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Supplementary figures and figure legends 

 

Figure S1:  Characterization of HOMSF1 cells. (a, b) For cell cycle analysis, both 

exponentially growing and non-dividing HOMSF1 cells were incubated for 3 h with 5 µM EdU, 

fixed and stained for EdU and DAPI. (a) EdU staining of exponentially growing HOMSF1 

cells. Dotted lines indicate the shape of the nuclei. The scale bar represents 10 µm. (b) Cell 

cycle distribution of exponentially growing (left panel) and non-dividing (right panel) HOMSF1 

cells. The intensity of the EdU and DAPI signal was measured at the microscope for each 

cell. For the displayed distribution, around 1000 (left panel) or 4000 cells (right panel) were 

analyzed. (c, d) Quantification of spontaneous and radiation-induced foci in confluent 

HOMSF1 cells. HOMSF1 cells were left unirradiated (c) or were irradiated with various doses 

(d), fixed at 15 min post IR and stained for γH2AX, 53BP1 and DAPI. For each dose, n≥3 

independent experiments were performed in duplicate samples. For each sample, foci were 

quantified manually in 200-500 cells (if the average number of foci per cell was below 1), in 

100 cells (if the average number of foci per cell was below 10) or in 40 cells (if the average 

number of foci per cell was larger than 10) in a blinded manner at microscopic overview 

images. Data show the mean foci number per cell of 10 duplicate samples (c) or the mean of 

3-7 duplicates (d). Error bars in panel d represent the SE. The regression curve 

f(x)=0.020x+0.21 (f: foci per cell; x: dose in mGy; R2=0.999) was obtained by linear fitting. 
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Figure S2:  Steps for threshold validation to discriminate background signals from 

foci. (a) For threshold estimation, the mean value of nine different algorithms is used to 

automatically detect the transition point between foci and background signals in OEP 

histograms. This mean value, indicated as black line in the histogram, is used as a starting 

point for manual threshold adjustment. (b) For this, AutoFoci displays four cells each 

showing one critical object at the actual threshold in the red (53BP1), the green (γH2AX) and 

the merged images. White arrows mark the critical objects in a higher magnification image. 

The experimenter evaluates the four objects manually and enters the number of identified 

foci in the program. An algorithm then shifts the threshold depending on the manual input 

(indicated as dark blue line for the first evaluation round) and displays again four critical 

objects at the new threshold for the second evaluation round. The threshold is initially shifted 

in large steps, which are gradually reduced with repeated validation steps. The process stops 

when at least 24 cells (6 rounds) are evaluated and the standard deviation of the last six "foci 

per cell" values, calculated from the mean of the last six thresholds, is smaller than 5% of the 

average value. The scale bars represent 10 µm. Dotted lines indicate the shape of the nuclei. 
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Figure S3:  Use of OEP histograms for quality control. (a, c, e) Representative IF 

images of γH2AX and 53BP1 stainings in unirradiated non-dividing HOMSF1 cells with a 

good staining quality (a), a weak red signal (c) or many bright background signals in the 

green channel (e). Dotted lines indicate the shape of the nuclei. The scale bars represent 

10 µm and the Pearson coefficients p show the correlation between the pixel intensities in 

both channels for all nuclei of the sample. (b, d, f) Inverse logarithmic OEP distributions from 

the samples in the left panels. The OEP was measured for each object as described by 

equation (4) in the main text. 
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Figure S4:  Lower OEPs for spontaneous than for radiation-induced foci. OEP values 

were obtained in unirradiated cells with spontaneous foci and in cells at 24 h after 1 Gy 

where the persisting radiation-induced foci outnumber the spontaneous foci. The whiskers of 

the box plots (25-75%) represent the SD between the measured OEPs of 10 samples each. 

The ranges between the "x" below and the "x" above the boxes encompass 98% of the data.  
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Algorithms for automated threshold estimation 

Before manual validation of the threshold, which is later used for classification into foci and 

background signals, the threshold is first estimated by the mean value of nine different 

automated threshold methods. All algorithms are applied to the logarithmic OEP histograms 

unless stated otherwise. 

Pixel correlation method 

Because the co-localisation of both markers (γH2AX and 53BP1) is used as criterion for a 

DSB, we assumed that the correlation between the pixel values of both markers (Pearson 

coefficient) is higher in nuclei containing foci compared to nuclei without foci. Therefore, this 

method calculates the average Pearson correlation coefficients for both groups of cells for a 

range of potential thresholds. The best threshold is then estimated at the position where the 

difference between both coefficients has its maximum.  

Poisson distribution method 

This method assumes that the distribution of foci per cell above the correct threshold is 

closer to an ideal Poisson distribution than the distribution above a lower threshold. The 

deviation from an ideal Poisson distribution is calculated as the Kulback-Leibler (KL) 

divergence for a range of potential thresholds. The algorithm then estimates a threshold by 

smoothing the resulting diagram of KL divergences and applying another threshold method 

(maximum entropy) to it. 

