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Supplementary Note 1 — Additional de-
tails for results

Discrete spectrum example

Supplementary Figure 1 shows the average prediction er-
ror versus the number of prediction steps. Even for a large
number of steps, the error is quite small, giving good pre-
diction. This figure also demonstrates prediction perfor-
mance on example trajectories. The eigenfunctions for this
example are shown in Supplementary Figure 2. We see
that one is quadratic and the other is linear. This is ex-
pected because we can analytically derive that y; = z; and
Yo = xy — bx? is a pair of eigenfunctions for this system,
where b = 2;—:\/\ When the eigenvalues are allowed to vary
with the auxiliary network used for continuous spectrum
systems, the eigenvalues remain relatively constant, near
the true values of —0.05 and —1, as shown in Supplemen-
tary Figure 3.

Nonlinear pendulum

The nonlinear pendulum is one of the simplest examples
that exhibits a continuous eigenvalue spectrum. Using the
auxiliary network, we allow the frequency w of the Koop-
man eigenvalues to vary continuously with the embedded
coordinates y; and ys, as shown in Supplementary Figure 4.
The frequency w varies smoothly with the radius \/y? + 3,
from around —0.95 to —0.4 as the energy is increased. When
the damping rate is also allowed to vary continuously, it re-
mains nearly constant around the value of ;1 = 0, since the
system is conservative.

Fluid flow on attractor

For the final example, we consider the nonlinear fluid vor-
tex shedding behind a cylinder. We begin by considering
dynamics on the attracting manifold. When we train the
network with trajectories on the slow manifold, we are able
to identify a single conjugate eigenfunction pair, shown in
Supplementary Figure 6.
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Supplementary Figure 1: (a) The average log,, prediction
error as the number of prediction steps increases for the dis-
crete spectrum example. (b) For each trajectory, we show
how many steps the network can take before reaching 10%
relative error.
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Supplementary Figure 2:
spectrum example.
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Supplementary Figure 3: When the eigenvalues of the dis-
crete spectrum example are allowed to vary in terms of y;
and y,, they remain relatively constant; i.e., they are close to
the true values —.05 and —1 as expected.
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Supplementary Figure 4: Eigenvalues for the pendulum
vary in terms of y; and y». Note that the frequency decrea-
ses as the radius increases, and p = 0.

Fluid flow off attractor

We now consider the case where we train a network using
trajectories that start off of the attracting slow manifold.
Supplementary Figure 7 shows the average prediction error
versus the number of steps. Although the loss function only
penalized 30 prediction steps in the future (S, = 30), the er-
ror remains small for all 100 steps. The figure also shows
the embedding of a trajectory in y coordinates. Although
this network’s training data includes data off the attractor,
this network’s embedding is similar to the embedding from
the previous case. (See Figure 5 in the main paper.)

The eigenfunctions are shown in Supplementary Fi-
gure 8, where it can be seen that the mode shapes match
those in the on-attractor data in Supplementary Figure 6.
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Supplementary Figure 5: Continuous eigenvalues as a
function of y; and y,. Note that the frequency w ~ —1. The
parameter i shows growth inside the limit cycle (marked in
red) and decay outside the limit cycle.
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Supplementary Figure 6: Magnitude and phase of the ei-
genfunctions for the fluid flow on the attracting slow mani-
fold.
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Supplementary Figure 7: (a) The average log,, prediction
error as the number of prediction steps increases for the
fluid flow example with trajectories starting off the attrac-
tor. (b) A trajectory on the attractor in linear coordinates y;
and ys.

The continuously varying eigenvalues are shown in Sup-
plementary Figure 9. Again, similar to the on-attractor case,
the damping y varies considerably with radius, while the
frequency is very nearly a constant —1.
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Supplementary Figure 8: Eigenfunctions for the fluid flow
example for trajectories starting off the attractor, correspon-
ding to the complex conjugate pair of eigenvalues; the se-
cond row contains the magnitude and phase of those eigen-
functions.
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Supplementary Figure 9: Parameter variations for the com-
plex eigenvalues in terms of y; and y». Note that this is a
natural extension of Supplementary Figure 5, which is limi-
ted to data on the bowl.



