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Table S1. Summary of datasets GEO19830 with the mixture proportions
(%) of rat liver, brain and lung tissues, related to Figure 2.

Mixture | Number of | Tissue Liver Brain Lung

Technical Type

Replicates
1 3 Pure 100 0 0
2 3 Pure 0 100 0
3 3 Pure 0 0 100
4 3 Mixed 5 25 70
5 3 Mixed 70 5 25
6 3 Mixed 25 70 5
7 3 Mixed 70 25 5
8 3 Mixed 45 45 10
9 3 Mixed 55 20 25
10 3 Mixed 50 30 20
11 3 Mixed 55 30 15
12 3 Mixed 50 40 10
13 3 Mixed 60 35 5




Table S2. Summary of datasets in the mixed cell line experiment with the
mixture proportions (%) of lung adenocarcinoma in humans (H1092),
cancer-associated fibroblasts (CAFs) and tumor infiltrating lymphocytes
(TIL), related to Figure 2.

Mixture Tissue H1092 CAF TIL
Type
1 Pure 100 0 0
2 Pure 100 0 0
3 Pure 100 0 0
4 Pure 0 100 0
5 Pure 0 100 0
6 Pure 0 100 0
7 Pure 0 0 100
8 Pure 0 0 100
9 Pure 0 0 100
10 Mixed 45.6 50.8 3.6
11 Mixed 45.6 50.8 3.6
12 Mixed 45.6 50.8 3.6
13 Mixed 61.9 35.6 25
14 Mixed 61.9 35.6 25
15 Mixed 61.9 35.6 25
16 Mixed 29.6 68 24
17 Mixed 29.6 68 2.4
18 Mixed 29.6 68 24
19 Mixed 43.2 49.7 71
20 Mixed 43.2 49.7 71
21 Mixed 43.2 49.7 71
22 Mixed 63 36.2 0.9
23 Mixed 63 36.2 0.9
24 Mixed 63 36.2 0.9
25 Mixed 30 69.1 0.8
26 Mixed 30 69.1 0.8
27 Mixed 30 69.1 0.8
28 Mixed 81.9 17.7 0.4
29 Mixed 81.9 17.7 0.4
30 Mixed 81.9 17.7 0.4
31 Mixed 93.6 6 0.4
32 Mixed 93.6 6 0.4




Table S3. Measures of reproducibility for estimated proportions across
different scenarios in the GSE19830 dataset and the mixed cell line RNA-
seq dataset, related to Figure 2.

Estimated Tissue DeMixT ISOpure
Brain 0.03 0.10
Lung 0.03 0.08
Liver 0.03 0.07
H1092 0.05 0.40
CAF 0.06 0.41
TIL 0.02 0.02




Table S4. Concordance correlation coefficients between estimated and
true proportions in the GSE19830 dataset. The 95% confidence interval
is in parentheses, related to Figure 2.

Estimated
Tissue Brain Lung Liver Average
DeMixT 0.88 0.95 0.74 0.86
(Brain Unknown)|(0.80, 0.93)((0.91, 0.97)|(0.61, 0.83) '
DeMixT 0.84 0.97 0.75 0.85
(Lung Unknown)|(0.71, 0.91)((0.95, 0.98)|(0.63, 0.84) '
DeMixT 0.77 0.96 0.74 0.82
(Liver Unknown)|(0.65, 0.86)((0.94, 0.97)|(0.62, 0.83) '
ISOpure 0.69 1 0.72 0.80
(Brain Unknown)|(0.55, 0.79)((1.00, 1.00)|(0.58, 0.81) )
ISOpure 0.97 0.74 0.84 0.85
(Lung Unknown)|(0.94, 0.99)((0.61, 0.83)|(0.75, 0.90) '
ISOpure 0.93 0.98 0.98 0.96
(Liver Unknown)|{(0.88, 0.96)((0.96, 0.99)|(0.96, 0.99) '




Table S5. Root mean squared errors (RMSEs) between estimated and
true proportions in the GSE19830 dataset, related to Figure 2.

