Cobalt-Catalyzed Difluoroalkyaltion of Tertiary Aryl Ketones for Facile Synthesis of Quaternary

Alkyl Difluorides

Li et al.

S3

S11

Supplementary Figure 36. ¹⁹F NMR of 31

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 $_{f1 \text{ (ppm)}}^{f1 \text{ (ppm)}}$ Supplementary Figure 42. ¹⁹F NMR of 3n

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 48. ¹⁹F NMR of 3p

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 60. ¹⁹F NMR of 3t

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 78. ¹⁹F NMR of 3z

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 84. ¹⁹F NMR of 3ab

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 90. ¹⁹F NMR of 3ad

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 108. ¹⁹F NMR of 3aj

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 132. ¹⁹F NMR of 3ar

0 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 138. ¹⁹F NMR of 3at

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 144. ¹⁹F NMR of 3av

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 150. ¹⁹F NMR of 3ax

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 162. ¹⁹F NMR of 3bb

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) Supplementary Figure 168. ¹⁹F NMR of 5b

S86

Supplementary Table 1 Base Screening^[a]

O Ph H +	CoBr ₂ (10 mo dppBz (10 mo Base (105 mo CO ₂ EtZn (50 mol%), THF	$ \begin{array}{c} 1\%) \\ 1\%) \\ 1\%) \\ \hline (2 \text{ mL}) \end{array} \qquad \begin{array}{c} O \\ Ph \\ \hline CF_2CO_2Et \end{array} $
1a	- 10 °C, 12 h, 2a	N ₂ 3 a
Entry	Base	Yield (%) ^[b]
1	K ₂ CO ₃	trace
2	КОН	trace
3	K ₃ PO ₄	trace
4 ^[c]	^t BuOK	trace
5 ^[d]	^t BuOK	17
6 ^[e]	^t BuOK	30
7 ^[f]	^t BuOK	trace
8	KHMDS	73
9	LiHMDS	77
10	LDA	90

[a] General conditions: 1a (0.2 mmol), 2a (3 eq.), CoBr₂ (10 mol%), dppBz (10 mol%), Base (105 mol%), Zn (50 mol%), THF (2 mL), -10 °C, 12 h, N₂.
[b] Isolated Yield. [c] No Zn. [d] Zn (30 mol%). [e] Zn (50 mol%). [f] Mn (50 mol%).

Supplementary Table 2 Catalyst Screening^[a]

Ph H H	[Co] (10 mol%) dppBz (10 mol%) LDA (105 mol%) Zn (50 mol%), THF (2 mL) -10 °C, 12 h, N ₂ 2a	Ph CF ₂ CO ₂ Et
Entry	[Co]	Yield (%) ^[b]
1	Co(acac) ₂	42
2	CoCl ₂	61
3	Co(OAc) ₂ ·4H ₂ O	30
4	Col ₂	83
5	CoC ₂ O ₄	10
6	CoCl₂ ·dppe	56
7	1	trace

[a] General conditions: **1a** (0.2 mmol), **2a** (3 eq.), [Co] (10 mol%), dppBz (10 mol%), LDA (105 mol%), Zn (50 mol%), THF (2 mL), -10 °C, 12 h, N_{2.} [b] Isolated Yields.

Supplementary Table 3 Ligand Screening^[a]

CoBr ₂ (10 mol%) O Ligand (10 mol%) O					
\wedge	Ph F	F <u> </u>	DA (105 mc	ol%)	Ph
	H Br	CO ₂ Et Zn (50 -1	mol%), TH 0 °C, 12 h	IF (2 mL) (, N ₂	
1a		2a			3a
Entry	Ligand	Yield (%) ^[b]	Entry	Ligand	Yield (%) ^[b]
1	L1	trace	14	L13	trace
2	L2	trace	15	L14	50
3	L3	trace	16	XantPhos	20
4	dppe	30	17	L15	10
5	L4	48	18	dppp	20
6	L5	trace	19	dppBz	90
7	L6	trace	20	L16	15
8	L7	trace	21	L17	14
9	L8	trace	22	Phen	20
10	L9	trace	23	L18	trace
11	L10	5	24	bpy	23
12	L11	trace	25	L19	trace
13	L12	trace			

[a] General conditions: **1a** (0.2 mmol), **2a** (3 eq.), CoBr₂ (10 mol%), Ligand (10 mol%), LDA (105 mol%), Zn (50 mol%), THF (2 mL), -10 °C, 12 h, N_{2.} [b] Isolated Yield.

Supplementary Table 4 Loading of Fluoroalkylating Reagents Screening^[a]

C	O Ph H +	CoBr ₂ (10 mol%) dppBz (10 mol%) LDA (105 mol%) Br CO ₂ EtZn (50 mol%), THF (2 mL) -10 °C, 12 h, N ₂ 2a (x equiv)	O Ph CF ₂ CO ₂ Et
	Entry	X	Yield (%) ^[b]
	1	1.2	51
	2	1.5	58
	3	2.0	83
	4	2.5	84
	5	4	73
	6	5	70

[a] General conditions: **1a** (0.2 mmol), **2a** (x eq.), CoBr₂ (10 mol%), dppBz (10 mol%), LDA (105 mol%), Zn (50 mol%), THF (2 mL), -10 °C, 12 h, N_{2.} [b] Isolated Yields.

Supplementary Table 5 Temperature Screening^[a]

[a] General conditions: **1a** (0.2 mmol), **2a** (3 eq.), CoBr₂ (10 mol%), dppBz (10 mol%), LDA (105 mol%), Zn (50 mol%), THF (2 mL), T °C, 12 h, N₂, [b] Isolated Yields. [c] t = 24 h.

Supplementary Table 6 Solvent Screening^[a]

[a] General conditions: **1a** (0.2 mmol), **2a** (3 eq.), CoBr₂ (10 mol%), dppBz (10 mol%), LDA (105 mol%), Zn (50 mol%), Solvent (2 mL), -10 °C, 12 h, N₂ [b] Isolated Yields.

Supplementary Figure 186 Aryl Ketones Containing Secondary α -C-H Bonds Used as Substrates

Supplementary Methods

General Information NMR spectra were recorded on Bruker-400 MHz NMR spectrometer (400 MHz for ¹H; 101 MHz for ¹³C and 376 MHz for ¹⁹F (¹H, ¹³C decoupled). ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.00 or at the signal of a residual protonated solvent: CDCl₃ δ 7.26. ¹³C NMR chemical shifts were determined relative to CDCl₃ δ 77.16. ¹⁹F NMR chemical shifts were determined relative to CDCl₃ δ 77.16. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.00. Data for ¹H, ¹³C, ¹⁹F NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br =

broad). High resolution mass spectra were recorded on P-SIMS-Gly of BrukerDaltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact).

Materials THF was distilled from sodium immediately before use. LDA was obtained from Energychemical used as received (2 mol/L). CoBr₂ was obtained from Energy-chemical and used as received. dppBz and zinc powder were obtained from aladdin and used as received. BrCF₂CO₂Et was obtained from Fluorochem Ltd (UK) and used as received.

Preparation of Substituted Aryl Ketones

R^{1}					
Entry		Entry			
1a	R ¹ = H, R ² = Ph, n = 1	1j	R ¹ = H, R ² = Ph-Cl-3, n = 1		
1b	R ¹ = H, R ² = Me, n = 1	1k	R ¹ = 5-OMe, R ² = Me, n = 1		
1c	R ¹ = H, R ² = ^{<i>n</i>} Bu, n = 1	11	R ¹ = 7-OMe, R ² = Me, n = 1		
1d	R ¹ = H, R ² = Bn, n = 1	1m	R ¹ = 6-OMe, R ² = Me, n = 1		
1e	R ¹ = H, R ² = ^{<i>i</i>} Pr, n = 1	1n	R ¹ = 7-Br, R ² = Me, n = 1		
1f	R ¹ = H, R ² = Ph-Me-4, n = 1	10	R ¹ = H, R ² = Ph, n = O		
1g	R ¹ = H, R ² = Ph-Cl-4, n = 1	1p	R ¹ = H, R ² = Me, n = 0		
1h	R ¹ = H, R ² = Ph-Br-4, n = 1	1q	R ¹ = 5-Me, R ² = Me, n = 0		
1i	R ¹ = H, R ² = Ph-F-4, n = 1	1r	R ¹ = 5-Cl, R ² = Me, n = 0		

Substrates 1a⁴, 1b⁵, 1c⁶, 1f-1i⁶, 1k⁶, 1d⁷, 1e⁷, 1j⁷, 1l⁷, 1m-1o⁷ were prepared in accordance with methods described in the references.

Entry		Entry	
1s	$R^3 = H, R^4 = H$	1ab	R ³ = 2-Naph, R ⁴ = H
1t	R ³ = 4-Me, R ⁴ = H	1ac	R ³ = H, R ⁴ = 2-Naph
1u	R ³ = H, R ⁴ = 4-Me	1ad	R ³ = H, R ⁴ = 4-F
1v	R ³ = 3-0Me, R ⁴ = H	1ae	R ³ = H, R ⁴ = 4-Cl
1w	R ³ = 4-OMe, R ⁴ = H	1af	R ³ = 4-OMe, R ⁴ = 4-F
1x	R ³ = H, R ⁴ = 3-OMe	1ag	R ³ = 3-N,N-di-Me, R ⁴ = H
1y	R ³ = H, R ⁴ = 4-Ph	1ah	R ³ = 3,4-di-OMe, R ⁴ = H
1z	R ³ = 4-Ph, R ⁴ = H		
1aa	R ³ = 1-Naph, R ⁴ = H		

Substrates **1s-1z**^{1,3}, **1aa-1ah**^{2,3} were prepared in accordance with methods described in the references. BrR_f

Substrates $2b^8$, $2c^{10}$, $2d^9$, $2e^9$, $2f^9$, $2g^{11}$ were prepared in accordance with methods described in the references.

General Procedure for Cobalt-Catalyzed Difluoroalkyaltion of Tertiary Aryl Ketones.

To a 50 mL of Schlenk tube was added aryl ketone **1** (1.0 equiv, 0.2 mmol), $CoBr_2$ (10 mol %, 0.02 mmol) and dppBz (10 mol %, 0.02 mmol) under air, followed by Zn (0.5 equiv, 0.1 mmol). The mixture was evacuated and backfilled with N₂ (3 times). THF (2 mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10°C). After stirring for 5 minutes, bormdifluoroacetate **2a** (3.0 equiv, 0.6 mmol) was added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (- 10°C). After stirring for another 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product.

