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1. Supplementary Text A: Proofs.

1.1. Deriving the full conditional distribution for a missing value. If Ym
is a missing intensity and Xθ[m] = E(Ym). Then,

f(Ym|·)(ym) ∝ (1− Φ (a+ b(ym))) exp(− 1

2σ2
(ym −Xθ[m])

2)

= Φ (−a− bym) exp(− 1

2σ2
(ym −Xθ[m])

2)

which is the kernel of an extended skew normal distribution defined as

fskew(x) =
φ(x−µxσ )Φ(ω

√
1 + c2 + c(x−µxσ ))

σΦ(ω)

Where
µx = Xθ[m]

and

Φ (−bym − a) = Φ

(−bσ
σ

(ym − µx + µx)− a
)

= Φ

(
−bσ (ym − µx)

σ
− bµx − a

)

Thus,
−bσ = c, ω

√
1 + c2 = −bµx − a
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2 O’BRIEN ET AL.

⇒ ω =
−a− bµx√

1 + σ2b2

Therefore,

f(Ym|·)(x) =
φ(x−µxσ )Φ(ω

√
1 + (−bσ)2 − bσ(x−µxσ ))

σΦ(ω)

=
φ(x−µxσ )Φ(−a− bx)

σΦ(ω)
.

1.2. Deriving a general full conditional distribution for the Gaussian pa-
rameters. Each of the parameters relating to the mean model has a similar
structure and the full conditional distribution is given by one generalized
formula.

Let the ith entry of θ, θi be a mean parameter with a Gaussian prior.
Let βi, τ

2
i be the mean and variance of θi and let Xθ∗ be the product of

the design matrix and parameter vector with θi removed from θ and the
column X[·,i] removed from X. Here the subscript [·, i] is used to reference
a submatrix of X containing all rows but only the ith column. Finally, let
j, · · · , J represent the row indices for which X[·,i] = 1. Then

f(θi|·) ∝ f(Y|·)fθi

∝ exp(− 1

2τ2i
(θi − βi)2)

J∏
j=1

exp

(
− 1

2σ2

(
(yj − θi −Xθ∗[j])

2
))

∝ exp

− 1

2τ2i
(θ2i − 2θiβi)−

1

2σ2

J∑
j=1

(
θ2i − 2θi(yj −Xθ∗[j])

)
= exp

(
−1

2

(
θ2i

(
1

τ2i
+

J

σ2

)
− θi

(
2βi
τ2i

+
2
∑J
j=1(yj −Xθ∗[j])

σ2

)))

= exp

−σ2 + τ2i J

2τ2i σ
2

θ2i − 2θi
σ2 + τ2i J

σ2βi + τ2i

J∑
j=1

(yj −Xθ∗[j])


∝ exp

−σ2 + τ2i J

2τ2i σ
2

(
θi −

σ2βi + τ2i
∑J
j=1(yj −Xθ∗[j])

σ2 + τ2i J

)2


Therefore,

(θi|·) ∼ N
(
σ2βi + τ2i

∑J
j=1(yj −Xθ∗[j])

σ2 + τ2i J
,

τ2i σ
2

σ2 + τ2i J

)
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2. Supplementary Text B: Simulations.

2.1. Simulation details. For the two sample simulation study, 500 data
sets were generated as follows.

1. Generate 3 variance components. τ2pep ∼ IG(1, 1), τ2fc ∼ IG(1.5, 1),

σ2 ∼ IG(2, 1). Where, IG is shorthand for the inverse gamma distri-
bution. These distributions allow for a wide variety of combinations
while preserving the general relationships observed when analyzing the

breast cancer data ( ˆτ2pep = 2.95, ˆτ2fc = 1.38 and σ̂2 = 0.77).

2. Generate 200 protein fold-change estimates, indexed by i. µi ∼ N(0, τfc).

3. Generate a random number of peptides to belong to each of the 200
proteins. ni = Ni + 1;N ∼ Poisson(4).

4. For each peptide generate a value. θj(i) ∼ N(18.5, τpep).

5. Observations in condition k, k = 1, 2 are computed as yijk = θj(i)+εijk
for k = 1 and yijk = θj(i) + µi + εijk. Where εijk ∼ N(0, σ).