Estimated
Tissue Brain Lung Liver Average
(Brai[r?eul\illi(rTown) e 0.06 0.13 0.09
(LungTJI\:I:rTown) 0.1 0.05 0.13 0.09
(Live[r)eul\glli(r;rown) 0.12 0.05 0.13 0.10
(Bra:failli:]eown) el 0.02 0.16 0.12
(LunlgS 3ﬁlli;eown) 0.04 0.14 0.11 0.10
eorre | oo7 | oos | 004 | 005




Table S6. Concordance correlation coefficients between estimated and

true proportions in the mixed cell line RNA-seq dataset. The 95%
confidence interval is given in parentheses. H1092: lung tumor

adenocarcinoma; CAF: cancer-associated fibroblasts; TIL: tumor
infiltrating lymphocytes, related to Figure 2.

Lung
Tumor Fibroblast Immune
Estimated Tissue (H1092) (CAF) (TIL) Average
DeMixT 0.99 0.91 0.14 0.68
(H1092 Unknown) [(0.99, 1.00)| (0.84, 0.95) |(0.05, 0.22) )
DeMixT 0.91 0.98 0.08 0.66
(CAF Unknown) [(0.84, 0.95)| (0.97, 0.99 |(0.02, 0.14) '
ISOpure 0.51 0.54 0.26 0.44
(H1092 Unknown) [(0.31, 0.66)| (0.35, 0.69) |(0.13, 0.38) '
ISOpure 0.51 0.45 -0.01 0.32
(CAF Unknown) [(0.33, 0.65)| (0.28, 0.60) |(-0.03, 0.01) )




Table S7. Root mean squared errors between estimated proportions and
true proportions in RNA-seq data from mixed cell line experiment,
related to Figure 2.

Lung
Tumor | Fibroblast | Immune
Estimated Tissue (H1092) (CAF) (TIL) Average
DeMixT
(H1092 Unknown) g 0.08 0.09 0.06
DeMixT
(CAF Unknown) 0.09 Lo 0.08 0.07
ISOpure
(H1092 Unknown) 0.27 0.25 0.03 0.18
ISOpure
(CAF Unknown) 0.34 0.36 0.03 0.24

H1092, lung tumor adenocarcinoma; CAF, cancer-associated fibroblasts; TIL, tumor infiltrating
lymphocytes



Table S8. Computing time for DeMixT. DeMixT was run on a simulated
dataset consisting of 50 samples and 500 genes using 2 or 20 threads.
Of all genes, 400 belong to gene set 1 (G,;) and the remaining 100 belong
to gene set 2 (G,), as defined in our gene-set-based component merging
approach, related to Figure 1b.

w/o CM w/CM
Total Two-component step: G1  Three-component: G2 Total
2 threads 16.1 h 37 min 48 min 85 min
20 threads 2.5h 6 min 8 min 14 min




Table S9. Number of probes/genes with different relationships between
different component tissues, related to Figure 1.

GEO19830, mixed tissue microarray data:

Unknown Tissue Number of Probes | Percentage of Probes
Piiver = Bprain = Bung 10928/31099 35.1%
Liiver # Bprain = Riung 4321/31099 13.9%
ﬂliver ~ /:zbrain i ﬁlung 2978/31099 9.6%
Riiver # Bprain # Riung 4671/31099 15.0%

Mixed cell line RNA-seq data:

Unknown Tissue | Number of Genes | Percentage of Genes
Ar1092 = Acar = Ariy 490/5715 8.6%
Ar1092 # fAcar = Arry 752/5715 13.2%
Ar1092 = Acar # Ariy 958/5715 16.8%
L1092 # fear # QAriL 2373/5715 41.5%

Microarray data from laser capture microdissected FFPE prostate cancer
patient samples:

Number of Genes
31149/32321
1172/32321

Unknown Tissue Percentage of Genes
96.4%

3.6%

Hrumor = MNormal

HUTumor i UNormal

* Here we define the relationship g, = [, as 0.95 < ?—1 < 1.05 in the table,

Uz

where p denotes the sample mean of log2-transformed expression data.



