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Supplementary Figure 1 | Schematic diagram of wave interactions with a subwavelength slit. 

The slit has a rectangular cross-section with width w and thickness h. The pressure field of 

incident waves is normalized to 1 Pa. 

 

 

     



   

    

   
Supplementary Figure 2 | The comparisons of transmission and reflection coefficients of a single 

slit between theoretical calculations (solid lines) and numerical simulations (marks). The 

calculation and simulation for (a, b) T
n
, (c, d) R

n
, (e, f) T

g
 and (g, h) R

g
 are carried out on different 

slit parameters. The slit width increases from 0.005λ to 0.25λ with a step of 0.005λ at different 

thicknesses (h = 0.01λ, 0.05λ, 0.15λ, 0.25λ, 0.4λ).  



  
Supplementary Figure 3 | (a) Calculated and (b) simulated pressure field after a plane wave 

transmits through a user-defined acoustic metasurface. The thickness, spacing, and slit number in 

the acoustic metasurface are 0.1λ, 0.15λ and 19, respectively. The slit widths decrease from 0.1λ to 

0.01λ with a step of 0.01λ from the center to the side. 

 

  

Supplementary Figure 4 | (a) The amplitude and (b) phase of the acoustic signals generated by 

the plane wave speaker at selected frequencies: 1942Hz (circles), 3294Hz (squares), 4129Hz 

(diamonds) and 5185Hz (triangles). The measurements were performed along the 45o diagonal 

path in front of the speaker on which the microphone slides. The distance of the measurement 

locations was recorded with respect to a reference point on the frame diagonal. The measured 

phase data was fitted using linear least squares, and the parameters are listed in Supplementary 

table 3. 

 



 

Supplementary Figure 5 | Schematic of the experimental setup for acoustic field measurements. 

 

 

 

  



 

 

m 1 2 3 4 5 6 7 8 9 10 

slit width (0.01λ) 14.1 12.3 12.6 12.6 11.9 7.0 3.0 2.0 2.0 2.1 

m 11 12 13 14 15 16 17 18 19  

slit width (0.01λ) 2.0 2.0 3.0 7.0 11.9 12.6 12.6 12.3 14.1  

Supplementary Table 1: Optimized slit widths of the acoustic metasurface lens for far-field 

sound focusing. 

 

 

m 1 2 3 4 5 6 7 8 9 10 11 

slit width (0.01λ) 0.3 0.32 0.34 5.32 1.58 8.94 1.58 5.32 0.34 0.32 0.3 

Supplementary Table 2: Optimized slit widths of the near-field metasurface lens. 

 
 

Frequency 

(Hz) 

Theoretical phase 

slope (rad m^-1) 

Experimental phase 

slope (rad m^-1) 
R2 value 

1942 -25.15 -24.47 0.9954 

3294 -42.67 -43.13 0.9981 

4129 -53.48 -56.02 0.9986 

5185 -67.16 -67.06 0.9969 

Supplementary Table 3: The linear least square fitting parameters of the measured phases. 

 

 

  



 

Supplementary Note 1. The Derivation of transmission and reflection coefficients 

Consider an amplitude- normalized plane wave with a tangential component of wave-vector 

α
0
 incident on a rigid plate, as shown in Supplementary Fig. 1. The slit has a rectangular 

cross-section with width w and thickness h. Under this insonfication, the expression of the 

pressure field above and below the slit can be, respectively, written as 
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where 1i   ,
2 2

0 0 0  k is the z component of the incident-wave vector, α and

2 2

0  k are the wave vectors of high-order diffraction along x and z directions, respectively; 

k
0
 = ω / c is the wave-vector of the incident wave in air (ω is the angular frequency and c is the 

acoustic velocity in air); R(α) and T(α) are the reflection and transmission coefficients, 

respectively. By making Fourier transforms of each waveguide modes, R(α) and T(α) can be 

expanded as1 
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where δ is the Dirac delta function, and  
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Inside the slit, the pressure field is also expanded in terms of the waveguide modes, which is 

expressed as 
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where A
j
 and B

j
 are the pressure amplitudes of the forward and backward waves of j-th waveguide 

mode, and j is a positive integer.  

In the case of a subwavelength slit, the pressure field can be sufficiently well described by the 

first term in the mode expansions (this means that only the fundamental mode (j = 0) is retained) 1. 

Therefore, Supplementary equations 1-6 can be simplified to 



 

0 0 0 0

0 0

0 0
a

in 0 0

( )0 0
b

( )
e e e

e e

( )
e

i x i z i x i z i x i z

ik z ik z

i x i z h

R W
P d

P A B

T W
P d

     

 













  







 




  




 

 







                  (A.7-1) 

with 
/2

0

/2

2sin( 2)
( ) e

w

i x

w

w
W dx 








  . 

The normal velocities can then be obtained from
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where ρ is the mass density of air. According to the boundary conditions, the pressure field and 

normal velocity at the interfaces (i.e., z = 0 and z = h) should be continuous. Combining the 

continuity conditions with Supplementary equation 7, we can determine the coefficients R
0
, T

0
, A

0
, 

and B
0
. 

Firstly, we calculate the transmission and reflection coefficients [T
n
 and R

n
] for a normally 

incident plane wave. Under the normal incidence (θ = 0), we have α
0 (=k

0 sinθ) = 0 and η
0 = k

0
. By 

substituting the initial conditions to Supplementary equation 7 and applying the boundary 

conditions at z = 0, we obtain 
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Similarly, at z = h 
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Note that although the slits are deep-subwavelength compared to the incident wave, they cannot 

be simply considered as points for all waves, especially the evanescent waves with large tangential 

wave-vectors. As the integration is performed for all wave components over [-∞, ∞], here we 

generalize the evaluation of eiαx by averaging it on the whole slit width, to integrate out the x 



dependence. Thus, we have
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Similar calculations are implemented to the grazing incidence by changing the initial conditions to 

α
0
 = k

0 and η
0 = 0, and finally we get 
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Supplementary Note 2. Characteristic parameters of the cylindrical waves (CWs) 

Under uniform illumination by a (normal or grazing) plane wave, the acoustic wave scattered 

by a subwavelength slit can be regarded as a new point source that thus generates a CW. The 

excited CW can be characterized by two coefficients, β and ϕ. To extract the coefficients, a 

two-step procedure is adopted. Firstly, the pressure field is extracted through a numerical 

simulation. Then, using Eq. (1) in the main text, the coefficients are optimized by fitting the 

pressure field distribution over an interval (w/2 ≤ r ≤ 10λ). This procedure offers a rigorous 

numerical approach to calculate β and ϕ, and similar calculations are performed for different slit 

parameters. The slit width increases from 0.005λ to 0.2λ with a step of 0.005λ at different 

thicknesses (h = 0.05λ, 0.1λ, 0.3λ, 0.7λ, 0.9λ). The calculated β and ϕ for different slits are 

provided in the Source Data file. From these calculations, it can be found that both β and ϕ are 

relying on the slit width w, but independent of thickness h. To determine the relationship between 

the CWs and the slit parameters, β and ϕ are fitted as a polynomial function of slit width with the 

least-mean-square method. 
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