, India, China, and Brazil, and provides national-level information in Russia, Spain, France, Ukraine, Pakistan, and Argentina among others (*27*).

Fig. S6. Evaluation of different climate inputs. The figure shows the explained variance of country-level yield anomalies, similar to Figure 1, but for LPJmL–PHU simulations based on three climate inputs (PGFv2.1, GSWP3, and WATCH+WFDEI), for maize (a) and wheat (b), respectively. The simulation "mean climate" refers to the mean of individual LPJmL–PHU simulations forced by the respective climate input. R^2 values in the top-right corner indicate the mean value across displayed countries.

Fig. S7. Influences of heat waves and droughts on rainfed and irrigated yields. Similar to Figure 2, but separated for rainfed and irrigated systems, this composite plot illustrates average yield influences (maize top row, wheat bottom row) of worldwide heat waves (first column) and droughts (second column) recorded in EM-DAT (13) (1964 – 2007), simulated with the LPJmL–PHU model. Note the different y-axis scale in panel **a**.

Fig. S8. Observed and simulated influences of the 2003 European heat wave on maize yields. Similar to Figure 2a, this plot shows a composite of maize yield impacts induced by heat waves, but here for countries affected by the European heat wave in 2003 only (10 countries listed in EM-DAT (13): Austria, Belgium, Croatia, France, Germany, Italy, Netherlands, Portugal, Slovakia, Spain).

Fig. S9. Effects of growing season adjustment on wheat rainfall deficit. Same as Figure 3 but for spring wheat.

Table S1. Explained variances and RMSE of maize country-level yield anomalies. This table details data for Figure 1 and S1. Simulated yield anomalies are evaluated at country level aggregation against FAO statistics for the four simulations LPJmL–NoWaterStress, LPJmL–Ref, LPJmL–WaterLimIrr, and LPJmL–PHU (details in Table 1), based on the coefficient of determination (R^2 , in percent) and Root Mean Square Error (RMSE, unitless). The table lists the main producer countries (accounting for 90% of global maize production, as of the 2000 – 2011 mean) and is ordered by best R^2 performance across LPJmL–Ref, LPJmL–WaterLimIrr, and LPJmL– PHU (separating the most weather-sensitive main producers, in accordance with Fig. 1 and S1). Statistical significance of the explained variance is indicated through (*) if p-value < 0.1 and (n.s.) otherwise.