Algorithm 1 Performing ICM for two-component Algorithm 2 Performing ICM for three-component

1: Parameter: 1: Parameter:
Sample-wise {my ;};: Sample-wise {my 5, My };: 2% §
Gene-wise {urg, 074}y : 2% G Gene-wise {iry, 07}, : 2% G
2: Initialize: 2: Initialize:
{p'TgxaTg}gczl = o, 00 {bg, tTTg}gG=1 = Ho, 0o
3: for iterationt = 1,--+, T do, 3: for iteration t = 1,-+-, T do,
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1:  end for 11:  end for
12: end for 12: end for

Figure S1. Outline of the ICM implementation in DeMixT, related to Figure

1.
The h() represents the full likelihood based on a single integral for a two-
component model; and g() represents the full likelihood based on a double

integral for a three-component model.
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Figure S2. Dot plots of root mean square errors (RMSEs) between true
and estimated proportions, using DeMixT with (w/) and without (w/0)

component merging (CM), related to Figure 1.
We simulated 500 samples for 475 genes with uy, ~ uy, and 25 genes with

Un, #* Uy,, and repeated 25 times. Blue dots: deconvolution results without

CM:; red dots: those with CM; red dashed lines: median values.
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Figure S3. Log-Likelihood surface for m; and m,, related to Figure 1.

The left panel shows that for 100 genes where uy, ~ uy,, m; and m, are

not identifiable. The right panel shows for 100 genes where uy, # uy,, m

and m, are identifiable. The panels are generated from the same dataset,
same sample, but on different sets of genes.
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Figure S4. Scatter plots of estimated tissue proportions against true
tissue proportions for the GSE19830 dataset, related to Figure 2.

All proportion estimates from running DeMixT are shown when either the liver,
brain, or lung tissue is assumed to be the tissue with unknown expression
profiles. Plus symbols: liver tissue is unknown; circles: lung tissue is unknown;
triangles: brain tissue is unknown; blue: DeMixT; black: ISOpure.
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Figure S5: Smoothed scatter MA plots of mean estimated tissue-specific
expression (at the log2 scale) from DeMixT and ISOpure in the
GSE19830 dataset, related to Figure 2.
The MA plots compare the mean values of log2-transformed deconvolved
expression levels across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either liver, lung or brain
tissue was the unknown component. M: the difference in the two values; A:

the average of the two values.
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Figure S6. Scatter plots of estimated versus true proportions for the
mixed cell line RNA-seq dataset, related to Figure 2.

All estimated proportions from DeMixT and ISOpure are shown when either
lung tumor or fibroblast was the unknown component. Plus symbols:
reference profiles of the lung cancer cell line are unknown; circles: reference
profiles of the fibroblast cell line are unknown; triangle: the reference profiles
of all the cell lines are known (only for CIBERSORT). Blue: DeMixT; black:
ISOpure; red: CIBERSORT. Since CIBERSORT does not allow for any
unknown component, the estimated proportions of CIBERSORT are based on
the known reference genes from each component. DeMixT yielded proportion
estimates with similar RMSE as CIBERSORT and much lower than ISOpure
when compared to the truth.



DeMixT vs. ISOpure (fibroblast is unknown) DeMixT vs. Observed (fibroblast is unknown) ISOpure vs. Observed (fibroblast is unknown)

© © w0 4
ccc =0.96 ccc =0.98 ccc =0.94
< < <
N N 3]
So So So
o N LU
I | |
< < < |
1 I I
9 9 2
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
A A A
DeMixT vs. ISOpure (lung tumor is unknown) DeMixT vs. Observed (lung tumor is unknown)  ISOpure vs. Observed (lung tumor is unknown)
© © w0 4
ccc =0.98 ccc =0.99 ccc =0.98
< < <
o N o
=0 So SO -]
(Y] N LU
I | |
< < < |
1 I I
9 9 2
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
A A A

Figure S7. Smoothed scatter MA plots of mean estimated tissue-specific
expression levels (at the log2 scale) from DeMixT and ISOpure in the
mixed cell line RNA-seq dataset, related to Figure 2.

The MA plots compare mean values of log2-transformed deconvolved
expression across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either lung cancer or
fibroblast cell line was the unknown component. M: difference in the two
values; A: average of the two values.
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Figure S8: Smoothed scatter MA plots of mean estimated tissue-specific
expression (at the log2 scale) between DeMixT and ISOpure in the LCM
FFPE prostate cancer microarray dataset, related to Figure 3.