STD method: Minimum estimation by maximum standard deviation (STD) 

The minimum between the two peaks of the bi-modal histogram is estimated by calculating 

the standard deviation of a defined number of consecutive objects. The value with the 

highest standard deviation, i.e. where the objects are farthest apart, is assumed to be the 

minimum. This method is applied to the histogram of the inverse representation of the 

logarithmic OEP where the bi-modal characteristic is more pronounced.  

Range method: Minimum estimation by maximum object number in a given range 

Very similar to the STD method, this method tries to find the minimum between two peaks in 

a given histogram. It counts the number of objects in a defined range around a threshold 

and estimates the minimum of the histogram at the position where the number of counted 

objects has its minimum. It is also applied to the inverse representation of the logarithmic 

OEP. 

Maximum entropy method 

This methods implements the Kapur-Sahoo-Wong thresholding method1. It calculates the 

Shannon entropy after classification of the objects into two groups by using a preliminary 
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threshold. The final threshold is assumed to be at the position of maximum entropy. The 

ImageJ implementation was used for this method. 

Rényi entropy method 

This method is similar to the maximum entropy method, but here the definition of entropy is 

modified slightly (Rényi entropy). Again, the threshold is assumed to be at the position where 

the entropy is at its maximum. The ImageJ implementation was used for this method. 

Yen method 

Here, Yen's thresholding method is used2. It calculates a correlation criterion and assumes 

the threshold to be at the maximum of this criterion. The ImageJ implementation was used 

for this method. 

Triangle method 

The Triangle algorithm is a geometric method3, which can be used for distributions with one 

large peak and a long tail. It is therefore applied to the non-logarithmic OEP. It calculates a 

straight line between the peak of the histogram and the end of the tail. The threshold is then 

estimated at the position where the vertical distance between the calculated line and the 

histogram is maximal. The ImageJ implementation was used for this method. 

Intermode method 

This method assumes a bi-modal histogram with two peaks4. Iteratively, smoothing is applied 

to the histogram until only two local maxima exist. The threshold is assumed to be the middle 

point between both local maxima. The ImageJ implementation was used for this method.  

 

 

Discussion of AutoFoci features in the context of existing programs  

Although automated foci counting methods exist, we had especially strict requirements for 

our low-dose experiments. The low-dose specific requirements include high-speed analysis 

and accurate differentiation between foci and background signals. Here, we provide a 

discussion of AutoFoci in the context of other existing computer programs for foci counting. 

The CellProfiler project, a versatile platform for image analysis5, allows to create a pipeline 

with a foci detection algorithm very similar to the one presented here. However, the 

CellProfiler needs a few hours to analyze 5,000 cells because it stores and analyzes more 

data than necessary, while our software AutoFoci only needs 30 to 60 s (plus the time to 

validate the threshold by inspecting about 24-40 cells). Moreover, CellProfiler uses a simple 

threshold method, termed Otsu method, which is usually not sufficient to discriminate 

between background signals and foci. Thus, the threshold has to be corrected by a certain 

factor6 for each sample, which makes a comparison between different samples difficult.  
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The definition of a focus by the commercial AKLIDES® system, which provides a fully 

automated detection of γH2AX foci, is very similar to our definition of a local maximum: A 

pixel brighter than its neighbours with a minimal relative brightness and a minimal distance to 

other local maxima7,8. The intensity and size thresholds of foci are specific for each cell line 

but from the available publications it is not clear how they are obtained and whether it 

requires human intervention.  

Similar to the method presented here, Qvarnström et al. and Böcker et al. use a top-hat 

transformation of the γH2AX signal9,10. A simple global intensity threshold is subsequently 

used for foci classification, which would result in a correlation to manual foci evaluation 

comparable to the reported value of the green channel after top-hat transformation (p=0.66; 

Fig. 2c) when applied to data of similar staining quality as presented here. Like Qvarnström 

et al., the method presented by Ivashkevich et al. and its further development by Jakl et al. 

uses a top-hat transformation of the γH2AX signal, but then applies an additional image filter 

(H-dome transformation) before setting the intensity threshold11,12. This threshold is 

determined by a very interesting approach, maximizing the difference between the number of 

objects counted as foci in the images of irradiated and non-irradiated cells. An essential 

requirement for this method is that both samples are treated completely identically, which is 

often hard to achieve. Another requirement for this approach is that the foci in the irradiated 

samples occupy a considerable fraction of the total nuclear area such that non-irradiated 

cells exhibit more background signals than irradiated cells. Otherwise, the difference would 

not decrease at small threshold values. Additionally, maximizing the difference when the 

difference itself is the desired result may lead to a systematic error. Nevertheless, we applied 

the method to our data from primary human fibroblasts but found that the maximum was 

generally at much too large values because of the heterogeneity of the distribution of 

background signals even for cell samples that were treated identically.  

Herbert et al. solve the threshold question by using a machine learning algorithm to 

determine suitable foci parameters13. Similar to the threshold validation approach in our 

method, the learning process requires human intervention for every experiment. However, 

the time requirement of our method is considerably lower since it first estimates the threshold 

automatically and the manual validation step involves only a small number of critical objects. 
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