6. simulated missing values are randomly generate using one of the three
algorithms described below.

2.2. Simulated missingness. Simulated missing values were generate with
three techniques. In all cases the goal is to generate a vector of indicator
variables Rijk such that the missing values are non-ignorably missing, with
a higher probability of being observed as intensity increases. Parameters for
each method of generating missing data were selected to provide pre-defined
overall percentages of missing values.

2.2.1. Probit Missingness. The first method for simulating missing val-
ues is to use the mechanism from the SMP model such that pijk = Φ(a +
byijk). In the simulation we set a = −9 and b = 0.5then we randomly drew
Bernoulli random variables (Rijk) according to those probabilities to iden-
tify which yijk are missing. This results in approximately 40-50 percent of
the data being missing.

2.2.2. Logit Missingness. Here we take a similar approach but alter the
mechanism. Instead of a probit function we use an inverse logit with a

quadratic function of b, i.e. pijk =
exp(a+byijk+b

2yijk)
exp(a+byijk+b2yijk)+1

. In the simulation
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we set a = −8 and b = 0.333 then we randomly drew Bernoulli random
variables (Rijk) according to those probabilities to identify which yijk are
missing. This results in approximately 40-50 percent of the data being miss-
ing.

2.2.3. LOD/MCAR Missingness. This method combines two distinct
missing data mechanisms. First we generate a vector of random Bernouli
variables to create a certain amount of MCAR missingness. In the simu-
lation we achieve this by generating Bernoulli(.04) random variables. We
then create vectors of random limits of detection (LOD). These limits are
compared to the outcome vectors and whenever the outcome is less than
the corresponding LOD the value is marked as missing. In the simulation
LOD’s were generated as N(18.25, .7) random variables which, when com-
bined with the MCAR missing values, resulted in approximately 40-50% of
the data being missing.

500 simulations were run for each missing data mechanism. Results were
only recorded for proteins where the contrast was estimable. RMSE for the
probit missing data mechanisms were shown in the main text. The results for
the other two mechanisms are shown in Figure 1. The SMP model, provides
a substantial reduction of error relative to the other methods with every
missing data mechanism that we tried. This result is consistent with the
gains seen in the analysis of breast cancer data and the dilution experiment.

3. Supplementary Text C: Method Implementation. These sim-
ulated data and the breast cancer data were analyzed with six different
methods. The dilution experiment makes use of an additional 3 types of
imputation. All 9 methods are detailed here.

oneway The one-way ANOVA is the simplest method studied. Using the nota-
tion from the main text, we fit the model E(yjk) = β0 + θk separately

to each protein, with θ̂1 = 0 as a side constraint (guaranteeing that
the first condition is the reference). This method implemented with
the lm() function in R and only point estimates were used in the pa-
per. This method was only implemented on proteins with estimable
contrasts.

twoway The two-way ANOVA implemented is also fit separately to each pro-
tein with the model E(yjk) = αj + θk, again θ̂1 = 0 and without an
intercept this model reduces to a One-Way ANOVA whenever J(i) = 1.
Confidence intervals were obtained using the confint() function. This
method was only implemented on estimable contrasts.
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Fig 1. Root mean squared error (RMSE) of log base 2 fold-changes from 500 simulated data
sets where missing values were simulated from a two separate missing data mechanisms; a
quadratic logit function (A) and values missing completely at random mixed with random
Limits of Detection (LOD) (B). Only estimable contrasts are included in the plot.
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mm The mixed model is defined separately for each protein with the model
yjk = β0 + aj + θk + εjk, where θ̂1 = 0, aj ∼ N(0, τpep) is indepen-
dent of εjk N(0, σ). This model is reduced to a fixed effects One-Way
ANOVA whenever J(i) = 1. Models were fit using the LME4 pack-
age (Bates et al., 2015). Bootstrap confidence intervals were obtained
with the confint(method = “boot”) function. This method was only
implemented on estimable contrasts.

cMin This imputation method replaces every missing value with the mini-
mum observed value in a column (condition). Estimates and intervals
are obtained on the completed data using the two-way ANOVA de-
fined above.

mean This imputation method replaces every missing value with the mean
observed value in a column (condition). Estimates and intervals are
obtained on the completed data using the two-way ANOVA defined
above.

pMin This method is similar to the cMin imputation however it requires
more data. Instead of imputing a minimum column value, the min-
imum observed value for each peptide sequence is used. Estimates
and intervals are obtained on the completed data using the two-way
ANOVA defined above.