The MA plots compare mean values of log2-transformed deconvolved
expression across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either tumor or stromal
tissue was the unknown component. Shown are results from a pre-selected
list of probesets (80 probesets) with the most differential expression between

tumor and stromal tissues.
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Figure S9. Density plot comparing sample standard deviations between
deconvolved expression profiles of subset probes for DeMixT and
ISOpure in the LCM FFPE prostate cancer microarray dataset when
tumor tissue was assumed to be the unknown component; with
measured expression profiles of isolated tumor tissues, related to
Figure 3.
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Figure S10. Scatter plots of concordance correlation coefficient (CCC)
between individual deconvolved expressions and observed values for
the tumor component in 23 LCM prostate samples, related to Figure 3.
Each point corresponds to a sample. We compared results from ISOpure with
those from DeMixT. Left panel shows the results when the expression data
from stromal samples were taken as the input. Right panel shows the results
when the expression data from tumor samples were taken as the input. The
color gradient and size in each point corresponds to the estimated tumor

proportions from DeMixT.
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Figure S11. Workflow for analysis of immune infiltration in the HNSCC

dataset, related to Figure 4.
We obtained immune scores and stromal scores for all samples using the

ESTIMATE method.
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Figure S12. Density plot of estimated immune proportions for tumor
samples with HPV test results, related to Figure 4.
Red curve: for those with HPV+ status; blue curve: for those with HPV-.
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Figure S13. Association of immune-stroma-proportions from DeMixT
with overall survival compared with association of immune-stroma-
scores from ESTIMATE with overall survival in HNSCC, related to Figure
4.

Upper-left panel: a scatter plot of estimated immune- and stroma- proportions.
Each point represents an HNSCC sample. Grey lines represent cutoffs that
are used to divide patient samples into four groups. Upper-right panel:
Kaplan-Meier curves of overall survival for HNSCC by those four patient
groups given by the upper-left figure. The p-value of Cox regression model is
calculated based on the Wald test. Bottom-left panel: a scatter plot of
estimated immune- and stroma- scores from ESTIMATE. Grey lines represent
cutoffs to divide patient samples into another four groups. Bottom-right panel:
Kaplan-Meier curves of overall survival for HNSCC by those four patient
groups given by the bottom-left figure.
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Figure S14. Comparison of proportion estimation between DeMixT and
DeMix, related to Figure 1 and 2.

Left panel shows the scatter plot of estimated tumor proportions versus 1-
estimated stromal proportions for the validation using LCM data in prostate
cancer; estimates from DeMixT (blue) are compared with those from DeMix
(black). Right panel shows the estimation of proportions, between DeMixT
(blue) and DeMix (red), of the unknown component tissues from two available
data sources that are given in the DeMix paper: MAQC1: MAQC site 1,
MAQC3: MAQC site 3.
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Figure S15. Scatter plots of v,, - T, — m,;(N,, — T,) versus N,,—T, for

ny;and Y,, - T, —my;(Ny,—T,) Versus N,,—T, for m,; using the raw
measured data from GSE19830 in two mixture scenarios, related to
Figure 2.

Dark grey dashed line: fitted regression coefficient for all probes by least
squares; blue dashed line: true mixing proportion; light grey dots: probesets
removed with the criterion that the mean expression after log2-transformation
is less than 7 in either N; or N; black dots: remaining probes. If the linearity
assumption holds, the fitted line should lie approximately on the truth.



Transparent Methods

Model
Let Y;, be the observed expression levels of the raw measured data from clinically derived
malignant tumor samples for gene g, g = 1,--- ,G and sample ¢, = 1,--- ,.S. G denotes the

total number of probes/genes and S denotes the number of samples. The observed expres-
sion levels for solid tumors can be modeled as a linear combination of raw expression levels
from three components:

Yig = m1,iN1,ig + m2,iNoig + (1 — m1; — 7o) T; (1)

