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Supplementary Figure S1 14 

 15 

 16 

Supplementary Figure S1: FACS sort of zebrafish beta-cells 17 

A FACS plot of live RFP-positive cells from Tg(ins:BB1.0L) animals at 3 mpf. Calcein labels 18 

live cells, while RFP labels beta-cells. 19 

  20 
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Supplementary Figure S2 21 

 22 

Supplementary Figure S2: Quality control for zebrafish beta-cells used to develop 23 

GERAS 24 

A flowchart showing the steps for determining sequencing quality. The following quality 25 

control parameters were obtained for the entire dataset: 26 

1. The median and median absolute deviation (MAD) for total reads 27 

2. The median and MAD for % of mitochondrial reads 28 

3. The median and MAD for % spike-ins 29 

4. Number of detectable genes 30 

Cells passed quality control if they belonged to median ± 3*MAD bracket for 1-3 and 31 

contained more than 1500 genes.   32 
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Supplementary Figure S3 33 

 34 

Supplementary Figure S3: Classification of chronological stages using Multinomial 35 

Logistic Regression  36 

Barplot showing the accuracy of a Multinomial Logistic Regression for classifying the age of 37 

zebrafish beta-cells on the test set – the cells that were excluded from the training of the 38 

logistic regression model.  The classifications on the test display an overall accuracy of 64%.  39 

Error bars indicate standard error. Multinomial Logistic Regression was carried out using the 40 

‘nnet’
1
 package in R. 41 

  42 
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Supplementary Figure S4 43 

 44 

Supplementary Figure S4: Variable importance for zebrafish beta-cell GERAS  45 

(a) Plot depicting the importance of each variable (gene) for the classification using zebrafish 46 

beta-cell GERAS. The importance of each input gene is calculated using the strength 47 
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(weights) of the neural network connections
2
. An input gene with stronger neural network 48 

connections will be more important than another input gene with weaker neural network 49 

connections. The Y-axis denotes variable importance, with 1 being most important and 0 50 

being least important. On X-axis, all 1000 genes used as input to GERAS are depicted. Dotted 51 

horizontal line depicts the mean of the variable importance. 221 genes (lying right of the 52 

vertical dotted line) have importance higher than the mean.  53 

(b) Barplot showing the relative importance of the top 20 genes. The X-axis denotes the 54 

relative importance, and the Y-axis lists each gene individually. The names of the genes are 55 

listed, along with the disease associated with their human homologue. Diseases association 56 

were obtained from DisGeNET database
3
.  57 
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Supplementary Figure S5 58 

 59 

Supplementary Figure S5: Classification probability for the ‘Interpolation’ samples 60 

(a) Boxplot depicting the classification probability for beta-cells collected from 1.5 mpf 61 

animals. The probability for beta-cells from 1.5 mpf animals to be classified into the 62 

‘Juvenile’ stage (mean = 0.43) is statistically similar to the probability for the samples to be 63 

classified into the ‘Adolescent’ stage (mean = 0.42). In contrast, the samples display a lower 64 

probability to be classified into the ‘Adult’ stage (mean = 0.15). (ANOVA, p-value < 0.001; 65 

Tukey’s test: ns, p-value > 0.05; *** p-value < 0.001). 66 

(b) Boxplot depicting the classification probability for beta-cells collected from 9 mpf 67 

animals. The samples display the highest probability to be classified into the ‘Adult’ stage 68 

(mean = 0.56), followed by classification into the ‘Adolescent’ stage (mean = 0.41). The 69 

samples display the lowest probability to be classified into the ‘Juvenile’ stage (mean = 0.03). 70 

(ANOVA, p-value < 0.001; Tukey’s test: *** p-value < 0.001).   71 
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Supplementary Figure S6 72 

 73 

Supplementary Figure S6: Gene expression dynamics with age  74 

Tukey-style boxplots showing expression of junba (left) and fosab (right) in single beta-cells 75 

during aging. Both genes show statistically significant down-regulation with age (t-test using 76 

the ROTS package
4
, ***p-value < 0.001).  77 
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Supplementary Figure S7 78 

 79 

  80 
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Supplementary Figure S7: Setup of mosaic analysis for evaluating the impact of DN-81 

junba on beta-cell proliferation. 82 

(a) Illustration depicting the generation of genetic mosaics. Zebrafish embryos are injected at 83 

one-cell stage with a plasmid expressing the blue fluorescence protein tagged DN-junba from 84 

the insulin promoter. The insulin promoter restricts expression to beta-cells. Random 85 

integration of the genetic cassette leads to expression of DN-junba in a subset of beta-cells, 86 

which are labeled in blue color.  87 

(b) A schematic describing labeling of different cell-cycle states using the fluorescence 88 

ubiquitination cell cycle indicator (FUCCI) system. FUCCI system includes two 89 

components
5
.  The FUCCI-G0/G1 fusion protein is degraded during S/G2/M phase, while 90 