Characterization Data for Alkyl Difluorides

Ethyl (R)-2,2-difluoro-2-(1-oxo-2-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3a**). The product **3a** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (90% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 7.9, Hz, 1H), 7.49 – 7.41 (m, 1H), 7.26 – 7.34 (m, 6H), 7.10 (d, *J* = 7.6 Hz, 1H), 4.26 (qq, *J* = 10.7, 7.1 Hz, 2H), 3.01 (td, *J* = 13.5, 4.5 Hz, 1H), 2.92 – 2.83 (m, 2H), 2.73 – 2.64 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.07 (t, *J* = 2.9 Hz), 163.56 (t, *J* = 32.4 Hz), 143.17, 134.19, 132.29, 131.92, 129.02, 128.74, 128.39, 128.36, 128.16, 127.00, 115.22 (t, *J* = 257.6 Hz), 62.63, 60.87 (dd, *J* = 22.4, 20.9 Hz), 28.51 (dd, *J* = 5.8, 3.2 Hz), 25.27, 13.77. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.22 (d, *J* = 272.2 Hz, 1F), -110.19 (d, *J* = 272.1 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₁₉O₃F₂: 345.1297, found: 345.1301.

Ethyl (S)-2,2-difluoro-2-(2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3b**). The product **3b** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (64% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 7.7 Hz, 1H), 7.57 – 7.45 (m, 1H), 7.36 – 7.28 (m, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.14 – 3.01 (m, 2H), 2.64 – 2.56 (m, 1H), 2.11 (dt, *J* = 13.7, 4.5 Hz, 1H), 1.52 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.59 (t, *J* = 3.1 Hz), 163.74 (t, *J* = 32.3 Hz), 142.87, 134.08, 131.18, 128.81, 128.23, 127.06, 116.41 (t, *J* = 257.2 Hz), 62.91, 51.93 (t, *J* = 21.9 Hz), 28.54 (t, *J* = 4.1 Hz), 24.86, 16.75 (t, *J* = 4.2 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.56 (d, *J* = 266.0 Hz, 1F), -112.33 (d, *J* = 266.0 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₅H₁₇O₃F₂: 283.1140, found: 283.1145.

Ethyl (S)-2-(2-butyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3c**). The product **3c** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.8 Hz, 1H), 7.60 – 7.44 (m, 1H), 7.40 –

7.28 (m, 1H), 7.25 (d, J = 7.9 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.08 – 2.97 (m, 2H), 2.63 – 2.55 (m, 1H), 2.35 (dt, J = 13.6, 4.7 Hz, 1H), 1.96 – 1.78 (m, 2H), 1.58 – 1.49 (m, 1H), 1.43 - 1.28 (m, 6H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.82 (t, J = 3.5 Hz), 163.78 (t, J = 32.4 Hz), 143.09, 134.00, 131.39, 128.82, 128.23, 127.02, 117.02 (dd, J = 260.0, 256.6 Hz), 62.87, 55.10 (t, J = 20.5 Hz), 30.19 (t, J = 3.1 Hz), 26.64, 25.21 (dd, J = 5.3, 3.3 Hz), 25.04, 23.40, 13.97, 13.95. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.55 (d, J = 269.9 Hz, 1F), -107.72 (d, J = 269.9 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₈H₂₂O₃F₂Na: 347.1429, found: 347.1434.

Ethyl (R)-2-(2-benzyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3d**). The product **3d** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 7.8 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.33 – 7.27 (m, 1H), 7.20 – 7.14 (m, 5H), 7.16 (d, J = 5.9 Hz, 1H), 4.40 – 4.28 (m, 2H), 3.65 (d, J = 13.8 Hz, 1H), 3.12 – 3.04 (m, 1H), 3.04 (d, J = 13.8 Hz, 1H), 2.74 (dt, J = 17.1, 6.3 Hz, 1H), 2.47 – 2.41 (m, 1H), 2.20 – 2.13 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.35 (t, J = 2.7 Hz), 163.34 (t, J = 32.5 Hz), 143.41, 135.84, 133.98, 132.49, 131.00, 128.71, 128.35, 128.15, 127.01, 126.89, 117.11 (t, J = 260.8 Hz), 63.20, 55.49 (t, J = 19.7 Hz), 37.28 (t, J = 4.0 Hz), 26.20 (t, J = 3.2 Hz), 25.42, 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.66 (d, J = 262.6 Hz, 1F), -107.38 (d, J = 262.5 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₁H₂₁O₃F₂: 359.1453, found: 359.1451.

Ethyl (R)-2,2-difluoro-2-(2-isopropyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3e**). The product **3e** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.94 (m, 1H), 7.54 – 7.43 (m, 1H), 7.34 – 7.28 (m, 1H), 7.23 (d, J = 7.7 Hz, 1H), 4.34 -4.27 (m, 2H), 3.20 – 3.12 (m, 1H), 3.03 - 2.95 (m, 1H), 2.71 – 2.61 (m, 2H), 2.27 (ddd, J = 14.3, 8.5, 5.5 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.05 (dd, J = 6.9, 2.4 Hz, 3H), 0.93 (dd, J = 6.9, 1.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.32 (t, J = 4.1 Hz), 163.71 (t, J = 32.3 Hz), 143.16 , 133.94 , 132.74 , 128.79 , 127.92 , 126.97 , 118.36 (dd, J = 264.8, 255.9 Hz), 62.97, 57.68 (t, J = 19.5 Hz), 30.90 , 25.70 (d, J = 3.0 Hz) , 22.57 (t, J = 4.2 Hz), 18.88, 18.15 (d, J = 6.1 Hz), 13.91. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.26 (d, J = 267.8 Hz, 1F), -104.49 (d, J = 267.9 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₁₇H₂₀O₃F₂: 333.1273, found: 333.1279.

Ethyl (R)-2,2-difluoro-2-(1-oxo-2-(p-tolyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3f**). The product **3f** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (96% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 7.8 Hz, 1H), 7.48 – 7.39 (m, 1H), 7.35 – 7.28 (m, 1H), 7.23 – 7.16 (m, 2H), 7.12 – 7.08 (m, 3H), 4.34 – 4.21 (m, 2H), 2.99 (td, *J* = 13.4, 4.3 Hz, 1H), 2.88 – 2.84 (m, 2H), 2.76 – 2.68 (m, 1H), 2.30 (s, 3H), 1.26 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.13 (t, *J* = 3.1 Hz), 163.64 (t, *J* = 32.3 Hz), 143.14, 138.18, 134.08, 131.90, 129.12,

128.89, 128.71, 128.09, 126.92, 115.19 (t, J = 258.6 Hz), 62.62, 60.55 (t, J = 22.2 Hz), 28.33 (dd, J = 5.8, 3.1 Hz), 25.27, 21.09, 13.79. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.13 (d, J = 271.8 Hz, 1F), -110.44 (d, J = 271.7 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₁H₂₁O₃F₂: 359.1453, found: 359.1459.

Ethyl (R)-2-(2-(4-chlorophenyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3g**). The product **3g** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 – 8.07 (m, 1H), 7.51 – 7.42 (m, 1H), 7.37 – 7.30 (m, 1H), 7.30 – 7.26 (m, 2H), 7.26 – 7.21 (m, 2H), 7.11 (d, *J* = 7.7 Hz, 1H), 4.33 – 4.21 (m, 2H), 3.04 – 2.95 (m, 1H), 2.90 – 2.80 (m, 2H), 2.70 – 2.61 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.71 (t, *J* = 2.9 Hz), 163.43 (t, *J* = 32.3 Hz), 142.99, 134.62, 134.47, 131.66, 130.87, 130.43, 128.83, 128.67, 128.25, 127.18, 114.98 (t, *J* = 257.9 Hz), 62.84, 60.38 (dd, *J* = 22.7, 21.0 Hz), 28.37 (dd, *J* = 5.8, 3.2 Hz), 25.14, 13.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.37 (d, *J* = 272.6 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₁₈O₃ClF₂: 379.0907, found: 379.0909.

Ethyl (R)-2-(2-(4-bromophenyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3h**). The product **3h** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (95% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 – 8.09 (m, 1H), 7.52 – 7.38 (m, 3H), 7.36 – 7.29 (m, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 1H), 4.33 – 4.21 (m, 2H), 3.03 – 2.95 (m, 1H), 2.90 – 2.80 (m, 2H), 2.70 – 2.61 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.66 (t, *J* = 2.9 Hz), 163.39 (t, *J* = 32.2 Hz), 142.97, 134.48, 131.60, 131.40, 130.72, 128.83, 128.22, 127.16, 122.84, 114.89 (t, *J* = 257.9 Hz), 62.84, 60.41 (dd, *J* = 22.7, 21.0 Hz), 28.28 (dd, *J* = 5.7, 3.3 Hz), 25.11, 13.83. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.44 (d, *J* = 272.7 Hz, 1F), -110.39 (d, *J* = 272.6 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₁₈O₃BrF₂: 423.0402, found: 423.0400.

Ethyl (R)-2,2-difluoro-2-(2-(4-fluorophenyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3i**). The product **3i** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 7.9 Hz, 1H), 7.54 – 7.41 (m, 1H), 7.34 – 7.26 (m, 3H), 7.11 (d, J = 7.7 Hz, 1H), 7.05 – 6.92 (m, 2H), 4.33 – 4.20 (m, 2H), 2.99 (td, J = 14.2, 13.6, 4.6 Hz, 1H), 2.90 – 2.81 (m, 2H), 2.71 – 2.62 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.83 (t, J = 2.9 Hz), 163.47 (t, J = 32.3 Hz), 162.71 (d, J = 248.2 Hz), 143.01, 134.39, 131.71, 130.84 (d, J = 8.2 Hz), 128.79, 128.24, 127.95, 127.13, 115.05 (t, J = 258.6 Hz), 115.44 (d, J = 21.5 Hz), 62.75, 60.29 (dd, J = 22.7, 21.1 Hz), 28.49 (dd, J = 5.7, 3.2 Hz), 25.15, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.44 (d, J = 272.4 Hz, 1F), -110.43 (d, J = 272.4 Hz, 1F), -113.53

(s, 1F). HRMS (ESI) (*m/z*): [M+H]⁺ calcd. for C₂₀H₁₈O₃F₃: 363.1203, found: 363.1208.

Ethyl (R)-2-(2-(3-chlorophenyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3j**). The product **3j** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.41 (m, 1H), 7.35 – 7.11 (m, 6H), 4.33 – 4.18 (m, 2H), 3.00 (td, *J* = 14.2, 13.5, 4.6 Hz, 1H), 2.90 – 2.82 (m, 2H), 2.72 – 2.63 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.40 (t, *J* = 2.9 Hz), 163.28 (t, *J* = 32.3 Hz), 143.05, 134.50, 131.61, 129.55, 129.16, 128.82, 128.70, 128.31, 127.36, 127.20, 114.96 (t, *J* = 259.6 Hz), 62.78, 60.62 (dd, *J* = 22.7, 21.0 Hz), 28.45 (dd, *J* = 5.7, 3.3 Hz), 25.16, 13.76. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.37 (d, *J* = 272.8 Hz, 1F), -110.00 (d, *J* = 272.7 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₁₈O₃ClF₂: 379.0907, found: 379.0914.