		LPJmL–N	oWaterStress	terStress LPJmL–Ref		LPJmL-WaterLimIrr		LPJmL–PHU	
	Country	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE
		[%]	[unitless]	[%]	[unitless]	[%]	[unitless]	[%]	[unitless]
1	Germany	8.5 (n.s.)	1.54	11.5 (*)	1.11	16.8 (*)	1.04	78.6 (*)	0.46
2	France	7.5 (n.s.)	1.55	38.8 (*)	0.86	33.5 (*)	0.9	70.2 (*)	0.57
3	Hungary	6.3 (n.s.)	1.52	34.8 (*)	0.89	35 (*)	0.89	68.9 (*)	0.58
4	South Africa	10.6 (*)	1.53	40 (*)	0.85	47.1 (*)	0.78	68.2 (*)	0.59
5	Argentina	1.4 (n.s.)	1.45	60.4 (*)	0.65	57.7 (*)	0.68	65.8 (*)	0.6
6	Romania	15.8 (*)	1.59	39.3 (*)	0.86	45.5 (*)	0.8	61.4 (*)	0.66
7	Italy	2.8 (n.s.)	1.24	11.6 (*)	1.12	29.2 (*)	0.93	49.9 (*)	0.74
8	India	11.5 (*)	1.05	18.5 (*)	1.01	34.9 (*)	0.88	47.1 (*)	0.78
9	Russia	3 (n.s.)	1.49	3 (n.s.)	1.25	17 (*)	1.04	38.5 (*)	0.83
10	United States	31 (*)	0.9	31.9 (*)	0.92	28.2 (*)	0.96	35.7 (*)	0.89
11	China	0.7(ns)	1 41	31.1 (*)	0.94	31.8 (*)	0.94	34 2 (*)	0.92
12	Brazil	3(n.s.)	1.28	23.6 (*)	1	29.2 (*)	0.94	33.7 (*)	0.81
13	Thailand	1.6(n.s.)	1.22	27.3 (*)	0.94	28 (*)	0.94	25.3 (*)	0.96
14	Spain	3.2(n.s.)	1.24	8 (n.s.)	1.14	17.3 (*)	1.07	22.8 (*)	1.02
15	Nigeria	2.7 (n.s.)	1.46	2.1 (n.s.)	1.42	0 (n.s.)	1.33	16.4 (*)	1.4
16	Canada	10.9 (*)	1.1	4.6 (n.s.)	1.2	1.5 (n.s.)	1.3	12.1 (*)	1.01
17	Ukraine	0.6 (n.s.)	1.37	6.2 (n.s.)	1.22	7.2 (n.s.)	1.21	0.2 (n.s.)	1.16
18	Philippines	0.1 (n.s.)	1.35	4.6 (n.s.)	1.21	5.5 (n.s.)	1.2	1 (n.s.)	1.04
19	Indonesia	3.5 (n.s.)	1.09	0.7 (n.s.)	1.21	0.3 (n.s.)	1.24	5 (n.s.)	1.2
20	Mexico	2.8 (n.s.)	1.5	0 (n.s.)	1.38	1.9 (n.s.)	1.29	2.7 (n.s.)	1.27
	mean of most weather-sensitive main producers (1–10)	9.84	1.39	28.98	0.95	34.49	0.89	58.43	0.67
	mean of all main producers (1–20)	6.38	1.34	19.9	1.06	23.38	1.02	36.88	0.87

Table S2.	Explained variances	and RMSE of	wheat country	y-level yield anom	alies. Same as
Table S1, b	out for wheat.				
	I P Im	I_NoWaterStress	L.P.ImI _Ref	I.P.ImI_WaterI.imIrr	I P ImI _PHI

