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1. Methods 

1.1 Anatomical mesh construction 

The first step of the computational pipeline consisted in constructing personalized 3D bi-

ventricular surfaces of the heart, torso, lungs and ribs from CMR images. MRI slices of the 

heart (long and short axis) were acquired, and pre-processing steps such as alignment (1), and 

manual contour delineation were applied to generate 3D surfaces of the bi-ventricular geometry 

from the patient’s CMR images. An iterative process consisting in remeshing, smoothing, and 

fitting of a surface towards the input contours is performed to generate the heart surfaces 

following (2). Torso surface geometries were derived from combining manual contouring with 

a statistical model of the torso. Ribs and lungs were personalized from a template to the 

patient’s anatomy (3).  

The next step was to generate tetrahedral volumetric meshes from these surfaces using the 

software Tetgen (4). Each tetrahedron was defined by four nodes and allowed the propagation 

of the electrical signal throughout the mesh. The meshing process required the definition of a 

tetrahedral edge length and multiple optimization parameters. In our case, a fine and detailed 

mesh was required in the heart in order to obtain numerical convergence in the simulations of 

electrical propagation with the Chaste software. Torso, lungs and ribs were designed as passive 

tissues with different fixed conductivities, allowing a coarser mesh to be defined in these 

regions (following (5)’s work). The edge length of each element was defined as 0.4mm for the 

heart, 3mm for the lungs, 2mm for the ribs, and 10mm for the torso based on (5) and (6)’s 

benchmarking work. An adaptive meshing, providing smooth transitions between different 

edge lengths, was used by controlling the volume of the tetrahedra in order to ensure a smooth 

propagation of the electrical signal in the whole domain. In order to simulate the 12-lead ECG, 



ten nodes were defined to model electrodes on the torso surface, adapting the location defined 

in (5) to each personalized torso by geometrical deformation. 

1.2 Electrophysiological and activation model 

The 3D biventricular volumetric meshes were therefore composed of a set of nodes (vertices 

of the tetrahedra, defined by their coordinates) and elements (tetrahedra, defined by four 

nodes). The electrophysiological simulation described below followed the framework 

published in (5). The modified version of the electrophysiological O’Hara-Rudy model of 

ventricular cells (7) (8)  was used to define cellular activity. Intracellular conductivities in the 

active tissues were chosen in order to generate conduction velocities close to 67, 30 and 17 

cm/s in the longitudinal, transversal and transmural directions (9). Extracellular conductivities 

were defined according to resistivity ratios (10). Extracellular and intracellular conductivities 

were adapted from (5) based on a convergence analysis. A scaling factor of 1.8 led to 

longitudinal and transverse conduction velocities within experimental ranges (67 and 30 cm/s). 

Initial conductivities were therefore set to (2.7, 0.81, 0.405 mS/cm) for intracellular 

conductivities and (9.81, 3.65 and 3.65 mS/cm) for extracellular conductivities. In passive 

tissues, isotropic conductivities were chosen to be 0.389 mS/cm in the lungs, 0.2 mS/cm in the 

bones, and 2.16 mS/cm in the rest of the torso (11) (12) (5). The activation sequence was then 

modelled by defining seven stimuli points (root nodes) in the endocardium (four in the left 

ventricle and three in the right ventricle) to initiate the activation. These endocardial sites of 

earliest activation modelled the role played by Purkinje branches in real physiology. They were 

adapted from (5) by computing a mapping to each patient’s anatomy. The stimulus in these 

points was initially defined by a duration of 1ms, a magnitude of 120,000 mA/cm3, and a speed 

of 0.179 cm/s. The shortest distances between each node were computed using the Dijkstra 

algorithm (13) in the left and right ventricles, in order to model the Purkinje network and define 

the propagation of the stimuli from the root nodes to the rest of the endocardial surface nodes. 



In order to simulate the ECG on the torso surface, ten nodes were defined to model electrodes 

placed on the torso, adapting the location defined in (5) to each personalized torso by 

geometrical deformation. Fibre orientations were computed for each geometry following a 

rule-based method replicating findings in (14). 