Here N4, N2i, and T;, are the unobserved raw expression levels from each of the three
components. We call the two components for which we require reference samples the N;-
component and the N,-component. We call the unknown component the T-component. We
let 7, denote the proportion of the N;-component, m,,; denote the proportion of the N,-
component, and 1 — m; ; — w2 ; denote the proportion of the T-component. We assume that the
mixing proportions of one specific sample remain the same across all genes. Our model al-
lows for one component to be unknown, and therefore does not require reference profiles from
all components. A set of samples for N, ;, and N, ;,, respectively, needs to be provided as
input data. This three-component deconvolution model is applicable to the linear combination
of any three components in any type of material. It can also be simplified to a two-component
model, assuming there is just one N-component. For application in this paper, we consider
tumor (7), stromal (/V;) and immune components (/NV;) in an admixed sample (Y'). Following
the convention that log,-transformed microarray gene expression data follow a normal distribu-
tion, we assume that the raw measures Ny iy ~ LN (iin,g, 0%, 4)» Nasig ~ LN (finng, 03,,) @nd
Tig ~ LN(prg,0%,), where LN denotes a log,-normal distribution and 0%, ,.0%,,.07, reflect
the variations under log,-transformed data (Ahn et al., 2013; Lénnstedt and Speed, 2002).
Consequently, our model can be expressed as the convolution of the density function for three
log,-normal distributions. Because there is no closed form of this convolution, we use numeri-
cal integration to evaluate the complete likelihood function.



Our model expressed as the convolution of the density function for three
log2-normal distributions.
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The DeMixT algorithm for deconvolution

DeMixT estimates all distribution parameters and cellular proportions and reconstitutes the
expression profiles for all three components for each gene and each sample, as shown in
equation (1). The estimation procedure (summarized in Figure 1b) has two main steps as
follows.

1. Obtain a set of parameters {m;, m;}5,, {pr, or}S., to maximize the complete likeli-
hood function, for which {uy, ,, 0N, ,, tiN, ., TN, , o=1 Were already estimated from the
available unmatched samples of the N; and N, component tissues. This step is de-
scribed in further details below in parameter estimation and the GSCM approach.

2. Reconstitute the expression profiles by searching each set of {n 4, n2,,} that maxi-
mizes the joint density of Ny ;,, N2, and T;,

Yig — ﬁl,inug - 7?‘-2,1'”2,2’9 N N
arg ma (- jin,. o1,)
n1,igN2,ig —T14 — T2, (3)

X ¢(n1,z‘g ‘,&ngy &ng )¢(n2,z‘g ‘ﬂN2g7 5N2g)

where ¢( |11, 0?) is a log2-normal distribution density with location parameter ;. and scale
parameter o.

In step 2, we combined the golden section search method with successive parabolic interpo-
lations to find the maximum of the joint density function with respect to n, ;, and ns ;, that are
positively bounded and constrained by 7 ;11 ;4 + 72,2, < Yig. 1he value of ¢;, is solved as
Yig — T1,iM1ig — T2,:M2,ig-



Parameter estimation using iterated conditional modes (ICM)

In step 1, the unknown parameters to be estimated can be divided into two groups: gene-wise
parameters, {pr, UT}le, and sample-wise parameters, {m,m}7_ ;. These two groups of pa-
rameters are conditionally independent (Figure 1b). For each pair of gene-wise parameters,
we have

{1, mo Yo L {my, mo};|{pr, o0}y, for all i # j € {1,---, S}, and similarly for each pair of
sample-wise parameters, we have {ir, o7 }i L { i, o7 };|{m, m}o_ . foralli # j € {1,---,G}.
These relationships allow us to implement an optimization method, ICM, to iteratively derive
the conditional modes of each pair of gene-wise or sample-wise parameters, conditional on the
others (Besag, 1986). Here, 7, m, are constrained between 0 and 1, and ur, o7 are positively
bounded. We combined a golden section search and successive parabolic interpolations to
find a good local maximum (Brent, 1973) in each step. As shown by Besag (Besag, 1986),
for ICM, the complete likelihood never decreases at any iteration and the convergence to the
local maximum is guaranteed. Our ICM implementation is described in Figure S1.

The GSCM approach to improve model identifiability

Due to the high dimension of the parameter search space, and often flat likelihood surfaces
in certain regions of the true parameters (e.g., 11 ~ u») that will be encountered by ICM
(Figure S3), we have developed a GSCM approach (illustrated in Figure 1b) to focus on the
hilly part of the likelihood space. This reduces the parameter search space and improves the
accuracy and computational efficiency. Here, we describe our general strategy. As there are
large variations in the number of genes that are differentially expressed across datasets, the
actual cutoffs may be adjusted for a given dataset.