		LPJmL-NoWaterStress		LPJmL–Ref		LPJmL–WaterLimIrr		LPJmL–PHU	
	Country	R^2 [%]	RMSE [unitless]	$\begin{array}{c} R^2 \\ [\%] \end{array}$	RMSE [unitless]	R ² [%]	RMSE [unitless]	R ² [%]	RMSE [unitless]
1	Australia	7.6 (n.s.)	1.57	67.2 (*)	0.6	75.5 (*)	0.5	83.7 (*)	0.41
2	Spain	0.7 (n.s.)	1.37	63 (*)	0.64	65.7 (*)	0.62	64.2 (*)	0.63
3	Syria	7.5 (n.s.)	1.13	63.4 (*)	0.63	57.8 (*)	0.69	52.7 (*)	0.74
4	Romania	18.9 (*)	1.04	56.2 (*)	0.71	51.5 (*)	0.75	56.5 (*)	0.71
5	Iran	0.1 (n.s.)	1.34	44.8 (*)	0.8	48.9 (*)	0.76	55.9 (*)	0.7
6	Canada	15.7 (*)	1.09	30.4 (*)	0.92	51.6 (*)	0.73	55.5 (*)	0.69
7	Morocco	0.5 (n.s.)	1.34	30.6 (*)	0.94	43.1 (*)	0.82	48.5 (*)	0.78
8	Poland	0.1 (n.s.)	1.38	28.6 (*)	0.93	9.2 (n.s.)	1.12	46 (*)	0.78
9	Hungary	35.5 (*)	0.87	41.8 (*)	0.84	39 (*)	0.86	39.4 (*)	0.86
10	Turkey	0.3 (n.s.)	1.3	25 (*)	0.99	27.3 (*)	0.97	35.3 (*)	0.91
11	Russia	27.2 (*)	0.96	34.1 (*)	0.89	19.4 (*)	1.02	33.2 (*)	0.9
12	China	0.4 (n.s.)	1.28	7.7 (n.s.)	1.16	11.9 (*)	1.11	33.1 (*)	0.87
13	Czech Republic	9.2 (n.s.)	1.14	31.1 (*)	0.94	28.3 (*)	0.96	30 (*)	0.95
14	Germany	5.3 (n.s.)	1.21	21.6 (*)	1.04	12.4 (*)	1.12	30.5 (*)	0.93
15	United Kingdom	2.6 (n.s.)	1.27	13.8 (*)	1.63	0.6 (n.s.)	1.33	29.6 (*)	0.94
16	Ukraine	15.6 (*)	1.07	25.5 (*)	1	26 (*)	0.99	27.5 (*)	0.98
17	United States	52.7 (*)	0.72	22.6 (*)	1.01	22.9 (*)	1.01	26.7 (*)	0.98
18	France	4.4 (n.s.)	1.24	22.9 (*)	1	17.8 (*)	1.05	22.1 (*)	1.01
19	Byelarus	9.5 (n.s.)	1.13	7.1 (n.s.)	1.17	10.8 (*)	1.14	22.4 (*)	1
20	Pakistan	7.8 (n.s.)	1.18	8.3 (n.s.)	1.17	6.6 (n.s.)	1.2	19.9 (*)	1.68
21	Argentina	4.3 (n.s.)	1.37	0.8 (n.s.)	1.21	4.7 (n.s.)	1.16	16.4 (*)	0.99
22	Italy	6 (n.s.)	1.19	12.2 (*)	1.11	12.6 (*)	1.1	15.1 (*)	1.09
23	India	2.8 (n.s.)	1.25	1.5 (n.s.)	1.3	0 (n.s.)	1.4	10.6 (*)	1.6
24	Denmark	0.1 (n.s.)	1.37	0 (n.s.)	1.36	0 (n.s.)	1.37	9.4 (n.s.)	1.14
25	Kazakhstan	0.2 (n.s.)	1.35	1.5 (n.s.)	1.3	1.6 (n.s.)	1.3	6.9 (n.s.)	1.16
26	Mexico	2.4 (n.s.)	1.27	0 (n.s.)	1.37	0.1 (n.s.)	1.4	1.3 (n.s.)	1.13
	mean of most weather-sensitive main producers (1–10)	8.69	1.24	45.1	0.8	46.96	0.78	53.77	0.72
	mean of all main producers (1–26)	9.13	1.21	25.45	1.03	24.82	1.02	33.55	0.94

Table S3. List of extreme events considered in this study. Heat wave and drought events between 1964 - 2007 recorded at country level in EM-DAT (13) are included in the analysis of maize and wheat simulations (Figure 2) if the respective crop contributes at least 5% to the total country cropland area. Country names are shown as ISO3 codes.