Ethyl (S)-2,2-difluoro-2-(5-methoxy-2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3k**). The product **3k** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (69% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (dd, J = 7.9, 0.9 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.00 (dd, J = 8.1, 0.8 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 3.11 (dt, J = 18.3, 4.7 Hz, 1H), 2.80 – 2.72 (m, 1H), 2.51 (ddd, J = 13.8, 11.2, 5.5 Hz, 1H), 2.11 – 2.05 (m, 1H), 1.46 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.99 (t, J = 2.8 Hz), 163.85 (t, J = 32.3 Hz), 156.70, 131.96, 127.30, 119.67, 116.35 (t, J = 256.9 Hz), 114.73, 62.87, 55.81, 51.66 (t, J = 21.9 Hz), 27.67 (t, J = 4.3 Hz), 18.71, 16.52 (t, J = 4.2 Hz), 14.00. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.92 (d, J = 266.6 Hz, 1F), -112.67 (d, J = 266.6 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₆H₁₈F₂NaO₄: 335.1071, found: 335.1075.

Ethyl (S)-2,2-difluoro-2-(7-methoxy-2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3**I). The product **3**I is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, J = 2.8 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.08 (dd, J = 8.4, 2.8 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 3.06 – 2.93 (m, 2H), 2.60 – 2.53 (m, 1H), 2.08 (dt, J = 13.6, 4.6 Hz, 1H), 1.50 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.66 (t, J = 3.1 Hz), 163.77 (t, J = 32.3 Hz), 158.60, 135.47, 131.79, 130.05, 122.76, 116.39 (t, J = 257.1 Hz), 109.77, 62.89, 55.56, 51.86 (t, J = 22.0 Hz), 28.60 (dd, J = 5.1, 4.0 Hz), 24.02, 16.64 (t, J = 4.1 Hz), 13.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.59 (d, J = 266.2 Hz, 1F), -112.41 (d, J = 266.2 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₁₆H₁₉O₄F₂: 313.1246, found: 313.1244.

Ethyl (S)-2,2-difluoro-2-(6-methoxy-2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetate (**3m**). The product **3m** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.8 Hz, 1H), 6.83 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.68 (d, *J* = 2.1 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.85 (s, 3H), 3.11 - 2.96 (m, 2H), 2.58 (ddd, *J* = 13.7, 11.1, 5.6 Hz, 1H), 2.11 - 2.04 (m, 1H), 1.50 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.34 (t, *J* = 2.8 Hz), 164.20, 163.86 (t, *J* = 32.3Hz), 145.44 , 130.79 , 124.69 , 116.57 (t, *J* = 258.0Hz), 113.81, 112.47, 62.86, 55.62, 51.79 (t, *J* = 21.9 Hz), 28.56 (dd, *J* = 5.3, 3.4 Hz), 25.31, 16.99 (t, *J* = 4.2 Hz), 14.01. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.62 (d, *J* = 264.7 Hz, 1F), -112.54 (d, *J* = 264.8 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₆H₁₉O₄F₂: 313.1246, found: 313.1252.

Ethyl (S)-2-(7-bromo-2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-2,2-difluoroacetate (**3n**). The product **3n** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 2.2 Hz, 1H), 7.60 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.01 (dd, *J* = 8.0, 4.9 Hz, 2H), 2.57 (dt, *J* = 13.9, 8.1 Hz, 1H), 2.10 (dt, *J* = 13.8, 4.8 Hz, 1H), 1.48 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.32 (t, *J* = 2.8 Hz), 163.52 (t, *J* = 32.2 Hz), 141.58, 136.83, 132.69, 130.94, 130.66, 121.07, 116.22 (t, *J* = 257.8 Hz), 63.05, 51.63 (t, *J* = 21.9 Hz), 28.47 (t, *J* = 4.2 Hz), 24.47, 16.72 (t, *J* = 4.2 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.57 (s, 2F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₅H₁₆O₃BrF₂: 361.0245, found: 361.0253.

Ethyl (S)-2,2-difluoro-2-(4-oxo-3-phenylchroman-3-yl)acetate (**3o**). The product **3o** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 7.9 Hz, 1H), 7.44 – 7.33 (m, 6H), 7.07 – 6.98 (m, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 5.23 (t, *J* = 12.0, 2H), 4.36 – 4.24 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.20 (dd, *J* = 4.2, 1.1 Hz), 163.14 (t, *J* = 31.8 Hz), 160.66, 136.64, 129.59 (d, *J* = 2.4 Hz), 129.01, 128.62, 127.93, 122.01, 120.21, 117.80, 113.89 (dd, *J* = 263.8, 254.2 Hz), 69.34 (dd, *J* = 8.8, 3.7 Hz), 63.28, 59.18 (t, *J* = 21.1 Hz), 13.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.58 (d, *J* = 278.9 Hz, 1F), -110.21 (d, *J* = 278.9 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₉H₁₆O₄F₂Na: 369.0909, found: 369.0912.

Ethyl (S)-2,2-difluoro-2-(2-methyl-1-oxo-2,3-dihydro-1H-inden-2-yl)acetate (3p). The product 3p is

purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.66 – 7.58 (m, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.43 – 7.37 (m, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.59 (d, *J* = 17.6 Hz, 1H), 2.94 (d, *J* = 17.7 Hz, 1H), 1.49 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.57 (t, *J* = 2.7 Hz), 162.91 (t, *J* = 32.8 Hz), 151.49, 135.60, 135.34 (t, *J* = 2.1 Hz), 128.09, 126.60, 124.85, 115.93 (t, *J* = 257.8 Hz), 63.17, 53.77 (t, *J* = 21.7 Hz), 37.06, 18.96 (t, *J* = 4.6 Hz), 13.80. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.86 (d, *J* = 264.1 Hz, 1F), -110.58 (d, *J* = 264.2 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₄H₁₅O₃F₂: 269.0984, found: 269.0994.

Ethyl (S)-2-(2,5-dimethyl-1-oxo-2,3-dihydro-1H-inden-2-yl)-2,2-difluoroacetate (**3q**). The product **3q** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (64% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (s, 1H), 7.44 (dd, J = 7.8, 1.2 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.53 (d, J = 17.5 Hz, 1H), 2.88 (d, J = 17.5 Hz, 1H), 2.40 (s, 3H), 1.48 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.66 (t, J = 2.8 Hz), 162.96 (t, J = 32.7 Hz), 148.87, 138.12, 136.89, 135.48, 126.26, 124.70, 115.99 (t, J = 257.8 Hz), 63.15, 54.07 (t, J = 21.6 Hz), 36.70 (t, J = 3.4 Hz), 21.20, 19.00 (t, J = 4.7 Hz), 13.82. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.25 (s, 2F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₁₆F₂NaO₃: 305.0965, found: 305.0965.

Ethyl (S)-2-(5-chloro-2-methyl-1-oxo-2,3-dihydro-1H-inden-2-yl)-2,2-difluoroacetate (**3r**). The product **3r** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.2 Hz, 1H), 7.46 (s, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.57 (d, *J* = 17.8 Hz, 1H), 2.92 (d, *J* = 17.8 Hz, 1H), 1.48 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.16 (t, *J* = 2.9 Hz), 162.78 (t, *J* = 32.5 Hz), 152.91, 142.21, 133.77 (t, *J* = 2.1 Hz), 128.97, 126.83, 125.95, 115.76 (t, *J* = 258.1 Hz), 63.32, 53.98 (t, *J* = 21.8 Hz), 36.79 (t, *J* = 3.5 Hz), 18.99 (t, *J* = 4.6 Hz), 13.87. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.10 (s, 2F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₄H₁₃ClF₂NaO₃: 325.0419, found: 325.0419.

Ethyl (R)-2,2-difluoro-3-methyl-4-oxo-3,4-diphenylbutanoate (**3s**). The product **3s** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 8.0 Hz, 2H), 7.44 – 7.38 (m, 6H), 7.29 – 7.20 (m, 2H), 4.41 – 4.29 (m, 2H), 2.12 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.36 (d, J = 4.6 Hz), 163.98 (t, J = 32.3 Hz), 136.00, 134.55, 132.95, 130.24, 129.43, 128.69, 128.44, 128.28, 114.66 (dd, J = 262.6, 252.8 Hz), 62.72, 61.90 (dd, J = 22.8, 20.0 Hz), 20.45 (dd, J = 5.9, 3.3 Hz), 13.96. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.64 (d, J = 270.4 Hz, 1F), -111.89 (d, J = 270.5 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₁₉H₁₉O₃F₂: 333.1297, found: 333.1294.

Ethyl (R)-2,2-difluoro-3-methyl-4-oxo-3-phenyl-4-(p-tolyl)butanoate (**3t**). The product **3t** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.35 (m, 7H), 7.05 (d, *J* = 8.1 Hz, 2H), 4.41 – 4.30 (m, 2H), 2.31 (s, 3H), 2.13 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.94 (d, *J* = 4.6 Hz), 164.06 (t, *J* = 32.3 Hz), 143.89, 136.33, 131.84, 130.48, 129.51, 128.98, 128.59, 128.36, 114.72 (dd, *J* = 262.5, 252.5 Hz), 62.67, 61.95 (dd, *J* = 22.9, 19.9 Hz), 21.65, 20.58 (dd, *J* = 6.0, 3.3 Hz), 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.79 (d, *J* = 270.0 Hz, 1F), -112.07 (d, *J* = 270.0 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₂₁O₃F₂: 347.1453, found: 347.1455.

Ethyl (R)-2,2-difluoro-3-methyl-4-oxo-4-phenyl-3-(p-tolyl)butanoate (**3u**). The product **3u** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.40 (m, 2H), 7.36 – 7.30 (m, 1H), 7.21 – 7.14 (m, 4H), 7.09 (d, J = 8.1 Hz, 2H), 4.32 – 4.21 (m, 2H), 2.28 (s, 3H), 2.01 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.54 (d, J = 4.4 Hz), 164.05 (t, J = 32.4 Hz), 138.56, 134.62, 132.88, 130.23, 129.23, 129.18, 128.25, 114.67 (dd, J = 262.1, 252.5 Hz), 62.68, 61.61 (dd, J = 22.9, 20.1 Hz), 21.25, 20.40 (dd, J = 6.0, 3.3 Hz), 13.96. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.68 (d, J = 270.2 Hz, 1F), -111.90 (d, J = 270.2 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₀H₂₁O₃F₂: 347.1453, found: 347.1458.

Ethyl (R)-2,2-difluoro-4-(3-methoxyphenyl)-3-methyl-4-oxo-3-phenylbutanoate (**3v**). The product **3v** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.33 (m, 5H), 7.14 – 7.10 (m, 2H), 6.97 (d, J = 7.9 Hz, 2H), 4.41 – 4.30 (m, 2H), 3.66 (s, 3H), 2.13 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.13 (d, J = 4.7 Hz), 163.97 (t, J = 32.3 Hz), 159.38, 135.96 (dd, J = 31.0, 1.6 Hz),. 129.47, 129.18, 128.70, 128.44, 122.85, 119.63, 114.69 (dd, J = 264.6, 253.5 Hz), 114.50, 62.73, 62.00 (dd, J = 22.9, 20.0 Hz), 55.32, 20.45 (dd, J = 5.8, 3.4 Hz), 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 106.70 (d, J = 270.4 Hz, 1F), -111.81 (d, J = 270.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₂₁O₄F₂: 363.1402, found: 363.1406.