FUCCI-S/G2/M is spared. This leads to green fluorescence during S/G2/M phase. In contrast, 91 

during G0/G1 phase, FUCCI-S/G2/M is degraded and FUCCI-G0/G1 is spared. 92 

(c) Combining genetic mosaics with FUCCI system allows comparison of proliferation among 93 

the DN-junba-expressing and control cells within the same islet. In this scenario, injection of 94 

plasmid is performed in eggs collected from mating of transgenic animals containing the 95 

individual FUCCI components. The injected animals grow to yield islets with DN-junba-96 

expressing and non-expressing cells.  Proliferation is quantified based on the FUCCI-S/G2/M 97 

and FUCCI-G0/G1 reporters.   98 

  99 



Page 11 of 25 

 

Supplementary Figure S8 100 

 101 
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Supplementary Figure S8: Variable importance for human pancreatic GERAS  102 

(a) Plot depicting the importance of each variable (gene) for the classification using human 103 

pancreatic GERAS. The Y-axis depicts the importance of the variable from 0 (the lowers) to 1 104 

(the highest). The X-axis shows the 1000 genes used as input to GERAS. The mean of the 105 

variable importance is depicted by the dotted horizontal line; with 236 genes (lying right of 106 

the vertical dotted line) having higher importance than the mean.  107 

(b) Barplot showing the relative importance of the top 20 genes. Relative importance is 108 

plotted on X-axis, and each gene is individually listed on the Y-axis. The names of the genes, 109 

along with the disease associated with them is stated on the right. Diseases association were 110 

obtained from DisGeNET database
3
.  111 
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Supplementary Figure S9 112 

 113 

 114 

 115 
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Supplementary Figure S9: Probability of cells from individuals ranging from 22 – 48 116 

years to classify in the ‘Middle’ (38 – 54 years) stage  117 

Tukey-style boxplots showing the softmax output for the data from healthy individuals in 118 

Segerstolpe et al.
6
 The softmax output for the ‘Middle’ stage of a single cell equals the 119 

probability that the cell would classify in the ‘Middle’ stage. Individuals on the X-axis are 120 

shown in ascending age. BMI for each individual is shown below the age and color coded 121 

according to the BMI ranges indicated below. The BMI ranges are based on world health 122 

organization (WHO) recommendations
7
. Numbers of cells from each individual are indicated 123 

below the BMI values. 124 
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Supplementary Table Legends 126 

 127 

Table S1: Samples for development of GERAS for zebrafish beta-cells (.xls) 128 

A table listing the batches in which beta-cells were collected for the development of GERAS 129 

for zebrafish beta-cells. 130 

 131 

Table S2: Variable Importance for zebrafish beta-cell GERAS (.xls) 132 

A table listing the 1000-input genes utilized by zebrafish beta-cell GERAS and their 133 

importance towards classification.  134 

 135 

Table S3: Differential gene expression analysis between the beta-cells classified as 136 

‘Adult’ or ‘Adolescent’ from zebrafish fed three-times-a-day (.xls) 137 

A table listing the differences in gene expression between beta-cells classified as ‘Adult’ vs. 138 

beta-cells classified as ‘Adolescent’ from the cells collected from zebrafish fed three-times-a-139 

day. The table lists all the genes in descending order of false-discovery rate (FDR). Genes that 140 

show differential gene expression (FDR < 0.05) are italicized.  141 

 142 

Table S4: Differential gene expression analysis between the transcriptome of beta-cells 143 

collected zebrafish on intermittent feeding vs. the transcriptome of beta-cells collected 144 

from zebrafish fed three-times-a-day (.xls) 145 

A table listing the differences in gene expression between beta-cells collected from zebrafish 146 

on intermittent feeding vs. three-times-a-day fed zebrafish. The table lists all the genes in 147 

descending order of false-discovery rate (FDR). Genes that show differential gene expression 148 

(FDR < 0.05) are italicized.  149 

 150 

Table S5: Variable Importance for Human pancreatic GERAS (.xls) 151 
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A table listing the 1000-input genes utilized by human pancreatic GERAS and their 152 

importance towards classification. 153 

  154 
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Supplementary Methods 155 