Maize					Wheat						
Heat waves		Droughts		Heat	waves	Droughts					
	(n=65)		(n=175)		(n:	=81)		(n=146)			
1 2	1966 USA 1968 MEX	1964 ECU 1964 NPL	1985 CHN 1986 HUN	1999 USA 1999 URY	1965 IND 1966 USA	2005 IND 2005 PAK	1964 IND 1964 IRN	1989 FRA 1990 BOL	2003 HUN 2003 RUS		
3 4	1972 ARG 1972 USA	1964 SOM 1964 ZAF	1986 IDN 1986 ZAF	2000 BOL 2000 BIH	1968 MEX 1972 ARG	2005 PRT 2005 USA	1964 NPL 1964 ZAF	1990 GRC 1990 PER	2004 BOL 2004 PER		
5	1980 USA 1983 PER	1965 CHN 1965 ETH	1987 ETH 1987 SOM	2000 BGR 2000 GEO	1972 USA 1975 PAK	2006 FRA 2006 ESP	1965 CHN 1965 ETH	1990 ESP 1990 MKD	2004 PRT 2004 ZAF		
7	1983 USA	1965 KEN	1987 VNM	2000 MDA	1978 IND	2007 ALB	1966 MAR	1991 AUS	2005 CHN		
8	1985 GRC 1986 USA	1966 BFA 1966 IDN	1988 BOL 1988 BEA	2000 ROU 2000 SOM	1979 PAK 1980 USA	2007 AUT 2007 BGR	1966 PER 1967 AUS	1991 CHL 1991 CHN	2005 ZMB 2006 AEG		
10	1980 CSA 1987 GRC	1966 PER	1988 CAN	2000 SOM 2001 BFA	1980 USA 1983 PER	2007 BOK 2007 GRC	1967 NPL	1991 FRA	2006 AUS		
11	1987 NPL	1966 SEN	1988 CHN	2001 CMR	1983 USA	2007 HUN	1968 CHL	1991 ZAF	2006 NPL		
12	1988 MKD 1990 FRA	1967 NPL 1967 TZA	1988 MEA 1988 ZAF	2001 NAM 2001 SWZ	1985 GRC 1985 IND	2007 JPN	1968 LSO 1969 AFG	1991 USA 1991 ZMB	2006 PER 2007 LSO		
14	1990 MEX	1968 HTI	1988 TZA	2001 ZWE	1986 USA	2007 MKD	1969 ETH	1991 ZWE	2007 MDA		
15 16	1990 USA 1993 USA	1969 BFA 1969 ETH	1988 USA 1989 ALB	2002 ITA 2002 MEX	1987 GRC 1987 IND	2007 SVK 2007 TUR	1969 IRQ 1969 PER	1992 DNK 1992 HUN	2007 USA 2007 ZWE		
17	1994 CHN	1969 PER	1989 ETH	2002 PER	1987 NPL	2007 1010	1969 YMN	1992 LSO	2007 2112		
18	1994 ROU	1969 SEN	1989 FRA	2002 SEN	1988 MKD		1971 AFG	1992 PER			
20	1995 ESP	1969 YMN	1990 BOL 1990 BFA	2002 VINM 2003 ARG	1990 MEX		1971 MAK 1972 IND	1993 MKD			
21	1995 USA	1971 CMR	1990 CMR	2003 BIH	1990 USA		1972 NPL	1993 RUS			
22	1996 ROU 1997 CHN	1971 KEN 1972 IDN	1990 GRC 1990 PER	2003 HRV 2003 ETH	1991 PAK 1993 AUS		1973 ETH 1974 AUS	1994 BOL 1995 MEX			
24	1998 ITA	1972 NPL	1990 ESP	2003 HTI	1993 USA		1977 BOL	1995 ZAF			
25 26	1998 ROU 1998 USA	1973 ETH 1974 HTI	1990 SWZ	2003 HUN 2003 IDN	1994 CHN 1994 IND		1977 CAN 1977 IPN	1995 ZMB 1996 IND			
27	2000 BGR	1974 SOM	1991 CHN	2003 RUS	1994 ROU		1977 TUN	1997 CHN			
28	2000 HRV 2000 GPC	1976 BEL	1991 FRA	2003 TZA	1995 EGY		1977 YMN	1997 ETH			