Stage 1 We first combine the N; and N, components and assume a two-component mixture
instead of three. This allows us to quickly estimate 7.

a: We select a gene set containing genes with small standard deviations (< 0.1 or 0.5) for both
the N, and N, components. Among these genes, we further select genes with ng ~ mgg
(mean difference < 0.25 or 0.5), where the LN is the sample mean for the log2-transformed
data. Within this set, we further select genes with the largest sample standard deviations of
Y, (top 250), suggesting differential expression between 7" and V.

b: We run DeMixT in the two-component setting to estimate p, a%g and 7.

Stage 2 We then fix the values of {m}; as derived from Stage 1, and further estimate {m };
and {2 }; in the three-component setting.

a: We select genes with the greatest difference in the mean expression levels between the N,
and N, components as well as those with the largest sample standard deviations of Y, (top
250).

b: We run DeMixT in the three-component setting over the selected genes to estimate 7; and
o given mr.

c: We estimate the gene-wise parameters for all genes given the fixed n’s. Finally, given all
parameters, per gene per sample expression level, n; ;4, n2;, and t;, are reconstituted.



Simulation study for the GSCM approach

To demonstrate the utility of GSCM for parameter estimation, we simulated a dataset with ex-
pression levels from 500 genes and 90 samples, 20 of pure N;-type, 20 of pure N,-type and
50 mixed samples. For the 50 mixed samples, we generated their proportions for all three
components (my, o, 1) ~ Dir(1,1,1), where Dir is a Dirichlet distribution. For each mixed
sample, we simulated expression levels of 500 genes for the N; and T-component from a log,-
normal distribution with zn,, and pr, from Ny 4o)(7, 1.5%), and with equal variance. For the
N,-component, we generated /i, from iy, +dg, where dg ~ Ni_g.1,0.1)(0, 1.5?) for 475 genes
(iinig & finag ) @nd dy ~ Nig1,3(0,1.5%) U Ni_3 _o.1)(0, 1.5%) for 25 genes (fin1y # finzg)- Then
we mixed the Ny, N, and T-component expression levels linearly at the generated proportions
according to our convolution model. We created a full matrix consisting of 20 N;-type refer-
ence samples (generated separately from the NV, distribution), 20 N,-type reference samples
(generated separately from the N, distribution) and 50 mixed samples at each simulation and
repeated the simulation 100 times for each of the three variance values o € {0.1,0.3,0.5} to
finally obtain 300 simulation repeats. We first ran DeMixT with GSCM, where we used 475
genes with simulated [in14 = fin24 10 run the two-component deconvolution (/V versus 7') and
used the remaining 25 genes to run the three-component deconvolution with estimated 7.
We also ran DeMixT without GSCM using all 500 genes.

Data analysis

All analyses were performed using the open-source environment R (http://cran.r-project.org).
Documentation (knitr-html) of all scripts is provided at the GitHub repository.

Mixed tissue microarray dataset

We downloaded dataset GSE19830 (Shen-Orr et al., 2010a) from the GEO browser. We used
the R package {affy} to summarize the raw probe intensities with quantile normalization but
without background correction as recommended in previous studies (Liebner, K. Huang, and
Parvin, 2014). We evaluated the performance of DeMixT with regard to tissue proportions and
deconvolved expression levels on the set of genes that were selected based on the GSCM
approach. Specifically, we selected genes with sample standard deviation < 0.1 in N; and
N, components, among which we used those with LN, — LN,, < 0.25 for running the 2-
compoment model, and used the top 250 genes with largest LN, — LN, and largest sample
standard deviation in Y for running the 3-component model. Then we ran ISOpure for the
purpose of comparison.

Analysis of microarray data from mixed RNA from rat tissues: brain, liver and lung
(Table S1).

Checking for the linearity assumption. Our DeMixT model relies on the assumption that the
tissue-specific expression levels are combined linearly to create the observed Y. In the mixed
tissue data, we can check for the validity of this assumption when T;,’s and N;,'s are known.
Based on the linear equation, we have




T = Yig—Tig—m2,i(N2,ig—Tig)
_ L N1,ig—Tig
Yig = m1ilN1ig + mo,iNaig + (1 — w1 — m2,) Tig < _ Yig—Tig—71i(N1,ig—Tig) (4)
M2i = Na ig—T;

Thus, we generated scatter plots with a regression line to compare Y;, — T, — m2,;(Noy — T})
with Ny, — T, and Yy, — T, — m1:(Ny , —T,) with Ny, — T, where the sample mean for N, ,(e.g.
Liver), N, (e.g. Brain) and T,(e.g. Lung) were used instead of each N, ;;, No;, and Tj,. In
this dataset, the repeats were technical and presented little variation across samples, which
allowed us to simply use sample means as surrogates for the expressions from individual sam-
ples.