Ethyl (R)-2,2-difluoro-4-(4-methoxyphenyl)-3-methyl-4-oxo-3-phenylbutanoate (3w). The product 3w is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil

(85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.9 Hz, 2H), 7.45 – 7.29 (m, 5H), 6.72 (d, J = 8.9 Hz, 2H), 4.41 – 4.30 (m, 2H), 3.78 (s, 3H), 2.13 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.86 (d, J = 4.8 Hz), 164.12 (t, J = 32.3 Hz), 163.25, 136.53 (d, J = 2.1 Hz), 132.82, 129.53, 128.55, 128.31, 126.82, 114.68 (dd, J = 262.5, 251.9 Hz), 113.48, 62.66, 61.89 (dd, J = 22.9, 20.0 Hz), 55.52 , 20.75 (dd, J = 6.0, 3.3 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.96 (d, J = 269.5 Hz, 1F), -112.27 (d, J = 269.5 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₀H₂₁O₄F₂: 363.1402, found: 363.1398.

Ethyl (R)-2,2-difluoro-3-(3-methoxyphenyl)-3-methyl-4-oxo-4-phenylbutanoate (**3x**). The product **3x** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (76% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.49 (m, 2H), 7.45 – 7.39 (m, 1H), 7.30 – 7.23 (m, 3H), 6.98 – 6.91 (m, 3H), 4.41 – 4.29 (m, 2H), 3.77 (s, 3H), 2.10 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.20 (d, J = 4.7 Hz), 163.94 (t, J = 32.3 Hz), 159.56, 137.39, 134.68, 132.91, 130.17, 129.29, 128.27, 122.10, 115.69,114.65 (dd, J = 263.3, 252.6 Hz), 113.71, 62.71, 61.83 (dd, J = 22.9, 19.8 Hz), 55.39, 20.47 (dd, J = 6.0, 3.3 Hz), 13.95. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 106.45 (d, J = 270.2 Hz, 1F), -111.73 (d, J = 270.2 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₂₁O₄F₂: 363.1402, found: 363.1402.

Ethyl (R)-3-([1,1'-biphenyl]-4-yl)-2,2-difluoro-3-methyl-4-oxo-4-phenylbutanoate (**3y**). The product **3y** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (76% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.51 (m, 4H), 7.49 – 7.44 (m, 2H), 7.41 – 7.35 (m, 5H), 7.32 – 7.27 (m, 1H), 7.21 – 7.17 (m, 2H), 4.35 – 4.23 (m, 2H), 2.08 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.37 (d, *J* = 4.4 Hz), 163.99 (t, *J* = 32.3 Hz), 141.33, 140.17, 134.97, 134.55, 133.02, 130.28, 129.83, 128.96, 128.34, 127.78, 127.18, 127.02, 114.70 (dd, *J* = 262.4, 252.9 Hz), 62.78, 61.73 (dd, *J* = 22.8, 20.1 Hz), 20.49 (dd, *J* = 6.0, 3.2 Hz), 13.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.57 (d, *J* = 270.4 Hz, 1F), -111.70 (d, *J* = 270.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₅H₂₃O₃F₂: 409.1610, found: 409.1606.

Ethyl (R)-4-([1,1'-biphenyl]-4-yl)-2,2-difluoro-3-methyl-4-oxo-3-phenylbutanoate (**3z**). The product **3z** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.57 (m, 2H), 7.55 – 7.53 (m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.35 (m, 8H), 4.44 – 4.32 (m, 2H), 2.19 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.85 (d, J = 4.7 Hz), 164.02 (t, J = 32.3 Hz), 145.59 , 139.67 , 136.19 , 133.14 , 130.93 , 129.52 , 129.04 , 128.70 , 128.48 , 128.42 , 127.28 , 126.86 , 114.71 (dd, J = 262.6,

252.8 Hz), 62.72 , 61.99 (dd, J = 22.9, 20.0 Hz), 20.54 (dd, J = 6.0, 3.3 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.64 (d, J = 270.3 Hz, 1F), -111.93 (d, J = 270.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₅H₂₃O₃F₂: 409.1610, found: 409.1607.

Ethyl (R)-2,2-difluoro-3-methyl-4-(naphthalen-1-yl)-4-oxo-3-phenylbutanoate (**3aa**). The product **3aa** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 7.90 – 7.78 (m, 1H), 7.61 – 7.45 (m, 7H), 7.17 – 7.09 (m, 1H), 6.86 (d, J = 7.2 Hz, 1H), 4.46 – 4.32 (m, 2H), 1.94 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.35 (d, J = 3.5 Hz), 163.89 (t, J = 32.4 Hz), 135.26, 135.12, 134.01, 131.57, 130.93, 129.29, 128.89, 128.60, 128.53, 127.83, 126.58, 125.67, 125.48, 123.85, 115.22 (dd, J = 263.3, 255.6 Hz), 62.97, 62.52 (dd, J = 22.1, 19.2 Hz), 19.21 (dd, J = 5.7, 3.5 Hz), 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.68 (d, J = 272.9 Hz, 1F), -108.53 (d, J = 272.9 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₃H₂₁O₃F₂: 383.1453, found: 383.1457.

Ethyl (R)-2,2-difluoro-3-methyl-4-(naphthalen-2-yl)-4-oxo-3-phenylbutanoate (**3ab**). The product **3ab** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.73 – 7.66 (m, 2H), 7.57 – 7.52 (m, 2H), 7.49 – 7.44 (m, 3H), 7.41 – 7.37 (m, 3H), 4.45 – 4.33 (m, 2H), 2.21 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.28 (d, *J* = 4.7 Hz), 164.05 (t, *J* = 32.2 Hz), 136.26 (d, *J* = 2.0 Hz), 135.25 , 132.43 , 132.21 , 131.82 , 129.82 , 129.55 , 128.85 , 128.73 , 128.50 , 127.92 , 127.67 , 126.82 , 125.59 , 114.76 (dd, *J* = 262.7, 252.7 Hz), 62.74 , 62.12 (dd, *J* = 22.9, 20.0 Hz), 20.59 (dd, *J* = 5.9, 3.4 Hz), 14.00. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.64 (d, *J* = 270.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₃H₂₁O₃F₂: 383.1453, found: 383.1451.

Ethyl (R)-2,2-difluoro-3-methyl-3-(naphthalen-2-yl)-4-oxo-4-phenylbutanoate (**3ac**). The product **3ac** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.87 – 7.81 (m, 3H), 7.64 – 7.48 (m, 4H), 7.46 – 7.39 (m, 2H), 7.25 – 7.15 (m, 2H), 4.43 – 4.31 (m, 2H), 2.25 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.44 (d, J = 4.4 Hz), 164.03 (t, J = 32.2 Hz), 134.67, 133.62 (d, J = 2.1 Hz), 133.15, 133.11, 133.00, 130.24, 128.54, 128.35, 127.89, 127.71, 127.32, 127.30, 126.93, 126.55, 114.85 (dd, J = 262.6, 252.8 Hz), 62.77, 62.07 (dd, J = 22.8, 20.0 Hz), 20.67 (dd, J = 6.0, 3.3 Hz), 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.33 (d, J = 277.2 Hz, 1F), -111.49 (d, J = 270.7 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₃H₂₁O₃F₂: 383.1453, found: 383.1453.

Ethyl (R)-2,2-difluoro-3-(4-fluorophenyl)-3-methyl-4-oxo-4-phenylbutanoate (**3ad**). The product **3ad** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.47 (m, 2H), 7.44 (d, *J* = 7.4 Hz, 1H), 7.39 – 7.36 (m, 2H), 7.29 – 7.25 (m, 2H), 7.12 – 7.03 (m, 2H), 4.42 - 4.31 (m, 2H), 2.11 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.09 (d, *J* = 4.4 Hz), 163.87 (t, *J* = 32.3), 162.96 (d, *J* = 249.5), 134.38, 133.12, 131.89, 131.24 (dd, *J* = 8.2, 1.3 Hz), 130.22, 128.40, 115.52 (d, *J* = 21.5 Hz), 114.52 (dd, *J* = 262.3, 253.1 Hz), 62.81, 61.44 (dd, *J* = 22.9, 20.1 Hz), 20.64 (dd, *J* = 6.1, 3.2 Hz), 13.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.83 (d, *J* = 271.0 Hz, 1F), -112.03 (d, *J* = 271.0 Hz, 1F), -113.10 (s, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₉H₁₈O₃F₃: 351.1203, found: 351.1205.

Ethyl (R)-3-(4-chlorophenyl)-2,2-difluoro-3-methyl-4-oxo-4-phenylbutanoate (**3ae**). The product **3ae** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (70% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.43 (m, 3H), 7.37 – 7.23 (m, 6H), 4.42 – 4.30 (m, 2H), 2.11 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.91 (d, *J* = 4.4 Hz), 163.78 (t, *J* = 32.1 Hz), 134.97, 134.68 (d, *J* = 2.1 Hz), 134.23 (d, *J* = 2.1 Hz), 133.19, 130.81, 130.21, 128.69, 128.42, 114.44 (dd, *J* = 262.4, 253.4 Hz), 62.84, 61.54 (dd, *J* = 22.9, 20.0 Hz), 20.51 (dd, *J* = 6.0, 3.2 Hz), 13.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.70 (d, *J* = 271.3 Hz, 1F), -111.83 (d, *J* = 271.2 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₉H₁₈O₃ClF₂: 367.0907, found: 367.0907.

Ethyl (R)-2,2-difluoro-3-(4-fluorophenyl)-4-(4-methoxyphenyl)-3-methyl-4-oxobutanoate (**3af**). The product **3af** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (74% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.8 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.11 – 7.00 (m, 2H), 6.74 (d, J = 8.9 Hz, 2H), 4.42 – 4.31 (m, 2H), 3.79 (s, 3H), 2.13 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.55 (d, J = 4.8 Hz), 164.01 (t, J = 32.3 Hz), 163.42, 162.86 (d, J = 249.5 Hz), 132.81, 132.42, 131.32 (d, J = 8.0 Hz), 126.65, 115.48, 115.27, 114.50 (dd, J = 212.1, 254.5 Hz), 113.61, 62.73, 61.43 (dd, J = 22.9, 20.0 Hz), 55.57, 20.94 (dd, J = 6.0, 3.2 Hz), 14.00. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.08 (d, J = 270.1 Hz, 1F), -112.37 (d, J = 270.0 Hz, 1F), -113.36 (s, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₂₀H₂₀O₄F₃: 381.1308, found: 381.1306.