30	2000 GRC 2000 ROU	1977 BOL 1977 BFA	1991 NAM	2004 BOL 2004 KEN	1995 ESP		1978 CHN	1997 ITA 1997 ITA			
31	2001 NZL	1977 CAN	1991 ZAF	2004 PER	1995 USA		1978 MEX	1997 PRT			
32 33	2001 RUS 2002 CHN	1977 HTT 1977 SEN	1991 TZA 1991 USA	2004 PRT 2004 SOM	1996 PAK 1996 ROU		1979 IND 1979 NPL	1998 IRQ 1998 RUS			
34	2002 NGA	1977 TZA	1991 ZMB	2004 ZAF	1997 CHN		1980 ZAF	1998 ZWE			
35 36	2003 AUT 2003 BEL	1977 YMN 1978 CHN	1991 ZWE 1992 HTI	2005 CMR 2005 CHN	1998 IND 1998 ITA		1980 ESP 1981 DZA	1999 CHN 1999 IRN			
37	2003 HRV	1978 IDN	1992 HUN	2005 VNM	1998 ROU		1981 AUS	1999 ISR			
38	2003 FRA 2003 DEU	1978 MEX 1979 KEN	1992 PER	2005 ZMB 2006 NPI	1998 USA		1982 FRA	1999 JOR 1000 MEX			
40	2003 ITA	1979 NPL	1993 RUS	2006 PER	2000 BGR		1982 ZAF	1999 MAR			
41	2003 NLD	1980 BFA	1994 BOL	2006 TZA	2000 HRV		1982 ZMB	1999 PAK			
42	2003 PK1 2003 SVK	1980 SOM	1994 NEN 1994 NZL	2007 MDA 2007 SWZ	2000 GRC 2000 ISR		1982 ZWE 1983 BOL	1999 ESP 1999 SYR			
44	2003 ESP	1980 ZAF	1995 BFA	2007 USA	2000 JOR		1983 BGR	1999 USA			
45 46	2004 ALB 2004 CHN	1980 ESP 1982 FRA	1995 MEX 1995 NAM	2007 ZWE	2000 MAR 2000 ROU		1983 ETH 1983 LSO	2000 AFG 2000 ARM			
47	2004 MKD	1982 IDN	1995 ZAF		2000 TUR		1983 MAR	2000 AZE			
48 49	2004 ROU 2005 PRT	1982 NAM 1982 SEN	1995 ZMB 1996 TZA		2001 RUS 2002 CHN		1983 PER 1983 PRT	2000 BOL 2000 BGR			
50	2005 USA	1982 ZAF	1997 CHN		2002 IND		1983 ROU	2000 GEO			
51	2006 BEL 2006 EP A	1982 ZMB	1997 ECU		2002 PAK		1984 CAN	2000 IND 2000 MDA			
53	2006 PKA 2006 DEU	1982 ZWE 1983 BOL	1997 FRA		2003 DZA 2003 AUT		1985 CHIN 1986 HUN	2000 MDA 2000 MNG			
54	2006 NLD	1983 BGR	1997 IDN		2003 HRV		1986 ZAF	2000 ROU			
55 56	2000 ESP 2007 ALB	1983 NGA	1997 KEN		2003 FRA 2003 ITA		1987 IND	2000 IJK 2000 UZB			
57	2007 AUT	1983 PER	1997 PRT		2003 PRT		1988 BOL	2001 ZWE			
эх 59	2007 BIH 2007 BGR	1983 PKT 1983 ROU	1997 VINM 1998 BFA		2003 SVK 2003 ESP		1988 CAN 1988 CHN	2002 AUS 2002 ITA			
60	2007 GRC	1983 SOM	1998 NAM		2003 GBR		1988 MEX	2002 LSO			
61 62	2007 HUN 2007 ITA	1983 SWZ 1984 CAN	1998 RUS 1998 ZWF		2004 ALB 2004 CHN		1988 ZAF 1988 TUN	2002 MEX 2002 PER			
63	2007 MKD	1984 IDN	1999 CHN		2004 JPN		1988 USA	2002 ARG			
64 65	2007 SRB 2007 SVK	1984 KEN	1999 MEX		2004 MKD		1989 ALB	2003 HRV			
05	2007 5 V K	170+ 1ZA	1777 E.JF		2004 KOU		1907 1111	2005 ETH			