KNN K-Nearest Neighbors imputation was performed using the “impute”
package (Troyanskaya et al., 2001). Estimates and intervals are ob-
tained on the completed data using the two-way ANOVA defined
above.

SVD Imputation based on the Singular value decomposition was performed
using the “bcv” package (Owen and Perry, 2009). Estimates and in-
tervals are obtained on the completed data using the two-way ANOVA
defined above.

SMP The formulation of the selection model for proteomics is primarily
described in the main text. The model definition is completed with
the prior and posterior distributions in Table 1. Priors for mean pa-
rameters were intended to be weakly-informative based on experience
with the reasonable range of observed values in a mass spectrometry
experiment. Priors for the variance component hyperparameters were
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Table 1
The prior and posterior distributions for hyperparameters for the Bayesian model. IG is

used as shorthand to denote the inverse gamma distribution. θi represents one of the
Gaussian parameters such that θi ∼ N(β, τ), i = 1, ...,m

Parameter Prior Posterior

τ2 IG(.001, .001) IG(.001 +m/2, .001 + 1
2

∑
i
(θi − β))

β N(0, 10000) N(
∑

θj/τ
2, ( 1

10000
+ m

τ2
1

))

a N(0, 10000) Probit Regression Estimation
b N(0, 10000) Probit Regression Estimation

selected from default values used in BUGS (Lunn et al., 2000). The
posterior distribution of (a, b) can be estimated by fitting the probit
regression model

Φ−1(E[Rijk|yijk]) = a+ byijk

The posterior distribution is then approximated as

(1)

(
a
b

)
∼ N(

(
â

b̂

)
, Σ̂)

Where â, b̂ and Σ̂ are the parameter estimates from the probit regres-
sion and their corresponding covariance estimate, respectively. The
bivariate normal distribution used here approximates the posterior dis-
tribution as a consequence of Bayesian large sample theory (Gelman
et al., 2004, chap. 4).
The SMP model was fit specifying 2,000 draws and a burn-in of 500.
Estimates are taken as the posterior mean for each protein contrast
parameter and intervals are estimated by taking quantiles from the
posterior.

4. Supplementary Text C: Determining Estimability. When deal-
ing with missing data problems and potential imputation solutions it be-
comes very important to know what parameters are estimable. In the ab-
sence of missing data this is rarely a problem as standard software will
simply not report estimates for inestimable parameters. After an imputa-
tion these parameters all become estimable, but as we have shown that may
not be desirable. Finding out which parameters are estimable requires some
thought. Simply fitting fixed effects models and checking whether or not
estimates were obtained will not work. This is because standard software
may set more than one parameter equal to zero in order to satisfy estima-
bility constraints. Consequently, the parameter interpretations are subject
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to change. In order to be sure that the parameters of interest are estimable,
a systematic approach is required. The following algorithm was used to cat-
egorize all of the parameters in this paper. Let X denote the design matrix
for a single protein and let C be an indicator vector defining a parameter of
interest. For example in the two-way ANOVA model with 3 peptides and 2
conditions, there is one parameter of interest and C = (0, 0, 0, 1).

1. Create the design matrix of the observed values, Xs, by removing ev-
ery row of X that corresponds to a missing value.

2. For each parameter of interest create the corresponding indicator vec-
tor C.

3. Regress C onto the transpose of Xs to create regression coefficients β.

4. If the fit is perfect, i.e. XT
s β = C, then mark the parameter estimable.

If not then mark it as inestimable.