As illustrated in Figure S15 with 2 mixture scenarios (liver: brain: lung at 55:20:25 and
50:40:10), the linearity assumption holds reasonably within most samples; however, there
was always a small set of probes that deviated from the linear line and formed a vertical line
at 0 on the x-axis: N;-T or N,-T. We found that a criterion on probesets with mean expression
(log2-transformed) < 7 in either N, or N, can accurately identify this set and therefore remove
them, suggesting a potential cause of such behavior is the expression levels below the reliable
detection range of microarrays, with noise overtaking the signal in the N-components in these
probesets.

Deconvolution results. DeMixT showed high concordance correlations and small root mean
squared errors (RMSEs) between the estimates and the true proportions of all three tissues
in deconvolution, irrespective of which tissue was assumed as the unknown component that
was without available knowledge for expression profiles. DeMixT gave accurate estimates
for the proportions of the unknown component. ISOpure also performed well in estimating
the proportions of the unknown tissues Supplementary Tables 4-5). A stable deconvolution
algorithm should provide similar estimates of tissue-specific proportions no matter which com-
ponent is assumed to be unknown. We assessed this through a reproducibility statistic and
found that DeMixT was more stable than ISOpure (Table S3, Figure 2a and Figure S4). Both
DeMixT and ISOpure yielded accurate estimates of the mean expression levels for each tissue
component (Figure S5).

Mixed cell line RNA-seq dataset

This dataset was generated in house by mixing RNAs from three cell lines at fixed proportions.
We mapped raw reads generated from paired-end lllumina sequencing to the human reference
genome build 37.2 from NCBI through TopHat (default parameters and supplying the -G option
with the GTF annotation file downloaded from the NCBI genome browser). The mapped reads
obtained from the TopHat output were cleaned by SAMtools to remove improperly mapped
and duplicated reads. We then used Picard tools to sort the cleaned SAM files according to
their reference sequence names and create an index for the reads. The gene-level expression
was quantified by applying the R packages GenomicFeatures and GenomicRanges. We gen-
erated a reference table from the human reference genome hg19 and then used the function
findOverlaps to count the number of reads mapped to each exon for all the samples. This
count dataset was pre-processed by total count normalization, and genes that contained zero
counts were removed. The pre-processed count data were used as input for DeMixT and
ISOpure. We performed the same GSCM step as in the analysis of mixed tissue microarray



data.

Analysis of RNA-seq data from RNA from mixed cell lines: H1092, CAF and TIL (Table
S2).

DeMixT yielded proportion estimates with higher CCC and smaller errors (average RMSE =
0.06, 0.07) than ISOpure (average RMSE = 0.18 and 0.24) when compared to the truth (Figure
2b, Supplementary Tables 6-7). Proportion estimates were consistent when different com-
ponents were treated as unknown in our experiments (Table S3 and Figure S6). Both DeMixT
and ISOpure overestimated the immune proportions when lymphocytes were unknown, which
had low proportions (0.4-7.1%) in all mixed samples, but the degree of overestimation from
DeMixT was smaller. In the two scenarios in which DeMixT was able to identify the lym-
phocyte component, we estimated tissue-specific expressions for all the genes with non-zero
counts, and found high concordance (> 0.98) between the deconvolved expression estimates
and mean expression levels. Again, we observed smaller differences in mean expression
levels across genes when using DeMixT compared to ISOpure (Figure S7).