Single cell isolation of zebrafish beta-cells 156 

Primary islets from Tg(ins:BB1.0L; cryaa:RFP) zebrafish were dissociated into single 157 

cells and sorted using FACS-Aria II (BD Bioscience). Islets were dissociated into single cells 158 

by incubation in TrypLE (ThermoFisher, 12563029) with 0.1% Pluronic F-68 (ThermoFisher, 159 

24040032) at 37 °C in a benchtop shaker set at 450 rpm for 30 min. Following dissociation, 160 

TrypLE was inactivated with 10% FBS, and the cells pelleted by centrifugation at 500g for 10 161 

min at 4 °C. The supernatant was carefully discarded and the pellet re-suspended in 500 uL of 162 

HBSS (without Ca, Mg) + 0.1% Pluronic F-68. To remove debris, the solution was passed 163 

over a 30 µm cell filter (Miltenyi Biotec, 130-041-407). To remove dead cells, calcein violet 164 

(ThermoFisher, C34858) was added at a final concentration of 1 µM and the cell suspension 165 

incubated at room temperature for 20 minutes. The single cell preparation was sorted with the 166 

appropriate gate for identification of beta-cells (RFP+ and calcein+) (Supplementary Fig. S1). 167 

FACS was performed through 100 µm nozzle with index sorting.  168 

Beta-cells were collected from seven ages of zebrafish: 1 mpf, 3 mpf, 4 mpf, 6 mpf, 10 169 

mpf, 12 mpf and 14 mpf. For classification, the seven ages were divided into three 170 

chronological stages: ‘Juvenile’ (1 mpf), ‘Adolescent’ (3, 4 and 6 mpf) and ‘Adult’ (10, 12 171 

and 14 mpf). The collection of the beta-cells was carried out in four batches (Supplementary 172 

Table S1), with each batch representing a different collection date. In Supplementary Table 173 

S1, the four batches (collection dates) are labeled as ‘A’, ‘B’, ‘C’ and ‘D’ for simplification. It 174 

is important to note that each batch (except ‘D’) contained samples from more than one 175 

chronological stage and conversely each stage (except ‘Juvenile’) was represented in more 176 

than one batch. 177 
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Single cell mRNA sequencing of zebrafish beta-cells from 96-well plates 178 

Cells were sorted into a 96-well plate containing 2 µl of nuclease free water with 0.2% 179 

Triton-X 100 and 4 U murine RNase Inhibitor (NEB), spun down and frozen at -80°C. After 180 

thawing the samples, 2 µl of a primer mix was added (5 mM dNTP (Invitrogen), 0.5 µM dT-181 

primer*, 4 U RNase Inhibitor (NEB)). RNA was denatured for 3 minutes at 72°C and the 182 

reverse transcription was performed at 42°C for 90 min after filling up to 10 µl with RT 183 

buffer mix for a final concentration of 1x superscript II buffer (Invitrogen), 1 M betaine, 5 184 

mM DTT, 6 mM MgCl2, 1 µM TSO-primer*, 9 U RNase Inhibitor and 90 U Superscript II. 185 

After synthesis, the reverse transcriptase was inactivated at 70°C for 15 min. The cDNA was 186 

amplified using Kapa HiFi HotStart Readymix (Peqlab) at a final 1x concentration and 0.1 187 

µM UP primer under following cycling conditions: initial denaturation at 98°C for 3 min, 22 188 

cycles [98°C 20 sec, 67°C 15 sec, 72°C 6 min] and final elongation at 72°C for 5 min. The 189 

amplified cDNA was purified using 1x volume of hydrophobic Sera-Mag SpeedBeads (GE 190 

Healthcare) and DNA was eluted in 12 µl nuclease free water. The concentration of the 191 

samples was measured with a Tecan plate reader Infinite 200 pro in 384 well black flat 192 

bottom low volume plates (Corning) using AccuBlue Broad range chemistry (Biotium). 193 

For library preparation, 700 pg cDNA in 2 µl was mixed with 0.5 µl tagmentation 194 

enzyme and 2.5 µl Tagment DNA Buffer (Nextera DNA Library Preparation Kit; Illumina) 195 

and tagmented at 55°C for 5 min. Subsequently, Illumina indices were added during PCR 196 

(72°C 3 min, 98°C 30 sec, 12 cycles [98°C 10 sec, 63°C 20 sec, 72°C 1 min], 72°C 5 min) 197 

with 1x concentrated KAPA Hifi HotStart Ready Mix and 0.7 µM dual indexing primers. 198 

After PCR, libraries were quantified with AccuBlue Broad range chemistry, equimolarly 199 

pooled and purified twice with 1x volume Sera-Mag SpeedBeads. This was followed by 200 