Ethyl (R)-4-(3-(dimethylamino)phenyl)-2,2-difluoro-3-methyl-4-oxo-3-phenylbutanoate (**3ag**). The product **3ag** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent)
as yellow oil (71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 5H), 7.10 – 7.02 (m, 1H), 6.90 (s, 1H), 6.78 – 6.72 (m, 2H), 4.36 (q, *J* = 7.0 Hz, 2H), 2.79 (s, 6H), 2.13 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.02 (d, *J* = 4.4 Hz), 164.07 (t, *J* = 32.3 Hz), 150.16 , 136.53 , 135.13 , 129.52 , 128.76 , 128.51 , 128.30 , 118.40 , 116.70 , 114.80 (dd, *J* = 262.1, 252.5 Hz), 114.02 , 62.66 , 62.10 (dd, *J* = 22.8, 19.9 Hz), 40.36 , 20.53 (dd, *J* = 6.0, 3.4 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.77 (d, *J* = 269.9 Hz, 1F), -111.85 (d, *J* = 269.9 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₁H₂₄O₃NF₂: 376.1719, found: 376.1720.

Ethyl (R)-4-(3,4-dimethoxyphenyl)-2,2-difluoro-3-methyl-4-oxo-3-phenylbutanoate (**3ah**). The product **3ah** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.37 (m, 5H), 7.19 (s, 1H), 7.03 (d, J = 8.5 Hz, 1H), 6.63 (d, J = 8.6 Hz, 1H), 4.42 – 4.30 (m, 2H), 3.84 (s, 3H), 3.68 (s, 3H), 2.16 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.80 (d, J = 4.8 Hz), 164.09 (t, J = 32.2 Hz), 153.01, 148.41, 136.75, 129.57, 128.54, 128.29, 126.74 (d, J = 1.7 Hz), 125.32, 114.68 (dd, J = 262.6, 252.0 Hz).112.78, 109.79, 62.66, 61.94 (dd, J = 23.0, 20.1 Hz), 56.07, 55.77, 20.90 (dd, J = 5.8, 3.4 Hz), 13.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.09 (d, J = 269.4 Hz, 1F), -112.26 (d, J = 269.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₁H₂₂O₅F₂Na: 415.1328, found: 415.1324.

Ethyl (R)-3-benzoyl-2,2-difluoro-3-phenylpentanoate (**3ai**). The product **3ai** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, J = 7.9 Hz, 2H), 7.37 – 7.27 (m, 6H), 7.19 – 7.15 (m, 2H), 4.19 – 4.06 (m, 2H), 2.87 (dq, J = 14.8, 7.5 Hz, 1H), 2.37 (dq, J = 14.5, 6.9, 6.4 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.93, 163.66 (t, J = 32.1 Hz), 137.03 (t, J = 2.6 Hz), 136.26, 132.77, 129.88, 129.79, 128.50, 128.25, 128.15, 116.40 (dd, J = 264.8, 258.7 Hz), 64.97 (t, J = 20.2 Hz), 62.72, 27.86 (t, J = 2.6 Hz), 13.83, 10.56 (dd, J = 5.4, 2.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.83 (d, J = 262.3 Hz, 1F), -108.36 (d, J = 262.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₂₀O₃F₂Na: 369.1273, found: 369.1282.

Ethyl 2,2-difluoro-3,3-dimethyl-4-oxo-4-phenylbutanoate (**3aj**). The product **3aj** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (41% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, J = 8.3 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.47 – 7.39 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.62 (s, 6H), 1.36 (td, J = 7.1, 1.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.63, 163.73 (t, J = 32.3 Hz), 137.61, 131.87, 128.40, 128.14, 116.28 (t, J = 257.2 Hz), 62.88, 54.87 (t, J = 21.8 Hz), 21.28 (t, J = 4.5 Hz), 14.01. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.40. [M+H]⁺ calcd. for C₁₄H₁₆F₂NaO₃: 293.0965, found: 293.0956.

(S)-2-(benzo[d]oxazol-2-yldifluoromethyl)-2-methyl-2,3-dihydro-1H-inden-1-one (**3ak**). The product **3ak** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (57% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 7.4 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.49 – 7.33 (m, 4H), 3.83 (d, *J* = 17.6 Hz, 1H), 3.07 (d, *J* = 17.6 Hz, 1H), 1.64 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.43 (t, *J* = 2.2 Hz), 156.64 (t, *J* = 33.9 Hz), 151.56, 150.51, 139.98, 135.58, 135.36, 128.02, 126.88, 126.59, 125.30, 124.94, 121.43, 117.14 (t, *J* = 249.5 Hz), 111.50, 55.00 (t, *J* = 27.0 Hz, 1F), -105.22 (d, *J* = 277.1 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₈H₁₄F₂NO₂: 314.0987, found: 314.1005.

(S)-2-(difluoro(phenyl)methyl)-2-methyl-2,3-dihydro-1H-inden-1-one (**3al**). The product **3al** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 7.7 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.46 – 7.30 (m, 7H), 3.67 (d, *J* = 17.7 Hz, 1H), 2.91 (d, *J* = 17.7 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.81 (t, *J* = 2.9 Hz), 151.77, 135.91 (t, *J* = 2.0 Hz), 135.34, 134.40 (t, *J* = 26.9 Hz), 129.99, 127.87, 127.76, 126.82 (t, *J* = 6.7 Hz), 126.31, 124.56, 122.59 (dd, *J* = 251.6, 249.7 Hz). 56.06 (t, *J* = 26.2 Hz), 37.37 (t, *J* = 3.1 Hz), 19.78 (t, *J* = 4.5 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -98.28 (d, *J* = 249.5 Hz, 1F), -101.63 (d, *J* = 249.5 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₁₄F₂ONa: 295.0905, found: 295.0923.

(S)-N,N-diethyl-2,2-difluoro-2-(2-methyl-1-oxo-2,3-dihydro-1H-inden-2-yl)acetamide (**3am**). The product **3am** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.60 – 7.52 (m, 1H), 7.45 – 7.33 (m, 2H), 3.65 – 3.47 (m, 2H), 3.42 (d, *J* = 16.9 Hz, 1H), 3.30 – 3.21 (m, 2H), 2.89 (d, *J* = 16.9 Hz, 1H), 1.40 (s, 3H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.26 (d, *J* = 6.2 Hz), 161.44 (t, *J* = 29.6 Hz), 150.53, 135.83 (dd, *J* = 4.9, 1.1 Hz), 134.55, 127.64, 126.57, 124.70, 120.77 (dd, *J* = 266.8, 261.4 Hz), 53.65 (dd, *J* = 21.5, 19.6 Hz), 41.55 (t, *J* = 6.4 Hz), 41.24, 38.97 (dd, *J* = 4.2, 2.2 Hz), 18.88 (dd, *J* = 8.2, 3.5 Hz), 14.30, 12.38. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -100.84 (d, *J* = 292.3 Hz, 1F), -103.17 (d, *J* = 292.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₁₆H₂₀NO₂F₂: 296.1457, found: 296.1467.

(S)-2-(1,1-difluoro-2-oxo-2-(4-phenylpiperazin-1-yl)ethyl)-2-methyl-2,3-dihydro-1H-inden-1-one (**3an**). The product **3an** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.46 – 7.36 (m, 2H), 7.32 – 7.23 (m, 2H), 6.95 – 6.88 (m, 3H), 3.96 – 3.87 (m, 2H), 3.73 – 3.64 (m, 2H), 3.44 (d, *J* = 17.1 Hz, 1H), 3.30 – 3.07 (m, 4H), 2.92 (d, *J* = 17.0 Hz, 1H), 1.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.21 (d, *J* = 6.2 Hz), 160.67 (t, *J* = 30.0 Hz), 150.82, 150.47, 135.77 (d, *J* = 5.1 Hz), 134.72, 129.37, 127.74, 126.61, 124.73, 120.83, 120.70 (dd, *J* = 266.7, 261.0 Hz), 116.83, 53.52 (dd, *J* = 21.0, 19.3 Hz), 49.85, 49.40, 45.67 (t, *J* = 6.3 Hz), 43.14, 38.84 (dd, J = 4.1, 2.1 Hz), 18.82 (dd, *J* = 8.2, 3.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -100.05 (d, *J* = 294.3 Hz, 1F), -102.16 (d, *J* = 294.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₂N₂O₂F₂Na: 407.1542, found: 407.1545.

(R)-2-benzyl-2-(1,1-difluoro-2-oxo-2-(piperidin-1-yl)ethyl)-3,4-dihydronaphthalen-1(2H)-one (**3ao**). The product **3ao** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.8 Hz, 1H), 7.40 – 7.32 (m, 1H), 7.26 – 7.11 (m, 6H), 7.07 (d, *J* = 7.6 Hz, 1H), 3.64 – 3.42 (m, 3H), 3.31 – 3.27 (m, 1H), 3.16 (s, 2H), 2.80 – 2.76 (m, 2H), 2.45 (td, *J* = 12.8, 6.4 Hz, 1H), 2.08 (d, *J* = 14.1 Hz, 1H), 1.55 - 1.42 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.07 (d, *J* = 6.2 Hz), 160.57 (t, *J* = 29.4 Hz), 141.57, 136.29, 133.23, 132.79 (d, *J* = 3.6 Hz), 130.89, 128.44, 128.18, 127.87, 126.91 (d, *J* = 6.7 Hz), 121.38 (dd, *J* = 273.5, 262.6 Hz), 54.81 (dd, *J* = 19.9, 15.4 Hz), 46.93 (t, *J* = 7.0 Hz), 44.70, 36.65, 36.56, 26.58, 26.15 (d, *J* = 6.2 Hz), 25.70, 25.09, 24.50. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.09 (d, *J* = 288.8 Hz, 1F), -100.86 (d, *J* = 288.8 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₄H₂₆O₂F₂N: 398.1926, found: 398.1931.

(R)-2-(2-benzyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-N,N-diethyl-2,2-difluoroacetamide (**3ap**). The product **3ap** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (78% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.32 – 7.20 (m, 6H), 7.14 (d, *J* = 7.6 Hz, 1H), 3.61 (dq, *J* = 14.0, 7.1 Hz, 1H), 3.42 (ddt, *J* = 28.0, 14.0, 7.0 Hz, 2H), 3.28 – 3.13 (m, 3H), 2.94 – 2.80 (m, 2H), 2.63 – 2.55 (m, 1H), 2.15 (d, *J* = 14.2 Hz, 1H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.16 (d, *J* = 5.9 Hz), 161.67 (t, *J* = 29.6 Hz), 141.75, 136.26, 133.28, 132.65 (d, *J* = 3.3 Hz), 130.89, 128.46, 128.16, 127.85, 126.93, 126.85, 121.09 (dd, *J* = 273.2, 262.1 Hz), 54.96 (dd, *J* = 20.1, 15.7 Hz), 41.75 (t, *J* = 6.7 Hz), 41.47, 36.60 (d, *J* = 8.3 Hz), 26.17 (d, *J* = 5.0 Hz), 25.11, 14.39, 12.37. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.57 (d, *J* = 287.3 Hz, 1F), -101.59 (d, *J* = 287.3 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₃H₂₆O₂F₂N: 386.1926, found: 386.1931.