Laser-capture microdissection (LCM) prostate cancer FFPE microarray dataset

This dataset was generated at the Dana Farber Cancer Institute (GSE97284 (Tyekucheva et
al., 2017a)). Radical prostatectomy specimens were annotated in detail by pathologists, and
regions of interest were identified that corresponded to benign epithelium, prostatic intraep-
ithelial neoplasia (abnormal tissue that is possibly precancerous), and tumor, each with its
surrounding stroma. These regions were laser-capture microdissected using the ArcturusXT
system (Life Technologies). Additional areas of admixed tumor and adjacent stromal tissue
were taken. FFPE samples are known to generate overall lower quality expression data than
those from fresh frozen samples. We observed a small proportion of probesets that pre-
sented large differences in mean expression levels between the dissected tissues: tumor (7')
and stroma () in this dataset (Table S9). Only 53 probesets presented a mean difference
(IT — NJ) > 1, as compared to 10,397 probesets in GSE19830. We therefore chose the top
80 genes with the largest mean differences and ran both DeMixT and ISOpure under two
settings: tumor unknown and stroma unknown.

TCGA HNSCC data

We downloaded RNA-seq data for HNSCC from TCGA data portal (https://portal.gdc.cancer.gov/).
There was a total of 44 normal and 269 tumors samples for HNSCC. We collected the infor-
mation of HPV infection for the HNSCC samples. Samples were classified as HPV+ using
an empiric definition of detection of > 1000 mapped RNA-seq reads, primarily aligning to vi-
ral genes E6 and E7, which resulted in 36 HPV+ samples (Cancer Genome Atlas Network,
2015). We then devised a workflow to estimate the immune cell proportions (Figure S11). Our
workflow included three steps. The downloaded normal samples provided reference profiles
for the stromal component in each step. We first downloaded stromal and immune scores
from single-sample gene set enrichment analysis for all of our tumor samples (Yoshihara et
al., 2013) and selected 9 tumor samples with low immune scores (< —2) and high stromal



scores (> 0), which suggested that these samples were likely low in immune infiltration. We
then ran DeMixT under the two-component mode on these samples, generating the decon-
volved expression profiles for the tumor and stromal components. We used these profiles as
reference samples for running DeMixT under the three-component mode in the 36 HPV
samples, generating deconvolved expression profiles for the immune component. In these
two steps, we used deconvolved profiles that have smaller estimated standard variations as
the reference profiles for the next step. We then ran DeMixT under the three-component
mode on all 269 samples with reference profiles from normal samples and the deconvolved
immune component. We calculated p-values (Benjamini-Hochberg corrected (Benjamini and
Hochberg, 1995)) for the differential test of deconvolved expressions for the immune compo-
nent versus the stromal component, and for the immune component versus the tumor compo-
nent, respectively, on a set of 63 immune marker genes. We performed gene selection in the
GSCM approach (as described above), with a slightly larger threshold to account for the large
sample size: sample standard deviation < 0.6 and the top 500 genes for three-component
deconvolution to estimate the 7’s.

Summary statistics for performance evaluation.

Concordance correlation coefficient (CCC). To evaluate the performance of our method, we
use the CCC and RMSE. The CCC p,, is a measure of agreement between two variables x
and y and is defined as p,, = % where i and o are the corresponding mean and
variance for each variable, and p is the correlation coefficient between the two variables. We
calculate the CCC to compare the estimated and true proportions to evaluate the proportion
estimation. We also calculate the CCC to compare the deconvolved and observed expression
values (logo-transformed).

Measure of reproducibility. To assess the reproducibility of the estimated 7 across scenar-
ios when the different components are unknown (i.e., three scenarios for a three-component
model with one unknown component), we define a statistic R = + 37 (325 Sor (e — 4 S5 e)?)3,
where € = ¥ —;, 7¥ is the estimated value for the k-th scenario and T; is the truth for sample

1. S denotes the sample size and K is the number of scenarios. This measures the variations

in the estimation errors across different scenarios. We consider a method with a smaller R as

more reproducible and therefore more desirable.

Data and software availability

The public data used in this study are GSE19830 (Shen-Orr et al., 2010b) and GSE97284
(Tyekucheva et al., 2017b) from GEO browser, and RNA-seqV2 count data from the Genomic
Data Commons Data Portal (Genomic Data Commons Data Portal: TCGA Head and Neck
Squamous Carcinoman.d.). The RNA-seq count data used for validation were generated from
our lab and can be downloaded from https://github.com/wwylab/DeMixTallmaterials.
The accession number for the FASTQ files of the RNA-seq count data reported in this paper
is GEO: GSE121127. The DeMixT source code and the entire analytic pipeline are available
at https://github.com/wwylab/DeMixTallmaterials.
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