Illumina sequencing on a Nextseq500 aiming at an average sequencing depth of 0.5 million 201 

reads per cell. 202 
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 203 

*dT primer: Aminolinker-AAGCAGTGGTATCAACGCAGAGTCGAC T(30) VN 204 

*TSO primer: AAGCAGTGGTATCAACGCAGAGTACATggg 205 

*UP primer: AAGCAGTGGTATCAACGCAGAGT 206 

The C1™ Single-Cell mRNA Seq 10-17 µm IFC (© Fluidigm Corporation, CA, USA) was 207 

used to perform mRNA sequencing on single cells. In general, the protocol (PN 100-7168 L1) 208 

suggested by the manufacturer was followed, with some modifications. 1200 cells in PBS 209 

were directly sorted by FACS into the inlet, mixed 3:2 with suspension reagent, resulting in a 210 

final volume of 6 µl. Cells were loaded with the mRNAseq: Cell load protocol, without 211 

staining on the IFC. For RT and amplification, the mRNA Seq: RT & Amp script was run 212 

with the following cycling parameters: 1x 98ºC 1 min, 5x (95ºC 20-45 sec, 59-49ºC with 213 

0.3ºC increment/cycle 4 min, 68ºC 6 min) 9x (95ºC 20-45 sec, 65-49ºC with 0.3ºC 214 

increment/cycle 30 sec, 68ºC 6 min) 7x (95ºC 30-45 sec, 65-49ºC with 0.3ºC increment/cycle 215 

30 sec, 68ºC 7 min) and 72ºC 10 min using SMART-Seq v4 Ultra Low Input RNA Kit for 216 

Sequencing (Takara BIO USA, INC.). For library preparation, 2 µl cDNA were mixed with 217 

0.5 µl tagmentation enzyme and 2.5 µl Tagment DNA Buffer (Nextera DNA Library 218 

Preparation Kit; Illumina) and tagmented at 55°C for 5 min. Illumina indices were added by 219 

PCR with the following cycling conditions: 1x (72°C 3 min, 98°C 30 sec), 12 x (98°C 10 sec, 220 

63°C 20 sec, 72°C 1 min), 1x (72°C 5 min), using KAPA Hifi HotStart Ready Mix and 0.7 221 

µM final dual indexing primers. Libraries were quantified, equimolarly pooled and purified 222 

twice with 1x volume Sera-Mag SpeedBeads. Illumina sequencing (75bp SE) was done on a 223 

Nextseq500 aiming to achieve an average sequencing depth of 0.5 million reads per cell. 224 
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Mapping of read counts and quality control 225 

 Raw reads in fastq format were trimmed using trim-galore with default parameters to 226 

remove adapter sequences. Trimmed reads were aligned to the zebrafish genome, GRCz10, 227 

using HISAT2 
8
 with default parameters. htseq-count 

9
 was used to assign reads to exons thus 228 

eventually getting counts per gene. Using cells that were utilized for developing zebrafish 229 

GERAS (see next section), the following quality control parameters were obtained 230 

(Supplementary Fig. S2): 231 

1. The median and median absolute deviation (MAD) for total reads 232 

2. The median and MAD for % of mitochondrial reads 233 

3. The median and MAD for % spike-ins 234 

4. Number of detectable genes 235 

Cells passed quality control if they belonged to median ± 3*MAD bracket for 1-3 and 236 

contained more than 1500 genes. Read counts for all cells that passed quality control are 237 

available from GEO under accession number GSE109881.  238 

Development of a Multinomial Logistic Regression Model for zebrafish beta-cells 239 

 For development of multinomial logistic regression for zebrafish beta-cells, TPM 240 

normalized counts were used from seven ages of zebrafish distributed into three chronological 241 

stages: 1 mpf (‘Juvenile’); 3 mpf, 4 mpf and 6 mpf (‘Adolescent’); 10 mpf, 12 mpf and 14 242 

mpf (‘Adult’). The entire dataset containing 508 beta-cells were randomly divided into 80%-243 

20% train-test set. Multinomial Logistic Regression model was developed using the ‘nnet’
1
 244 

package in R using the top most variable genes (Supplementary Table S2). With 1000 and 245 

500 top-variable genes, the variance-covariance matrix could not be calculated. Variance-246 

covariance matrix could be calculated for an input of 250 genes. Thus, we developed a model 247 

using 250-top variable genes using model ← multinom (stage ~ gene, data = 248 
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ExpressionData). The code for developing the Multinomial Logistic Regression Model is 249 

uploaded as ZF_MultipleLogisticRegression.R on github 
10

. 250 

 The trained model was used to classify the chronological age of the test set. 251 

