

Supplemental Figure 1. Ahr expression in ILC progenitors and mature ILCs, and the effect of TGFB on Ahr expression, (Related to Figure 1). (A) FACS analysis of Ahr CHILP (Lin⁻CD127⁺α4β7⁺CD25⁻Flt3⁻), expression in and ILC2P (Lin⁻ CD127⁺ α 4 β 7⁺CD25⁺Flt3⁻) from the bone marrow of Ahr^{-/-}or Ahr^{+/+} littermate mice. Δ MFI (Mean Fluorescence Intensity) was calculated as follows: MFI of indicated $Ahr^{+/+}$ cell populations – MFI of indicated $Ahr^{-/-}$ cell populations. Data are representative of three independent experiments. (B) CHILP, ILC2P, ILC2s (Lin⁻KLRG1⁺CD90⁺), and ILC3s (Lin⁻ CD45^{low}CD90⁺) were sorted from wildtype C57/BL6 mice. Ahr mRNA was analyzed by realtime RT-PCR. Data are shown as mean \pm SEM (n=3). ANOVA followed by Bonferroni's test for ILC2s in the small intestine (SI) or large intestine (LI) versus other subsets. ****p<0.0001. (C) Representation of the knock-in mouse model of Ahr^{CAIR} mice with Crecontrolled expression of Ahr Δ PAS-B (CA-Ahr) and the generation of Ahr^{dCAIR} mice by crossing Ahr^{CAIR/+} mice with EIIa-cre mice to delete the loxP-flanked STOP sequence in the germline, and subsequent removal of the Ella-cre transgene by breeding. (D) FACS analysis of Ahr expression in ILC2s from indicated organs. Data are shown as mean \pm SEM (n=5 per group). Δ MFI was calculated as follows: MFI of indicated $Ahr^{+/+}$ ILC2 populations – MFI of corresponding $Ahr^{-/-}$ ILC2s from the same source. (E) FACS analysis of Ahr expression in SI or LI ILC2s (Lin⁻GATA3⁺) of specific pathogen free (SPF) or germ-free (GF) mice. Data are shown as mean \pm SEM (n=3 per group). Δ MFI was calculated as follows: MFI of indicated ILC2 populations – MFI of $Ahr^{-/-}$ SPF LI ILC2s. (F and G) SI ILC2s were sorted from $Ahr^{+/+}$ or Ahr^{-/-} littermate mice. The cells were then cultured in presence of IL-2, IL-7 and IL-33 (10 ng/ml each), with or without TGFB (10 ng/ml). ILC2s were collected at indicated time points and intracellular Ahr was determined. Schematic depiction of the experiment (F). FACS analysis of Ahr in $Ahr^{+/+}$ or $Ahr^{-/-}$ ILC2s from indicated time points (G). (H and I) Sorted SI ILC2s were cultured in presence of IL-2, IL-7 and IL-33 (10 ng/ml each) for 12 days. TGFB (10 ng/ml) was added on day 12, and ILC2s were harvested at indicated time points. Schematic depiction of the experiment (H). FACS analysis of Ahr in $Ahr^{+/+}$ or $Ahr^{-/-}$ ILC2s from indicated time points (I).

Supplemental Figure 2. Chromatin accessibility at the *Ahr* locus in ILC progenitors, mature ILCs, and Treg cells, (Related to Figure 1). (A) Intracellular staining of Ahr in ILC2s (Lin⁻GATA3⁺ROR γ t⁻), ILC3s (Lin⁻ROR γ t⁺GATA3⁻), and Treg cells (Lin⁺Foxp3⁺) isolated from the lamina propria of large intestine (LI). Data are shown as mean ± SEM (n=5 per group). Δ MFI was calculated as follows: MFI of indicated populations – MFI of corresponding population from *Ahr*^{-/-} mice. (B) Representative ATAC-seq signals at the *Ahr* locus in indicated cell populations. Analysis is based on published ATAC-seq data (Shih et al., 2016; Ye et al., 2017). Red boxes highlight the gut ILC2-specific peaks with indicated distance downstream or upstream from the transcription start site. (C) Sorting strategy of ILC2s from the gut. (D) Representative ATAC-seq signals at the *Ahr* locus in gut ILC2s (Lin⁻KLRG1⁺CD90⁺) of SPF or GF C57/BL6 wildtype mice. (E) Relative Ahr expression in the mesenteric lymph nodes (mLN) of Gfi1-sufficient or deficient ILC2s analyzed from published microarray data (Spooner et al., 2013). (F) Fragments Per Kilobase of transcript per Million mapped reads (FPKM) of