5. Repeat for each parameter of interest.

This algorithm is built into the SMP software and the results are auto-
matically included in the output.
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5. Supplementary Text D: Breast Cancer Dataset. To test model
performance on real data we analyzed label-free proteomics data from two
patient-derived xenograft tumors. Tissues labeled WHIM2 and WHIM16 are
from basal and luminal A breast cancer tumors respectively. Sample analysis
was performed via reversed phase LC-MS/MS using a Proxeon 1000 nano
LC system coupled to a Q Exactive mass spectrometer (Thermo Scientific,
San Jose, CA). Mass spectra were processed, and peptide identification was
performed using the Andromeda search engine found in MaxQuant software
ver. 2.2.1. (Cox et al., 2014). All protein database searches were performed
against the uniprot human and mouse protein sequence database down-
loaded from the Clinical Proteomic Tumor Analysis Consortium Data Portal
(https://cptac-data-portal.georgetown.edu). Peptide level data was
exported from MaxQuant and the full data is provided in the supplemen-
tary tables.

This data was used for two separate analyses. First we analyzed the com-
plete data with the SMP algorithm providing motivation for the structure of
our simulation study. Posterior means for the three variance components in
the model were 2.95 for peptide effects, 1.38 for protein contrasts and 0.77
for experimental error. The simulations were designed to generally mimic
this structure. Complete results for the analysis are also available in the
supplementary tables.

The second analysis involved removing peptides that were not present
in both samples and then simulating missing values to observe the effect
on estimates from various methods. LOD/MCAR Missingness, as described
above, was used to create datasets with approximately 1, 5, 10, 20, 30, 40
and 50 percent missing values. The MCAR probability was always set to be
one-tenth of the overall missingness percentage, e.g. when we wanted 20%
missing data, we set the MCAR percentage to 20/10. The LOD standard
deviation was held constant at 1, while the mean was altered. Values of
23.3, 24.4, 25.05, 25.875, 26.475, 27.05 and 27.65 gave the desired results.
Each dataset was then analyzed with the same set of methods used in the
simulation study. The only exception is that in the SMP model, rather than
using hierarchical variance components we used a fixed prior variance of 100.
This was done to avoid any shrinkage in the estimates so that every method
would be guaranteed to start at the same baseline. RMSE was calculated
by first taking the squared deviation of each estimate from the two-way
ANOVA estimate generated on the complete data. The squared deviations
were then averaged and taking the square root provided the values plotted
in Figure 2.

Data and results are provided in the supplementary tables.
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6. Web Appendix C: The Dilution Experiment.

6.1. Cell growth and harvesting. HEK (human embryonic kidney) (Gra-
ham et al., 1977), HeLa (Scherer and Syverton, 1952), and SH-SY5Y (Biedler,
Helson and Spengler, 1973) were the three cell types used. Methods of cell
growth and propagation followed previously utilized techniques (Paulo et al.,
2011a,b). In brief, cells were propagated in DMEM supplemented with 10%
FBS. Upon achieving 80% confluency, the growth media was aspirated and
the cells were washed 3 times with ice-cold phosphate-buffered saline (PBS).
Confluent cells were dislodged with a non-enzymatic reagent, harvested by
trituration following the addition of 10 mL PBS, pelleted by centrifuga-
tion at 3,000 x g for 5 min at 4◦C, and the supernatant was removed. One
milliliter of HBSp (50 mM HEPES, 50 mM NaCl, pH 8.0 supplemented with
1X Roche Complete protease inhibitors), and 2% SDS were added per each
10 cm cell culture dish.

