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Supplementary Note 1 – Additional de-
tails for results

Discrete spectrum example

Supplementary Figure 1 shows the average prediction er-
ror versus the number of prediction steps. Even for a large
number of steps, the error is quite small, giving good pre-
diction. This figure also demonstrates prediction perfor-
mance on example trajectories. The eigenfunctions for this
example are shown in Supplementary Figure 2. We see
that one is quadratic and the other is linear. This is ex-
pected because we can analytically derive that y1 = x1 and
y2 = x2 − bx21 is a pair of eigenfunctions for this system,
where b = −λ

2µ−λ . When the eigenvalues are allowed to vary
with the auxiliary network used for continuous spectrum
systems, the eigenvalues remain relatively constant, near
the true values of −0.05 and −1, as shown in Supplemen-
tary Figure 3.

Nonlinear pendulum

The nonlinear pendulum is one of the simplest examples
that exhibits a continuous eigenvalue spectrum. Using the
auxiliary network, we allow the frequency ω of the Koop-
man eigenvalues to vary continuously with the embedded
coordinates y1 and y2, as shown in Supplementary Figure 4.
The frequency ω varies smoothly with the radius

√
y21 + y22 ,

from around −0.95 to −0.4 as the energy is increased. When
the damping rate is also allowed to vary continuously, it re-
mains nearly constant around the value of µ = 0, since the
system is conservative.

Fluid flow on attractor

For the final example, we consider the nonlinear fluid vor-
tex shedding behind a cylinder. We begin by considering
dynamics on the attracting manifold. When we train the
network with trajectories on the slow manifold, we are able
to identify a single conjugate eigenfunction pair, shown in
Supplementary Figure 6.
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Supplementary Figure 1: (a) The average log10 prediction
error as the number of prediction steps increases for the dis-
crete spectrum example. (b) For each trajectory, we show
how many steps the network can take before reaching 10%
relative error.
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Supplementary Figure 2: Eigenfunctions for discrete
spectrum example.
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Supplementary Figure 3: When the eigenvalues of the dis-
crete spectrum example are allowed to vary in terms of y1
and y2, they remain relatively constant; i.e., they are close to
the true values −.05 and −1 as expected.

−0.4−0.95 −0.0002

𝑦1

𝑦2

𝑦1

𝑦2

𝜔 𝜇

0.0002

Supplementary Figure 4: Eigenvalues for the pendulum
vary in terms of y1 and y2. Note that the frequency decrea-
ses as the radius increases, and µ ≈ 0.

Fluid flow off attractor

We now consider the case where we train a network using
trajectories that start off of the attracting slow manifold.
Supplementary Figure 7 shows the average prediction error
versus the number of steps. Although the loss function only
penalized 30 prediction steps in the future (Sp = 30), the er-
ror remains small for all 100 steps. The figure also shows
the embedding of a trajectory in y coordinates. Although
this network’s training data includes data off the attractor,
this network’s embedding is similar to the embedding from
the previous case. (See Figure 5 in the main paper.)

The eigenfunctions are shown in Supplementary Fi-
gure 8, where it can be seen that the mode shapes match
those in the on-attractor data in Supplementary Figure 6.
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Supplementary Figure 5: Continuous eigenvalues as a
function of y1 and y2. Note that the frequency ω ≈ −1. The
parameter µ shows growth inside the limit cycle (marked in
red) and decay outside the limit cycle.
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Supplementary Figure 6: Magnitude and phase of the ei-
genfunctions for the fluid flow on the attracting slow mani-
fold.
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Supplementary Figure 7: (a) The average log10 prediction
error as the number of prediction steps increases for the
fluid flow example with trajectories starting off the attrac-
tor. (b) A trajectory on the attractor in linear coordinates y1
and y2.

The continuously varying eigenvalues are shown in Sup-
plementary Figure 9. Again, similar to the on-attractor case,
the damping µ varies considerably with radius, while the
frequency is very nearly a constant −1.
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Supplementary Figure 8: Eigenfunctions for the fluid flow
example for trajectories starting off the attractor, correspon-
ding to the complex conjugate pair of eigenvalues; the se-
cond row contains the magnitude and phase of those eigen-
functions.

Supplementary Figure 9: Parameter variations for the com-
plex eigenvalues in terms of y1 and y2. Note that this is a
natural extension of Supplementary Figure 5, which is limi-
ted to data on the bowl.
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