Ahr in RNA-seq with sorted ILC2s from mLN of *Gata3^{fl/fl}-CreERT2* mice, and treated with or without 4-Hydroxytamoxifen (OHT) (Yagi et al., 2014). (G) FPKM of Ahr in RNA-seq from Treg cells sorted from LI of $Ahr^{f/+}Foxp3^{Yfp-Cre}$ or $Ahr^{f/-}Foxp3^{Yfp-Cre}$ littermate mice (Ye et al., 2017)

Supplemental Figure 3. Ahr regulates specific gene pathways and chromatin remodeling events in ILCs, (Related to Figure 2). (A) Pathway analysis of differentially-expressed genes identified by RNA-seq in ILC2s (q-value ≤ 0.05) from the small intestine (SI) and large intestine (LI) of $Ahr^{+/+}Rag1^{-/-}$ (WT) or littermate $Ahr^{-/-}Rag1^{-/-}$ (KO) mice. (B, D) ATAC-seq signal across all peak locations comparing ILC2s or ILC3s from SI and LI of $Ahr^{+/+}Rag1^{-/-}$ (WT) or $Ahr^{-/-}Rag1^{-/-}$ (KO) littermate mice. (C, E) Average ATAC-seq peak signal (Reads Per Million mapped reads; RPM) centered on all peak locations (signal is calculated from 5' to 3' end of the peaks ± 1 kb) of ILC2s or ILC3s. (F) Volcano plots indicating fold changes between $Ahr^{+/+}Rag1^{-/-}$ (WT) and littermate $Ahr^{-/-}Rag1^{-/-}$ (KO) ILC2s or ILC3s in ATAC-seq signals and q-value. Differentially-expressed peaks (RPM ≥ 1 , q-value ≤ 0.05 , and fold change ≥ 2) are highlighted in blue (decreased in KO) or red (increased in KO). The differential peaks at the ILC2- or ILC3- characteristic or -associated gene loci were annotated.

Supplemental Figure 4. The regulation of chromatin at the *Ahr* and *II1rl1* loci by Ahr is independent of adaptive immunity, (Related to Figure 2). Representative ATAC-seq tracks at the *Ahr* (A) and *Il1rl1* (B) loci in ILC2s sorted from the small intestine (SI) or large intestine (LI) of *Ahr*^{+/+} or *Ahr*^{-/-} littermate mice, or *Ahr*^{+/+} $Rag1^{-/-}$ or *Ahr*^{-/-} Rag1^{-/-} littermate mice.