1.3 Action potential duration heterogeneities  

Several configurations of heterogeneities representing the dispersion of action potential 

duration were considered. Apex-to-base heterogeneities were modelled by introducing a 

gradient of IKs conductance from base to apex to reach an APD difference of 50ms. Similarly, 

interventricular heterogeneities were modelled by modifying the gradient of gKs between left 

and right ventricles (25ms APD RV to LV difference). Finally, transmural heterogeneities were 

defined using layers of endocardial, midmyocardial and epicardial cells with different APD 

properties as described in the O’Hara-Rudy model (7). The combination of apex-to-base and 

transmural heterogeneities with 45% endocardial cells, 25% mid-myocardial cells and 30% 

epicardial cells yielded the best simulations compared to the clinical ECGs and was therefore 

chosen in the rest of the paper.   

Simulations were run using Chaste (15) on the Archer UK national supercomputer using 

parallelization on 960 cores. 

 

 

 

 

 

 

 



2. Results 

2.1 Increased wall thickness alone does not account for the ECG phenotypes 

Figure S1 below compares the activation maps for patients in Group 1B, 1A and 3 in the normal 

configuration. The activation sequences were similar in the three hearts: the activation was 

triggered in the seven activation points defined, propagated through the ventricles and finished 

in the apex. These similar activation patterns confirmed that the various types of abnormalities 

observed on the ECG phenotypes may be due to other factors than the anatomy alone.  

 

Figure S1: Activation maps (ms) for patients in Group 1B, 1A and 3. Activation is initiated in 

the seven activation nodes and propagates in the ventricles to the apex. 

 

As a sensitivity analysis, we analysed the influence of varying both the intracellular and 

extracellular conductivities on the shape of the QRS, to explore whether these changes could 

explain the QRS abnormalities observed in Group C patients. Results are shown on Figure S2 

below. Reducing the conductivities increased the amplitude and width of the QRS complexes, 

especially the R wave in V1-3, but did not change the morphology and polarity of the QRS 

waveforms, especially in leads V5-6. Doubling the conductivities did not yield severe changes 

in QRS morphology. It slightly reduced the width of the QRS in all leads, overall decreased 

the amplitude of the QRS (especially the R wave in leads V1-4), and slightly increased the 

amplitude of the S wave in V5-6 while still exhibiting a tall R wave in V5-6. In all cases, the 



QRS in V4-6 still exhibited a large R amplitude with small S wave, different from the real ECG 

showing a small R amplitude with deep and wide S wave. These results suggest that simple 

homogeneous conductivity changes do not lead to severe morphological abnormalities in the 

lateral leads of Group 3 patients.  

 

 

Figure S2: Analysis of conductivity changes on the ECG. Real ECG (black) is represented 

along with a normal simulation (blue), a simulation with intracellular and extracellular 

conductivities divided by 2 (red), and a simulation with intracellular and extracellular 

conductivities multiplied by 2 (green). 

 

2.2 Fibre disarray modelled as isotropic propagation 

Diffusion tensor imaging (DTI) provides information on the regions that may be affected by 

fibre disarray. Low fractional anisotropy (FA) may be the indicator of disarray, fibrosis, cell 

enlargement, or a combination of all. Low FA was observed in the basal and mid slices, in the 

anterior RV/LV insertion point at the epicardial border (Figure S3A). Patchy low FA was also 



noticeable all around the septum. In the apical slice, low FA was seen in the endocardium of 

the anterior and posterior LV/RV insertion point. As observed in Figure S3B, isotropic 

propagation hardly affected the QRS complex in leads V1-V6. 

 

Figure S3. (Panel A) Fractional anisotropy maps for Group C patient, at diastole, for basal, 

mid and apical slices. Red contours delimit endocardium and epicardium. Blue regions in the 

myocardium correspond to areas of low fractional anisotropy. (Panel B) Simulated ECG with 

isotropic orientation of the myocyte fibres (red) along with normal simulation (blue) and real 

ECG (black) in leads V1 to V6. 

 



2.3 Effect of slow conduction in different regions of the myocardium 

Figure S4. Activation maps (ms) in the case of slow conduction in the mid-septum (left) and 

slow conduction in the entire septum from base to apex (right). Large activation delays are 

observed in the anterior of the ventricles caused by the region of slow conduction in the mid 

septum, which extended to the anterior, but these are not present in the entire septum case. 
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