Accuracy was calculated as the proportion of cells for which the classification matched the 252 

chronological age. By considering each classification as a binomial distribution (a ‘Juvenile’ 253 

cell can be classified as ‘Juvenile’ or ‘Not Juvenile’), the standard error was calculated using 254 

the following formula: 255 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 = √
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ (1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

𝑛
 

where n is the number of cells tested. 256 

Construction of the ins:nls-BFP-T2A-DN-junba; cryaa:RFP plasmid 257 

To generate ins: nls-BFP-T2A-DN-junba;cryaa:RFP, a vector was created by 258 

inserting multiple cloning sites (MCS) downstream of the insulin promoter to yield ins:MCS; 259 

cryaa:RFP. To do so, the plasmid ins:mAG-zGeminin;cryaa:RFP was digested with 260 

EcoRI/PacI and ligated with dsDNA generated by annealing two primers harboring the sites 261 

EcoRV, NheI, NsiI, SalI and flanked by EcoRI/PacI overhangs. The plasmid pUC-Kan 262 

consisting of the DN-junba (junba
157-325

, consisting of only the DNA binding domain
11

) fused 263 

to nls-BFP via T2A sequence flanked by EcoRI/PacI sites was synthesized from GenScript. 264 

ins:MCS;cryaa:RFP and the plasmid pUC-nls-BFP-T2A-DN-junba were subsequently 265 

digested with EcoRI/PacI to yield compatible fragments, which were ligated together to yield 266 

the final construct. The entire construct was flanked with I-SceI sites to facilitate genomic 267 

insertion. 268 
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Analysis of proliferation using mosaic expression of DN-junba 269 

 To identify proliferating beta-cells, the zebrafish beta-cell specific FUCCI system
12

 270 

was used by crossing Tg(ins:FUCCI-G1) with Tg(ins:FUCCI-S/G2/M). Embryos obtained 271 

from the mating were injected with ins:nls-BFP-T2A-DN-junba;cryaa:RFP plasmid, along 272 

with I-SceI, to facilitate mosaic integration into the genome. At 30 dpf, animals were 273 

euthanized in Tricaine and dissected to isolate the islets. The isolated islets were fixed in 4% 274 

paraformaldehyde (PFA) for 48 hours at 4°C, washed multiple times in PBS and mounted on 275 

slides for confocal microscopy. Confocal images were used for cell-counting. All the 276 

Tg(ins:FUCCI-S/G2/M)-positive cells (green fluorescence only) were counted manually 277 

within the BFP-positive and BFP-negative clones. Using Imaris (Bitplane), the total number 278 

of BFP-positive and beta-cells were calculated in the entire islet. For this, the “spots” function 279 

was used after thresholding. For calculating percentages (%), the following calculations were 280 

used: 281 

Total BFP-negative cells = Total beta-cells − 𝑇𝑜𝑡𝑎𝑙 BFP-positive cells 

% BFP-positive proliferating cells

=
ins:FUCCI-S/G2/M-positive and  BFP-positive cells

Total BFP-positive cells
∗ 100 

% BFP-negative proliferating cells

=
ins:FUCCI-S/G2/M-positive and  BFP-negative cells

Total BFP-negative cells
∗ 100 

Calculating variable importance for GERAS 282 

 Variable importance was calculated as outlined in Gedeon et al. 
2
. The code for 283 

carrying out the calculation is shared as source/variableImportance.R on github 
10

. The code 284 

uses the weights of the trained neural network to calculate the importance of each variable 285 

(input) used for classification. The output is scaled to 0 (least important) and 1 (most 286 
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important). This was used to identify the importance of each gene used in zebrafish and 287 

human GERAS. The results were sorted in descending order for plotting. Additionally, the top 288 

20 most important genes were obtained from the sorted list, and their relative importance 289 

calculated using the formula, 290 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑔 =
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑔

∑ 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑔
 

where g denotes an individual gene among the top 20. The disease association for each gene 291 

was obtained from DisGeNET database 
3
. From the database, an association with a score of 292 

greater than or equal to 0.2 was reported.  293 

Shiny implementation of GERAS classifier 294 

 To enable easy access to classifications using GERAS, a Shiny app was developed. 295 

The app is freely available on Github 
10

. The app provides a graphic-user interface (GUI) for 296 

users to make chronological age classifications using a pre-trained GERAS model. The users 297 

can upload normalized counts, verify the uploaded data, and obtain classifications in a 298 

downloadable comma-separated (csv) file.  299 

 300 

 301 

  302 
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