Supplemental Figure 5. Enhanced ST2, IL-5, IL-13, and Amphiregulin expression in Ahrdeficient ILC2s, (Related to Figure 3). (A) FACS analysis of GATA3 expression after gating on Lin⁻ cells in the lung of $Ahr^{+/+}$ or $Ahr^{-/-}$ littermate mice. Data are representative of two independent experiments. (B) Absolute numbers of ILC2s (Lin⁻GATA3⁺) in the lung of $Ahr^{+/+}$ or $Ahr^{-/-}$ littermate mice. Data are shown as mean ± SEM (n=4-5 per group). (C) Absolute numbers of ILC2P (Lin⁻CD127⁺a4 β 7⁺CD25⁺Flt3⁻) in the bone marrow of $Ahr^{+/+}$ or $Ahr^{-/-}$ littermate mice. Data are shown as mean ± SEM (n=5-7 per group). (D) mRNA of ST2 (*Il1rl1*) was determined by realtime RT-PCR. Data are shown as mean ± SEM (n=3). (E to M) FACS analyses of IL-5 and amphiregulin (Areg) expression (E), and IL-13 and Areg expression (F) after gating on Lin⁻ GATA3⁺ lamina propria lymphocytes (LPLs) in the small intestine (SI) and large intestine (LI) of $Ahr^{+/+}$ or $Ahr^{-/-}$ littermate mice. Data are representative of three independent experiments. (G to

M) Percentages of indicated subsets in ILC2s (Lin⁻GATA3⁺) in SI and LI of $Ahr^{+/+}$ or $Ahr^{-/-}$ littermate mice. Data are shown as mean ± SEM (n=7 per group).

Supplemental Figure 6. Hematopoietic cell-intrinsic regulation of ILC2s by Ahr, (Related to Figure 4). (A to I) FACS analyses of ROR γ t and GATA3 (A), ST2 and GATA3 expression (C) after gating on Lin⁻cells, and IL-5 and IL-13 expression after gating on Lin⁻GATA3⁺ cells (G) in the small intestine (SI) and large intestine (LI) of *Ahr^{d/f}* and *Ahr^{d/f} Vav-cre* littermate mice. Data are representative of three independent experiments. Percentages of ILC3s (Lin⁻ROR γ t⁺) (B), ILC2s (Lin⁻GATA3⁺) (D) among Lin⁻ cells, and ST2⁺ cells in ILC2s (F) in SI and LI of Ctrl (*Ahr^{d/f}* or *Ahr^{d/f}* Vav-cre littermate mice. Absolute numbers of ILC2s (E). Data are shown as mean ± SEM (n=3-6 per group). Percentages of IL-5⁺ (H), and IL-13⁺ (I) cells in ILC2s (Lin⁻GATA3⁺) in SI and LI of Ctrl (*Ahr^{d/f}* or *Ahr^{d/f}*) and *Ahr^{d/f}* (WT, CD45.1/CD45.1) or *Ahr^{-/-}* (KO, CD45.2/CD45.2) age and sex matched mice were mixed at equal

ratio, and transferred into lethally irradiated $Rag2^{-t} Il2rg^{-t}$ littermate recipient mice. Experimental design of competitive bone marrow chimera (J), and FACS analyses of SSC and GATA3 after gating on Lin⁻ cells, and CD45.2 and CD45.1 expression by bone marrow-derived ILC2s (Lin⁻GATA3⁺) in the small intestine (SI) or large intestine (LI) of recipient mice (K). (L) FACS analysis of CD45.1 and CD45.2 expression by bone marrow-derived ILC2s (Lin⁻GATA3⁺), and ILC3s (Lin⁻ROR γ t⁺) in SI and LI of recipient bone marrow chimeric mice. (M) Ratio of KO (*Ahr*^{-/-}) (CD45.2/CD45.2) and WT (*Ahr*^{+/+}) (CD45.1/CD45.1) bone marrow-derived ILC2s and ILC2s in competitive bone marrow chimera. Data are shown as mean ± SEM (n=5 per group). Dotted line indicates ratio 1. (N) FACS analysis of ST2 or IL-13 expression by ILC2s (Lin⁻GATA3⁺) derived from the bone marrow of *Ahr*^{+/+} (WT) or *Ahr*^{-/-} (KO). Data are representative of five recipient mice. Percentages of ST2⁺ (O) and IL-13⁺ (P) cells in the indicated ILC2s. Data are shown as mean ± SEM (n=5 per group).