(R)-2-(1,1-difluoro-2-oxo-2-(piperidin-1-yl)ethyl)-2-(p-tolyl)-3,4-dihydronaphthalen-1(2H)-one (**3aq**). The product **3aq** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 7.8 Hz, 1H), 7.32 – 7.17 (m, 4H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 1H), 3.49 (d, *J* = 38.6 Hz, 4H), 3.16 (td, *J* = 14.2, 5.9 Hz, 1H), 2.73 – 2.62 (m, 3H), 2.22 (s, 3H), 1.55 – 1.48 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.50 (dd, *J* = 6.8, 1.6 Hz), 160.89 (t, *J* = 29.4 Hz), 142.50, 138.04, 133.43, 132.27 (d, *J* = 4.0 Hz), 129.52, 129.24, 128.63 (d, *J* = 4.8 Hz), 128.44, 128.37, 126.71, 118.85 (dd, *J* = 272.1, 257.5 Hz), 59.35 (dd, *J* = 21.4, 17.1 Hz), 47.00 (dd, *J* = 8.5, 5.6 Hz), 44.69, 28.88 (dd, *J* = 6.1, 1.7 Hz), 26.51, 25.77, 25.47, 24.55, 21.04. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.09 (d, *J* = 293.0 Hz, 1F), -104.98 (d, *J* = 293.0 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₄H₂₅O₂F₂NNa: 420.1746, found: 420.1746.

(R)-2-(1,1-difluoro-2-morpholino-2-oxoethyl)-2-(p-tolyl)-3,4-dihydronaphthalen-1(2H)-one (**3ar**). The product **3ar** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 7.8 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.32 – 7.26 (m, 3H), 7.15 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 1H), 3.78 – 3.62 (m, 8H), 3.22 (td, *J* = 14.0, 5.5 Hz, 1H), 2.84 – 2.72 (m, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.63 (dd, *J* = 6.7, 1.4 Hz), 161.28 (t, *J* = 29.9 Hz), 142.55, 138.22, 133.62, 132.09 (d, *J* = 3.9 Hz), 129.43, 129.30, 128.51, 128.32, 128.23 (d, *J* = 4.8 Hz), 126.78, 118.53 (dd, *J* = 270.8, 256.5 Hz), 66.79, 59.34 (dd, *J* = 21.2, 17.1 Hz), 46.72 (dd, *J* = 8.2, 5.2 Hz), 43.58, 28.75 (dd, *J* = 6.1, 1.8 Hz), 25.42, 21.05. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.36 (d, *J* = 293.9 Hz, 1F), -104.98 (d, *J* = 293.8 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₃H₂₃O₃F₂NNa: 422.1538, found: 422.1539.

(R)-N,N-diethyl-2,2-difluoro-2-(1-oxo-2-(p-tolyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetamide (**3as**). The product **3as** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.25 – 7.17 (m, 3H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 1H), 3.58 – 3.10 (m, 5H), 2.74 – 2.59 (m, 3H), 2.23 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.78 (dd, *J* = 6.7, 1.5 Hz), 162.17 (t, *J* = 29.5 Hz), 142.64, 138.05, 133.48, 132.30 (d, *J* = 3.8 Hz), 129.46, 129.29, 128.95 (d, *J* = 5.1 Hz), 128.48, 128.31, 126.74, 118.69 (dd, *J* = 272.0, 256.6

Hz), 59.68 (dd, J = 21.6, 17.7 Hz), 41.93 (dd, J = 8.4, 5.1 Hz), 41.80, 29.15 (dd, J = 6.3, 1.4 Hz), 25.56, 21.07, 14.36, 12.40. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.80 (d, J = 290.5 Hz, 1F), -105.58 (d, J = 290.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₃H₂₅O₂F₂NNa: 408.1746, found: 408.1756.

(R)-2-(1,1-difluoro-2-morpholino-2-oxoethyl)-2-(4-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one (**3at**). The product **3at** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 7.9 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.35 – 7.28 (m, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.07 – 6.98 (m, 2H), 3.78 – 3.61 (m, 8H), 3.26 – 3.18 (m, 1H), 2.86 – 2.67 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.43 (dd, *J* = 6.6, 1.4 Hz), 162.74 (d, *J* = 248.3 Hz)., 161.14 (t, *J* = 29.7 Hz), 142.41, 133.88, 131.99 (d, *J* = 4.0 Hz), 131.40 (d, *J* = 8.1 Hz), 128.51 (d, *J* = 14.0 Hz), 127.22 (dd, *J* = 4.0, 4.0 Hz), 126.98, 118.50 (dd, *J* = 271.5, 256.9 Hz), 115.65, 115.44, 66.82, 59.16 (dd, *J* = 21.2, 17.0 Hz), 46.76 (dd, *J* = 8.2, 5.2 Hz), 43.65, 28.97 (dd, *J* = 6.1, 1.7 Hz), 25.32. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.38 (d, *J* = 294.4 Hz, 1F), -104.88 (d, *J* = 294.3 Hz, 1F), -113.83 (s, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₀O₃F₃NNa: 426.1287, found: 426.1293.

(R)-N,N-diethyl-2,2-difluoro-2-(2-(4-fluorophenyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)acetamide (**3au**). The product **3au** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 7.8 Hz, 1H), 7.58 – 7.36 (m, 3H), 7.35 – 7.27 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.07 – 6.95 (m, 2H), 3.65 – 3.19 (m, 5H), 2.84 – 2.65 (m, 3H), 1.20 (t, *J* = 6.9 Hz, 3H), 1.13 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.55 (dd, *J* = 6.6, 1.6 Hz), 162.64 (d, *J* = 248.5 Hz), 161.93 (t, *J* = 29.4 Hz), 142.44, 133.71, 132.11 (d, *J* = 4.0 Hz), 131.41, 13133, 128.52, 128.38, 127.82 (dd, *J* = 5.1, 3.1 Hz), 126.90, 118.61 (dd, *J* = 272.5, 257.0 Hz), 115.57, 115.36, 59.40 (dd, *J* = 21.7, 17.4 Hz), 41.93 (dd, *J* = 8.3, 5.2 Hz), 41.80, 29.30 (dd, *J* = 4.0, 2.1 Hz), 25.40, 14.35, 12.38. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.79 (d, *J* = 291.2 Hz, 1F), -105.45 (d, *J* = 291.1 Hz, 1F), -114.13 (s, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₂₂O₂F₃NNa: 412.1495, found: 412.1497.

(R)-2-(1,1-difluoro-2-oxo-2-(piperidin-1-yl)ethyl)-2-(4-fluorophenyl)-3,4-dihydronaphthalen-1(2H)-one (**3av**). The product **3av** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 7.8 Hz, 1H),

7.43 – 7.40 (m, 3H), 7.35 – 7.28 (m, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.07 – 6.97 (m, 2H), 3.53 – 3.36 (m, 4H), 3.29 – 3.21 (m, 1H), 2.85 – 2.65 (m, 3H), 1.76 – 1.44 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.37 (dd, J = 6.8, 1.7 Hz), 162.70 (d, J = 248.0 Hz), 160.73 (t, J = 29.2 Hz), 142.37, 133.72, 132.15 (d, J = 3.9 Hz), 131.49 (d, J = 8.0 Hz), 128.52, 127.57 (dd, J = 5.1, 4.0 Hz), 126.93, 118.83 (dd, J = 272.7, 257.6 Hz), 115.48 (d, J = 21.3 Hz), 59.14 (dd, J = 21.4, 17.1 Hz), 47.06 (dd, J = 8.4, 5.7 Hz), 44.77, 29.10 (dd, J = 6.1, 1.9 Hz), 26.57, 25.80, 25.38, 24.58. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -91.15 (d, J = 293.3 Hz, 1F), -104.86 (d, J = 293.2 Hz, 1F), -114.18 (s, 1F). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₂₃H₂₂O₂F₃NNa: 424.1495, found: 424.1497.

2,2-difluoro-3-methyl-3,4-diphenyl-1-(piperidin-1-yl)butane-1,4-dione (**3aw**). The product **3aw** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.49 (m, 2H), 7.45 – 7.33 (m, 6H), 7.27 – 7.20 (m, 2H), 3.67 – 3.48 (m, 4H), 2.05 (s, 3H), 1.73 – 1.48 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.26 (dd, *J* = 5.1, 2.1 Hz), 160.89 (t, *J* = 29.0 Hz), 137.76 (d, *J* = 3.5 Hz), 136.13 (d, *J* = 3.1 Hz), 131.45, 129.40, 128.95, 128.49, 128.36, 127.99, 118.54 (dd, *J* = 272.1, 257.8 Hz), 60.38 (dd, *J* = 21.4, 17.2 Hz), 47.06 (dd, *J* = 8.9, 5.6 Hz), 44.78, 26.55, 25.80, 24.60, 21.41 (dd, *J* = 6.0, 3.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.42 (d, *J* = 285.6 Hz, 1F), -104.50 (d, *J* = 285.7 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₂H₂₄O₂F₂N: 372.1770, found: 372.1774.

2,2-difluoro-3-methyl-1-morpholino-3,4-diphenylbutane-1,4-dione (**3ax**). The product **3ax** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 2H), 7.45 – 7.33 (m, 6H), 7.29 – 7.22 (m, 2H), 3.82 – 3.58 (m, 8H), 2.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.97 (dd, *J* = 5.1, 1.1 Hz), 161.37 (t, *J* = 29.4 Hz), 137.18 (d, *J* = 3.5 Hz), 135.82 (d, *J* = 4.1 Hz), 131.79, 129.42, 129.14, 128.57, 128.55, 128.09, 118.24 (dd, *J* = 271.1, 256.6 Hz), 66.87, 60.49 (dd, *J* = 21.4, 17.1 Hz), 46.85 (dd, *J* = 9.0, 5.1 Hz), 43.69, 21.17 (dd, *J* = 5.8, 3.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.48 (d, *J* = 287.4 Hz, 1F), -103.97 (d, *J* = 287.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₁H₂₂O₃F₂N: 374.1562, found: 374.1567.

