Supplemental Materials Molecular Biology of the Cell

Varlakhanova et al.

Table S1: Plasmids used in this work:

Plasmid	Details	Source
S cer.PAR32	pRS316 <i>S cer.PAR32</i>	This work
<i>S cer.PAR32</i> 4x mut	pRS315 <i>S cer.PAR32</i> 4x	This work
	GRGGAG-AAAAAA	
<i>S cer. PAR32</i> N295A	pRS316 <i>S cer. PAR32</i> N295A	This work
S cer. PAR32 K291A	pRS316 <i>S cer. PAR32</i> K291A	This work
<i>S cer. PAR32</i> ∆288-295	pRS316 <i>S cer. PAR32</i> ∆288-	This work
	295	
<i>S cer. PAR32</i> ∆276-295	pRS316 <i>S cer. PAR32</i> ∆276-	This work
	295	
S cer.PAR32-EGFP	pRS316 <i>S cer.PAR32</i> -EGFP	This work
<i>S cer.PAR32</i> 4x mut-EGFP	pRS315 <i>S cer.PAR32</i> 4x	This work
	GRGGAG-AAAAAA-EGFP	
S cer. PAR32 N295A-EGFP	pRS316 S cer. PAR32 N295A-	This work
	EGFP	
S cer. PAR32 K291A-EGFP	pRS316 S cer. PAR32 K291A-	This work
	EGFP	
<i>S cer. PAR32</i> ∆276-295-EGFP	pRS316 <i>S cer. PAR32</i> ∆276-	This work
	295-EGFP	
<i>S cer. PAR32</i> ∆288-295-EGFP	pRS316 <i>S cer. PAR32</i> ∆288-	This work

	295-EGFP	
S cer.PAR32-3xHA	pRS316 <i>S cer. PAR32</i> -3xHA	(Varlakhanova et al., 2017)
<i>S cer.PAR32</i> 4xmut-3xHA	pRS316 S cer. PAR32 4xmut-	This work
	ЗхНА	
<i>S cer.PAR32</i> N295A-3xHA	pRS316 S cer. PAR32 N295A-	This work
	ЗхНА	
S cer.PAR32 K291A-3xHA	pRS316 S cer. PAR32 K291A-	This work
	ЗхНА	
<i>S cer.PAR32</i> ∆276-295-3xHA	pRS316 <i>S cer. PAR32</i> ∆276-	This work
	295-3xHA	
<i>S cer.PAR32</i> ∆288-295-3xHA	pRS316 <i>S cer. PAR32</i> ∆288-	This work
	295-3xHA	
NLS-PAR32	pRS316 NLS-S cer. PAR32	This work
NLS- <i>PAR32</i> 4x mut	pRS316 NLS-S cer. PAR32 4x	This work
	GRGGAG-AAAAAA	
NLS-PAR32-EGFP	pRS316 NLS-S cer. PAR32-	This work
	EGFP	
NLS- <i>PAR32</i> 4x mut-EGFP	pRS316 NLS-S cer. PAR32 4x	This work
	GRGGAG-AAAAAA-EGFP	
GAP1-lacZ	pRS314 GAP1prom-GAP1 1-	This work
	53- <i>E. coli</i> lacZ 10-end	

TOR1 L2134M	pRS426 S cer. TOR1 L2134M	(Varlakhanova et al., 2017)
EGFP-TOR1	pRS316 EGFP-S cer. TOR1	(Varlakhanova et al., 2017)
NLS-BFP	pRS314 TEF1 prom-NLS-	This work
	TagBFP	
GAP1-GFP	pRS416 GAP1prom-GAP1-	Allyson O'Donnell
	GFP	

Table S2: Strains used in this work

W303A	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	
	ura3-1; can1-100	
PY_126	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	(Varlakhanova et al., 2017)
	ura3-1; can1-100; ∆pib2::KAN	
PY_150	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	(Varlakhanova et al., 2017)
	<i>ura3-1</i> ; <i>can1-100</i> ; <i>∆npr1</i> ::NAT	
PY_154	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	<i>ura3-1</i> ; <i>can1-100</i> ; ∆par32::NAT	
PY_164	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	<i>ura3-1</i> ; <i>can1-100</i> ; ∆ <i>npr1</i> ::KAN ∆ <i>par3</i> 2::NAT	
PY_178	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	ura3-1; can1-100; ∆mep1::KAN; ∆mep3::HIS3	
PY_180	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	<i>ura3-1; can1-100; ∆mep1</i> ::KAN;	
	<i>∆mep3</i> :: <i>HIS3</i> ; <i>∆npr1</i> ::NAT	
PY_184	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	<i>ura3-1</i> ; <i>can1-100</i> ; ∆ <i>mep1</i> ::KAN;	
	<i>∆mep3</i> :: <i>HIS3</i> ; <i>∆par3</i> 2::NAT	
PY_194	MATa; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	ura3-1; can1-100; ∆gat1::HIS3	
PY_198	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work

	ura3-1; can1-100; ∆par32::NAT; ∆gat1::HIS3	
PY_208	MATa; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	ura3-1; can1-100; ∆gln3::HIS3	
PY_210	MAT a ; ade2-1; leu2-3,112; his3-11,15; trp1-1;	This work
	ura3-1; can1-100; ∆par32::NAT; ∆gln3::HIS3	