6.2. Cell lysis and protein digestion. Cells were homogenized by 10 passes
through a 21 gauge (1.25 inches long) needle and incubated at 4◦C with gen-
tle agitation for 30 min. The homogenate was sedimented by centrifugation
at 21,000 x g for 5 min and the supernatant was transferred to a new tube.
Protein concentrations were determined using the bicinchoninic acid (BCA)
assay (ThermoFisher Scientific). Proteins were subjected to disulfide bond
reduction with 5 mM tris (2-carboxyethyl) phosphine (room temperature, 30
min) and alkylation with 10 mM iodoacetamide (room temperature, 30 min
in the dark). Excess iodoacetamide was quenched with 10 mM dithiotreitol
(room temperature, 15 min in the dark). Methanol-chloroform precipitation
was performed prior to protease digestion. In brief, 4 parts of neat methanol
were added to each sample and vortexed, 1 part chloroform was added to
the sample and vortexed, and 3 parts water was added to the sample and
vortexed. The sample was centrifuged at 14,000 RPM for 2 min at room tem-
perature and subsequently washed twice with 100% methanol. Samples were
resuspended in 50 mM HEPES, pH 8.5 and digested at room temperature
for 13 h with LysC protease at a 100:1 protein-to-protease ratio. Trypsin was
then added at a 100:1 protein-to-protease ratio and the reaction was incu-
bated for 6 h at 37◦C. Samples were subsequently acidified with 1% formic
acid and vacuum centrifuged to near dryness. Each sample was desalted via
StageTip, dried again via vacuum centrifugation, and reconstituted in 5%
acetonitrile, 5% formic acid for LC-MS/MS processing.

6.3. Liquid chromatography and tandem mass spectrometry. Our mass
spectrometry data were collected using a Q Exactive mass spectrometer
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(Thermo Fisher Scientific, San Jose, CA) coupled with a Famos Autosam-
pler (LC Packings) and an Accela600 liquid chromatography (LC) pump
(Thermo Fisher Scientific). Peptides were separated on a 100 µm inner di-
ameter microcapillary column packed with 20 cm of Accucore C18 resin (2.6
µm, 150 Å, Thermo Fisher Scientific). For each analysis, we loaded 1 µg,
0.25 µg, 0.0625 µg, and 0.01 µg onto the column. Peptides were separated
using a 1 hr gradient of 5 to 25% acetonitrile in 0.125% formic acid with a
flow rate of 300 nL/min. The scan sequence began with an Orbitrap MS1
spectrum with the following parameters: resolution 70,000, scan range 300-
1500 Th, automatic gain control (AGC) target 1× 105, maximum injection
time 250 ms, and centroid spectrum data type. We selected the top twenty
precursors for MS2 analysis which consisted of HCD high-energy collision
dissociation with the following parameters: resolution 17,500, AGC 1× 105,
maximum injection time 60 ms, isolation window 2 Th, normalized collision
energy (NCE) 25, and centroid spectrum data type. The underfill ratio was
set at 2%. In addition, unassigned and singly charged species were excluded
from MS2 analysis and dynamic exclusion was set to automatic.

6.4. Data preparation. Mass spectra were processed using MaxQuant
(Cox et al., 2014) and peptide level intensities were exported for data analy-
sis. Prior to data analysis columns were normalized and artificial treatment
groups were generated. Column normalization is usually done based on the
premise that the average intensity in each column should be the same. This
is clearly not the case in the dilution experiment. Accordingly, multiplicative
factors were used to guarantee that averages of the columns corresponded
to the known dilution ratios. Another problem with the design of the di-
lution experiment is that the expected values are the same for all proteins
in the same column. Combining this design with a model that estimates a
column mean can artificially reduce the difficulty of the estimation problem.
To avoid this artifact, we randomly permuted the columns for each protein
while keeping track of the actual dilution level for each protein treatment
combination. The same permutation is used for all peptides belonging to
the same protein group. Both the exported data from MaxQuant and the
prepared data are available in the supplementary tables.

Proteins were assumed to be nested within treatment groups so that the
same protein from different cell lines did not share any parameters from the
mean model. The data was analyzed with seven methodologies, described
above, and performance was assessed in terms of root mean squared error
and interval coverage.

For the SMP model, convergence was assessed by re-running the analysis
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Fig 2. Histogram of R-hat statistics from all parameters in the SMP fit of the dilution
experiment.
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with different random seeds and computing R-hat statistics for every param-
eter (Gelman and Hill, 2006, pp 251-276). When the model has converged
these values should be equal to one. A histogram of R-hat values from the
dilution experiment is shown in Figure 2.
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