Supplemental Figure 7. Impact of ILC3s deficiency on ILC2s, and regulation of ILCs by ligand or genetic modulation of Ahr activity, (Related to Figures 4 and 7). (A to F) FACS analyses of ST2 and GATA3 after gating on Lin⁻ lamina propria lymphocytes (LPLs) (A), and IL-5 and IL-13 expression after gating on Lin⁻GATA3⁺ LPLs (D) in the small intestine (SI) and large intestine (LI) of *Rorc*^{gfp/+} or *Rorc*^{gfp/gfp} littermate mice. Data are representative of two independent experiments. Absolute number of ILC2s (B), and percentages of ST2⁺ (C), IL-5⁺ (E), and IL-13⁺ (F) cells in ILC2s (Lin⁻GATA3⁺) in SI and LI of *Rorc*^{gfp/+} or *Rorc*^{gfp/gfp} littermate mice. Data are shown as mean \pm SEM (n=4 per group). (G and H) FACS analysis of ST2 and GATA3 expression after gating on Lin⁻ lamina propria lymphocytes (LPLs) of littermate wildtype 6 day-old mice treated with FICZ (0.5 µg/day) or vehicle DMSO for 7 days (G). Data are representative of two independent experiments. (H) Percentages of ILC2s (Lin⁻GATA3⁺) in

Lin⁻LPLs, and ST2⁺ cells in ILC2s (Lin⁻GATA3⁺) in the small intestine (SI) and large intestine (LI). Data are shown as mean \pm SEM (n=4 per group). FACS analyses of Ahr expression after gating on Lin⁻GATA3⁺ cells (I), and ST2 and GATA3 expression after gating on Lin⁻LPLs (J) of littermate wildtype mice fed with Ahr ligand-deficient diet (AIN-76A) (see STAR Methods). Data are representative of two independent experiments. (K) Percentages of ILC2s (Lin⁻GATA3⁺) in Lin⁻LPLs, and ST2⁺ cells in ILC2s (Lin⁻GATA3⁺) in SI and LI. Data are shown as mean \pm SEM (n=5 per group). (L) Schematic depiction of generation of *Ahr^{CAIR/CAIR} Rorc-cre* mice and Ahr expression in indicated cell populations. (M) FACS analysis of IL-22 and RORγt expression gated on CD3⁻ LI LPLs of indicated littermate mice. Data are representative of two independent experiments.

Actin FW	CTTCTTTGCAGCTCCTTCGTT
Actin RV	AGGAGTCCTTCTGACCCATTC
Ahr FW	GGCTTTCAGCAGTCTGATGTC
Ahr RV	CATGAAAGAAGCGTTCTCTGG
<i>ll1rl1</i> FW	TGACGGCCACCAGATCATTCACAG
<i>ll1rl1</i> RV	GCCAAAGCAAGCTGAACAGGCAATAC
<i>Gfi1</i> FW	AGCGTCGGAGAAGTCACTGT
<i>Gfil</i> RV	CAGGTCAGACCCAGCAAGAC
Relmb FW	TGGTGGATCAAAGGATCAAG
Relmb RV	CCACAAGCACATCCAGTGAC
ChIP <i>Ahr</i> +54kb FW	CCTCCAGTGACACGCAAGTA
ChIP Ahr+54kb RV	CCATCCAGTCTCCACCAGTT
ChIP Ahr+14kb FW	CCTTGACCCAACAAGAGTGAA
ChIP Ahr+14kb RV	TGGAGTCAGCAGTTGACAGG
ChIP <i>Il1rl1</i> -11kb FW	ACTTATCTAACCCTCCTCACCC
ChIP Il1rl1-11kb RV	AAGTAGCAGCCTGTCTGAACTAC
ChIP <i>Il1r11-</i> 2kb FW	AGGGTAGAGTCATAGGCCAAC
ChIP <i>Il1rl1-</i> 2kb RV	TGTGATAGTCTTTCCTCGTGAGC

Table S1. Primers for realtime RT-PCR and ChIP assays, (Related to STAR Methods)