Figure S1. (A) Expression of a constitutively active Tor1 mutant allele partially rescues the $\Delta par32$ rapamycin sensitivity. Exponentially-growing W303A or $\Delta par32$ cells (OD₆₀₀ 0.6-0.8) expressing the *TOR1* L2134M as indicated were treated with rapamycin (200 ng/ml in YPD) for 5 hr at 30 °C. Cells were then washed and plated on YPD. Cells were imaged after incubation for 2 days at 30 °C. (B) Quantifications of differences in plasma membrane to cytosol (left charts) and nucleus to cytosol (right charts) ratios of Par32-EGFP expressed in W303A (upper charts) or $\Delta npr1$ (lower charts) cells. Growth conditions and treatment times as indicated. Differences in means of membrane to cytosol ratios in W303A and $\Delta npr1$ cells were significantly heterogeneous (one-way ANOVA: W303A – F_{4,31} = 4.29 hence p = 0.007; $\Delta npr1 - F_{4,31} = 10.33$ hence p = 1.95E-5). Similarly, differences in means of nucleus to cytosol ratios in W303A – F_{4,31} = 4.29 hence p = 0.007; $\Delta npr1 - F_{4,31} = 10.33$ hence p = 1.95E-5). Similarly, differences in means of nucleus to cytosol ratios in means of nucleus to cytosol ratios in W303A – F_{4,35} = 34.19 hence p = 1.21E-11; $\Delta npr1 - F_{4,36} = 13.07$ hence p = 1.14E-6). Significantly different pairs of means, as assessed by the post-hoc Tukey HSD test, are indicated (*, p < 0.05; **, p < 0.01).

Figure S2. Par32 subcellular localization in cells grown in different carbon sources. W303A cells expressing Par32-EGFP were grown in glucose (YPD), ethanol / glycerol (YPEG) or galactose (YPGAL). The plasma membrane stained with 10 μ M FM 4-64 for 30 min on ice prior to visualization. Scale bar 5 μ m.

Figure S3. Nuclear localization of Par32 depends on the four conserved GRGGAGNI motifs. W303A and $\Delta npr1$ cells expressing the indicated EGFP-tagged Par32 construct as well as NLS-BFP (NLS – SV40 Large T Antigen nuclear localization sequence) were grown under conditions of nitrogen starvation (SD –N) for 3 hr prior to imaging. The plasma membrane stained with 10 μ M FM 4-64 for 30 min on ice prior to visualization. Scale bar 5 μ m.

Figure S4. (A) Nuclear localization of NLS-Par32 and NLS-Par32 4x mut in W303A and $\Delta par32$ cells. W303A or $\Delta par32$ cells expressing the indicated EGFP-tagged NLS-Par32 fusion (SV40 Large T Antigen nuclear localization sequence) were grown in SC. (B) Rapamycin treatment does not prevent nuclear accumulation of EGFP-tagged NLS-Par32. W303A or $\Delta par32$ cells expressing NLS-Par32-EGFP were treated with rapamycin (200 ng/ml, 3 hr) prior to imaging. (C) Plasma membrane association of Par32 is Mep1- and Mep3-independent. $\Delta mep1 \Delta mep3 \Delta npr1$ cells expressing Par32-EGFP were grown in SC or SD-N for 3 hr prior to imaging. The plasma membrane was labeled with 10 μ M FM 4-64 for 30 min on ice prior to visualization.Scale bars 5 μ m.

Figure S5.Deletion of Gat1 (A) or Gln3 (B) does not rescue the defect in recovery from rapamycin exposure of $\Delta par32$ cells. Exponentially-growing (OD₆₀₀ 0.6-0.8)cells, as indicated, were untreated or treated with rapamycin (200 ng/ml in YPD) for 5 hr at 30 °C. Cells were then washed and plated on YPD. Cells were imaged after incubation for 2 days at 30 °C. The left-

most spot in each case corresponds to 2 μ l of a culture with OD₆₀₀ 0.5. Spots to the right of this correspond to 2 μ l of sequential 5-fold dilutions.

Fig. S1

W303A + PAR32 A288-295-EGFP

∆npr1 + PAR32 ∆288-295-EGFP

∆npr1 + PAR32 4x mut-EGFP

W303A + PAR32-EGFP

∆npr1 + PAR32-EGFP

∆mep1 ∆mep3 ∆npr1

SC

W303A

+ NLS-PAR32-EGFP

+ NLS-PAR32 4x mut-EGFP

∆par32

W303A

+ NLS-PAR32-EGFP

А

С

Recovery from rapamycin Untreated W303A 🕐 🌒 🖤 -4 ∆par32 💿 🚭 📚 ≰ 🔹 ∆gat1 💽 4 ∆par32 ∆gat1 • • ...

В