2,2-difluoro-3-methyl-3,4-diphenyl-1-(4-phenylpiperazin-1-yl)butane-1,4-dione (**3ay**). The product **3ay** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.19 (m, 12H), 6.98 – 6.83 (m, 3H), 3.94 – 3.69 (m, 4H), 3.37 – 3.03 (m, 4H), 2.07 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.02 (d, *J* = 4.7 Hz), 161.30 (t, *J* = 29.5 Hz), 150.93, 137.28 (d, *J* = 2.1 Hz), 135.90 (d, *J* = 3.1 Hz), 131.76, 129.44, 129.34, 129.14, 128.59, 128.54, 128.09, 120.63, 118.31 (dd, *J* = 271.3, 256.8 Hz), 116.70, 60.50 (dd, *J* = 21.4,

17.1 Hz), 49.82, 49.38, 45.97 (dd, J = 9.1, 4.9 Hz), 43.37, 21.24 (dd, J = 5.8, 3.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.09 (d, J = 287.1 Hz, 1F), -103.68 (d, J = 287.1 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₇H₂₆N₂O₂F₂Na: 471.1855, found: 471.1855.

N,N-diethyl-2,2-difluoro-3-methyl-4-oxo-3,4-diphenylbutanamide (**3az**). The product **3az** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.39 (m, 2H), 7.38 – 7.24 (m, 6H), 7.20 – 7.11 (m, 2H), 3.48 (ddt, *J* = 14.1, 7.0, 3.7 Hz, 1H), 3.42 – 3.29 (m, 2H), 3.24 (dq, *J* = 14.0, 7.1 Hz, 1H), 1.98 (s, 3H), 1.16 – 1.07 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.35 (d, J = 5.1 Hz), 162.13 (t, *J* = 29.2 Hz), 137.64 (d, *J* = 3.3 Hz), 136.38 (d, *J* = 3.7 Hz), 131.53, 129.38, 129.04, 128.51, 128.36, 127.99, 118.35 (dd, *J* = 272.0, 257.2 Hz), 60.73 (dd, *J* = 21.7, 17.6 Hz), 42.05 (dd, J = 9.1, 5.1 Hz), 41.96, 21.62 (dd, *J* = 6.0, 3.0 Hz), 14.39, 12.44. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.17 (d, *J* = 283.7 Hz, 1F), -104.81 (d, *J* = 283.6 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₂₁H₂₃O₂F₂NNa: 382.1589, found: 382.1593.

2,2-difluoro-4-(4-methoxyphenyl)-3-methyl-3-phenyl-1-(piperidin-1-yl)butane-1,4-dione (**3ba**). The product **3ba** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.44 (m, 2H), 7.42 – 7.36 (m, 5H), 6.72 (d, *J* = 8.6 Hz, 2H), 3.77 (s, 3H), 3.71 – 3.42 (m, 4H), 2.11 (s, 3H), 1.64 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.08 (d, *J* = 5.2 Hz), 162.35, 161.17 (t, *J* = 29.0 Hz), 136.94 (d, *J* = 2.7 Hz), 131.83, 129.51, 129.43 (d, *J* = 3.4 Hz), 128.38, 128.26, 118.42 (dd, *J* = 271.6, 256.8 Hz), 113.23, 60.69 (dd, *J* = 21.4, 17.5 Hz), 55.42, 47.14 (dd, *J* = 9.8, 5.4 Hz), 44.83, 26.59, 25.85, 24.67, 21.67 (dd, *J* = 5.8, 3.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -95.74 (d, *J* = 285.7 Hz, 1F), -104.48 (d, *J* = 285.7 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₂₃H₂₅O₃F₂NNa: 424.1695, found: 424.1700.

N,N-diethyl-2,2-difluoro-4-(4-methoxyphenyl)-3-methyl-4-oxo-3-phenylbutanamide (**3bb**). The product **3bb** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 7.42 – 7.26 (m, 5H), 6.72 (d, *J* = 8.5 Hz, 2H), 3.77 (s, 3H), 3.63 – 3.26 (m, 4H), 2.12 (s, 3H), 1.22 - 1.15 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.26 (d, *J* = 5.2 Hz), 162.44 (t, *J* = 29.1 Hz). 162.39, 137.17 (d, *J* = 3.6 Hz), 131.87, 129.48, 129.35 (d, *J* = 3.2 Hz), 128.39, 128.25, 118.20 (dd, *J* = 271.4, 256.2 Hz), 113.23, 61.05 (dd, *J* = 21.8, 18.0 Hz), 55.42, 42.16 (dd, *J* = 10.1, 5.1 Hz), 42.09, 21.89 (dd, *J* = 6.0, 3.1 Hz), 14.45, 12.45. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.72 (d, *J* = 282.3 Hz, 1F), -105.34 (d, *J* = 282.3 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₂₂H₂₅O₃F₂NNa: 412.1695, found: 412.1700.

Ethyl (S)-2-(2-((1-benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-inden-2-yl)-2,2-difluoroacetate (**5a**). The product **5a** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 1/1 as the eluent) as white solid (73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.18 (m, 5H), 7.15 (s, 1H), 6.86 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.90 (s, 3H), 3.53 – 3.34 (m, 3H), 3.04 (d, *J* = 17.8 Hz, 1H), 2.72 (dd, *J* = 23.2, 11.3 Hz, 2H), 2.08 (dt, *J* = 17.6, 8.8 Hz, 1H), 1.94 – 1.67 (m, 4H), 1.50 (d, *J* = 12.5 Hz, 1H), 1.37 (t, *J* = 11.1 Hz, 2H), 1.28 – 1.15 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.72 (t, *J* = 2.7 Hz), 162.98 (t, *J* = 32.8 Hz), 156.15, 149.89, 147.76, 138.35, 129.31, 128.22, 127.03, 116.22 (t, *J* = 259.2 Hz), 107.12, 104.61, 63.39, 63.12, 57.75 (t, *J* = 20.5 Hz), 56.44, 56.24, 53.68, 53.60, 37.34, 34.11, 33.60 (t, *J* = 3.2 Hz), 33.50, 32.22, 13.88. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.11 (d, *J* = 257.5 Hz, 1F), -110.24 (d, *J* = 257.4 Hz, 1F). HRMS (ESI) (*m*/*z*): [M+H]⁺ calcd. for C₂₈H₃₄F₂NO₅: 502.2400, found: 502.2419.

(S)-2-(benzo[d]oxazol-2-yldifluoromethyl)-2-((1-benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-2,3dihydro-1H-inden-1-one (**5b**). The product **5b** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 1/1 as the eluent) as white solid (50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.31 (dt, *J* = 15.8, 7.4 Hz, 2H), 7.16 (m, 5H), 7.06 (s, 1H), 6.77 (s, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.60 (d, *J* = 17.7 Hz, 1H), 3.31 (s, 2H), 3.08 (d, *J* = 17.8 Hz, 1H), 2.64 (dd, *J* = 27.6, 11.7 Hz, 2H), 2.19 (dd, *J* = 14.1, 6.3 Hz, 1H), 1.93 (dd, *J* = 14.2, 3.4 Hz, 1H), 1.69 (dt, *J* = 43.1, 12.0 Hz, 2H), 1.43 (d, *J* = 12.4 Hz, 1H), 1.38 – 1.06 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.50, 156.80 (t, *J* = 34.1 Hz), 156.12, 150.42, 149.79, 147.87, 140.01, 138.30, 129.46, 129.26, 128.19, 127.01, 126.77, 125.26, 121.32, 117.44 (t, *J* = 251.5 Hz), 111.43, 107.08, 104.67, 63.30, 58.86 (t, *J* = 21.5 Hz), 56.37, 56.17, 53.64, 53.56, 37.56, 34.00, 33.95, 33.44, 32.24; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -101.79 (d, *J* = 272.1 Hz, 1F), -105.06 (d, *J* = 272.2 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₃₂H₃₃F₂N₂O₄: 547.2408, found: 547.2411.

(S)-2-((1-benzylpiperidin-4-yl)methyl)-2-(difluoro(phenyl)methyl)-5,6-dimethoxy-2,3-dihydro-1Hinden-1-one (**5c**). The product **5c** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 1/1 as the eluent) as white solid (61% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.16 (m, 10H), 7.06 (s, 1H), 6.74 (s, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.43 (d, *J* = 17.8 Hz, 1H), 3.38 (s, 2H), 3.02 (d, *J* = 17.8 Hz, 1H), 2.82 – 2.56 (m, 2H), 2.10 (dd, *J* = 14.0, 6.5 Hz, 1H), 1.97 – 1.85 (m, 2H), 1.79 (td, *J* = 11.5, 2.8 Hz, 1H), 1.68 (td, *J* = 11.2, 2.8 Hz, 1H), 1.47 (dt, *J* = 13.2, 2.8 Hz, 1H), 1.29 – 1.13 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.12 (dd, *J* = 3.4, 2.1 Hz), 155.84, 149.61, 147.90, 138.43, 134.68, 134.41, 134.14, 130.11, 129.94, 129.28, 128.18, 127.72, 126.98, 126.91, 126.84, 122.76 (dd, *J* = 253.5, 251.6 Hz), 106.86, 104.41, 63.36, 59.85 (t, *J* = 24.5 Hz), 56.32, 56.15, 53.71, 53.64, 37.99, 34.20, 33.77, 33.46, 32.41. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -97.98 (d, *J* = 246.8 Hz, 1F), -100.21 (d, *J* = 246.8 Hz, 1F). HRMS (ESI) (m/z): $[M+H]^+$ calcd. for C₃₁H₃₄F₂NO₃: 506.2507, found: 506.2500.

Ethyl 2,2-difluoro-3-(4-(propan-2-ylidene)cyclohex-1-en-1-yl)propanoate and Ethyl 2,2-difluoro-3-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)propanoate (**7**). The product **7** is purified with silica gel chromatography (petroleum ether/ethyl acetate = 20/1 as the eluent) as yellow oil (12% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.60 (d, J = 14.2 Hz, 1.69H), 4.74 – 4.65 (m, 2H), 4.37 – 4.23 (m, 3.27H), 2.79 – 2.62 (m, 4.72H), 2.29 (t, J = 6.2 Hz, 1.32H), 2.11 (dd, J = 16.8, 4.9 Hz, 5.60H), 1.95 (d, J = 11.7 Hz, 1.05H), 1.80 (ddq, J = 12.6, 5.2, 2.5 Hz, 1.14H), 1.72 (s, 2.97H), 1.67 (s, 1.84H), 1.63 (s, 1.88H), 1.52 – 1.39 (m, 1.22H), 1.35 (s, 0.79H), 1.33 (d, J = 1.4 Hz, 1.87H), 1.32 (d, J = 1.4 Hz, 1.60H), 1.30 (s, 0.74H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.32 (td, J = 32.8, 4.7 Hz), 149.63, 128.78 (t, J = 4.0 Hz), 128.55, 128.44, 128.37 (t, J = 4.1 Hz), 126.41, 122.58, 118.75, 116.24, 113.73, 108.88, 62.78, 42.84 (td, J = 23.1, 6.8 Hz), 40.58, 31.00, 30.39, 29.83, 29.61, 27.79, 26.63, 20.89, 20.29, 19.88, 14.17, 14.10. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.12, -103.24, -103.34. HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₁₄H₂₁F₂O₂: 259.1510, found: 259.1506.

(S)-1-(3-(diethylamino)phenyl)-2-phenylpropan-1-one (**1ag**). The product **1ag** was purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.14 (m, 8H), 6.83 (dd, *J* = 8.1, 2.1 Hz, 1H), 4.68 (q, *J* = 6.9 Hz, 1H), 2.93 (s, 6H), 1.52 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 201.13, 150.62, 141.99, 137.31, 129.12, 129.03, 127.86, 126.88, 117.22, 116.87, 112.36, 48.10, 40.62, 19.72. HRMS (ESI) (m/z): [M+H]⁺ calcd. for C₁₇H₂₀NO: 254.1545, found: 254.1535.

General Procedure for Cobalt-Catalyzed Difluoroalkyaltion of Secondary Aryl Ketones.

To a 50 mL of Schlenk tube was added secondary aryl ketone (1.0 equiv, 0.2 mmol), $CoBr_2$ (10 mol %, 0.02 mmol) and dppBz (10 mol %, 0.02 mmol) under air, followed by Zn (0.5 equiv, 0.1 mmol). The

mixture was evacuated and backfilled with N_2 (3 times). THF (2 mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10°C). After stirring for 5 minutes, bormdifluoroacetate **2a** (3.0 equiv, 0.6 mmol) was added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (- 10°C). After stirring for another 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product.

Ethyl 2-fluoro-3-methyl-4-oxo-4-phenylbut-2-enoate (**8**). The product **8** was purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (31% yield, E/Z = 4:1). The definite stereo-structure of the product was deducted from the previous report.¹² (E)-¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 7.8 Hz, 2H), 7.69 – 7.56 (m, 1H), 7.55 – 7.41 (m, 2H), 4.07 (q, J = 7.1 Hz, 2H), 2.11 (d, J = 3.4 Hz, 3H), 1.02 (t, J = 7.1 Hz, 3H). (E)-¹⁹F NMR (376 MHz, Chloroform-*d*) δ -127.29. (E)-¹³C NMR (101 MHz, Chloroform-*d*) δ 193.71 (d, J = 6.2 Hz), 159.68 (d, J = 35.5 Hz), 146.18, 143.56, 135.15 (d, J = 3.7 Hz), 133.96, 129.03, 128.99, 62.21, 14.69 (d, J = 5.7 Hz), 13.70. HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₃H₁₃FO₃Na: 259.0746, found: 259.0744.

Ethyl 2-fluoro-4-oxo-3,4-diphenylbut-2-enoate (**9**). The product **9** was purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (41% yield, E/Z = 4:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 7.92 (m, 2H), 7.65 – 7.31 (m, 8H), 4.27 – 4.04 (m, 2H), 1.19 – 1.03 (m, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.84, -126.46. ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.80 (d, *J* = 3.6 Hz), 191.42 (d, *J* = 5.3 Hz), 160.45 (d, *J* = 34.8 Hz), 160.03 (d, *J* = 36.4 Hz), 145.99, 145.57, 143.41, 142.85, 136.26 (d, *J* = 3.8 Hz), 134.97, 134.51, 133.83, 131.47 (d, *J* = 6.0 Hz), 130.97 (d, *J* = 5.6 Hz), 130.41 (d, *J* = 1.5 Hz), 130.16 – 129.90 (m), 129.79, 129.33, 129.09, 129.06, 129.05, 128.99, 128.95, 128.69 (d, *J* = 3.0 Hz), 128.48, 62.53, 62.15, 13.79, 13.76. HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₈H₁₅FO₃Na: 321.0903, found: 321.0894.

3,3-difluoro-4,5-dihydronaphtho[1,2-b]furan-2(3H)-one (**10**). The product **10** was purified with silica gel chromatography (petroleum ether/ethyl acetate = 10/1 as the eluent) as yellow oil (34% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.90 (m, 1H), 7.54 – 7.45 (m, 1H), 7.41 – 7.33 (m, 1H), 7.26 – 7.21 (m, 1H), 2.97 – 2.85 (m, 2H), 2.85 – 2.74 (m, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.07. ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.21, 141.55, 133.57, 129.69, 127.96, 127.33, 126.47, 113.29,

102.29, 27.80, 21.70 (t, J = 4.0 Hz). HRMS EI (m/z): [M]⁺ calcd. for C₁₂H₈F₂O₂: 222.0492, found: 222.0486.

Mechanistic Studies

1. Radical clock experiment:

To a 50 mL of Schlenk tube was added ketone **1s** (1.0 equiv, 0.2 mmol), CoBr₂ (10 mol %, 0.02 mmol), Zn (50 mol%, 0.1 mmol) and dppBz (10 mol %, 0.02 mmol) under air. The mixture was evacuated and backfilled with N₂ (3 times). THF (2 mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (-10 °C). After stirring for 5 minutes, bormdifluoroacetate **2a** (3.0 equiv, 0.6 mmol) and **β-pinene** (1.0 equiv, 0.2 mmol), were added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (-10 °C). After stirring for another 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of **7** in 12% yield (5 : 3 isomer ratio).

2. Procedure of difluoroalkylation with Co(I) used as the catalyst:

To a 50 mL of Schlenk tube was added ketone **1s** (1.0 equiv, 0.2 mmol), Co(PPh₃)₃Cl (10 mol%, 0.02 mmol) and dppBz (10 mol %, 0.02 mmol) under air, then was added with Zn (entry 1) or not (entry 2). THF (2 mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10 °C). After stirring for 5 minutes, bormdifluoroacetate **2a** (3.0 equiv, 0.6 mmol) was added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (- 10 °C). After stirring for another 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of **3s**.

3. Control experiments for the generation of difluoroalkyl radical:

To a 50 mL of Schlenk tube was added 6 (1.0 equiv, 0.2 mmol), CoBr₂ (1.0 equiv, 0.2 mmol) and dppBz (1.0 equiv, 0.2 mmol) under air, then was added with Zn (Eq. 1). THF (2 mL) was added subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10 °C). After stirring for 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of 7. To a 50 mL of Schlenk tube was added 6 (1.0 equiv, 0.2 mmol), CoBr₂ (1.0 equiv, 0.2 mmol) and dppBz (1.0 equiv, 0.2 mmol) under air (Eq. 2). THF (2 mL) was added subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10 °C). After stirring for 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel not to give the desired product of 7. To a 50 mL of Schlenk tube was added 6 (1.0 equiv, 0.2 mmol), CoCl(PPh₃)₃ (1.0 equiv, 0.2 mmol) and dppBz (1.0 equiv, 0.2 mmol) under air (Eq. 3). THF (2 mL) was added subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath $(-10 \, \text{°C})$. After stirring for 12 hours, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of 7.

4. The Operation of an Initial Transmetallation:

To a 50 mL of Schlenk tube was added Co(PPh₃)₃Cl (1.0 equiv, 0.2 mmol) and dppBz (1.0 equiv, 0.2 mmol) under air, then was added by 1a (1.0 equiv, 0.2 mmol). THF (2 mL) was added then followed by LDA (105 mol%, 0.21 mmol) subsequently. The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10 °C). After stirring for 5 minutes, bormdifluoroacetate 2a (3.0 equiv, 0.6 mmol) was added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (- 10 $^{\circ}$ C). After stirring for another 10 minutes, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of **3a**. To another 50 mL of Schlenk tube was added Co(PPh₃)₃Cl (1.0 equiv, 0.2 mmol) and dppBz (1.0 equiv, 0.2 mmol) under air, then was added by bormdifluoroacetate 2a (3.0 equiv, 0.6 mmol) and THF (2 mL). The Schlenk tube was then sealed with a Teflon lined cap and put into a cooled bath (- 10 °C). After stirring for 5 minutes, 1a (1.0 equiv, 0.2 mmol) and LDA (105 mol%, 0.21 mmol) were added to the reaction mixture, and the Schlenk tube was then resealed with a Teflon lined cap and put back into the cooled bath (- $10 \,$ °C). After stirring for another 10 minutes, the reaction mixture was diluted with ethyl acetate (5 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the desired product of **3a**.

Supplementary References:

(1) Rao, B., Tang, J. & Zeng, X. Synthesis of 2-Benzylphenyl Ketones by Aryne Insertion into Unactivated C–C Bonds. *Org. Letter.* **18**, 1678-1681 (2016).

(2) Zhang, Y.-M., Li, M., Li, W., Huang, Z., Zhu, S., Yang, B., Wang, X.-C. & Zhang, S. X.-A. A new class of "electro-acid/base"-induced reversible methyl ketone colour switches. *J. Mater. Chem. C.* **1**, 5309-5314 (2013).

(3) Li, Z. & Gevorgyan, V. Double Duty for Cyanogen Bromide in a Cascade Synthesis of Cyanoepoxides. *Angew. Chem. Int. Ed.* **50**, 2808-2810 (2011).

(4) Campbell, N. & Ciganek, E. A new synthesis of 3-hydroxy-1 : 2-benzofluorene. J. Chem. Soc. 0, 3834-3836 (1956).

(5) Takeda, T. & Terada, M. Synthesis of Bulky Aryl Group-substituted Chiral Bis(guanidino)iminophosphoranes as Uncharged Chiral Organosuperbase Catalysts. *Aust. J. Chem.* **67**, 1124-1128 (2014).

(6) Hino, K., Nagai, Y., Uno, H., Masuda, Y., Oka, M. & Karasawa, T. A novel class of potential central nervous system agents. 3-Phenyl-2-(1-piperazinyl)-5H-1-benzazepines. *J. Med. Chem.* **31**, 107-117 (1988).

(7) Takeda, T. & Terada, M. Development of a Chiral Bis(guanidino)iminophosphorane as an Uncharged Organosuperbase for the Enantioselective Amination of Ketones. *J. Am. Chem. Soc.* **135**, 15306-15309 (2013).

W. C. R. & 2-(8) Dolbier Jr. R., Burkholder, M édebielle, M. Syntheses of (bromodifluoromethyl)benzoxazole and 5-(bromodifluoromethyl)-1,2,4-oxadiazoles. J. Fluorine Chem. 95, 127-130 (1999).

(9) Maximilian, D. et al. PCT Int. Appl., 2013092850, 27 Jun 2013.

(10) Prakash, G. K. S., Hu, J., Simon, J., Bellew, D. R. & Olah, G. A. Preparation of α , α -difluoroalkanesulfonic acids. *J. Fluorine Chem.* **125**, 595-601 (2004).

(11) Tarui, A., Shinohara, S., Sato, K., Omote, M. & Ando, A. Nickel-Catalyzed Negishi Cross-Coupling of Bromodifluoroacetamides. *Org. Letter.* **18**, 1128-1131 (2016).

(12) Li, Y., Liu, J., Zhao, S., Du, X., Guo, M., Zhao, W., Tang, X. & Wang, G. Copper-Catalyzed Fluoroolefination of Silyl Enol Ethers and Ketones toward the Synthesis of β -Fluoroenones. *Org. Lett.* **20**, 917–920 (2018).