

B

DPA level

Figure S1. DPA release during germination and quantification of DPA contents of spores

Kinetics of DPA release after germination induction for spore suspensions of the strains $630\Delta erm$ (pMTL84151) in blue, $\Delta p daA1$ (pMTL84151) in green, and the complemented strain $\Delta p daA1$ (pCH67) in gray in response to germinant (A). Total DPA amount of the parental ($630\Delta erm$), the p daA1 mutant (pdaA1 mutant) and the complemented mutant spores (pdaA1+pdaA1) (B). The average of DPA for the parental strain was normalized at 100% and the DPA level of the mutant and complemented strains were presented as ratios relative to the parental.

DPA was measured by fluorescence, according to the protocol described in Donnelly et *al.* with the following difference, 2.5 X 10^7 spores were used in the terbium release assay. Fluorescence was measured using the spectrofluorometer SAFAS FLX-Xenius.

Reference:

Donnelly, M. L., Fimlaid, K. A., and Shen, A. (2016) Characterization of *Clostridium difficile* Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. *Journal of bacteriology* **198**, 1694-1707

A

Figure S3. Additional germination assays in solid medium

Assessment of germination delay in solid BHI supplemented with horse blood and taurocholates was performed for the $630\Delta erm$ (pMTL84151) parental strain, the $\Delta pdaA1$ (pMTL84151) mutant, the $\Delta pdaA1$ (pCH67) complemented strain, and the $\Delta pdaA1$ $\Delta pdaA2$ double mutant. Pictures are magnified at the same level, and they are representative of three independent experiments.

Figure S4. Additional TEM analysis

Global observation for the $630\Delta erm$ (A) and $\Delta pdaA1$ strains (B). Additional abnormal morphology in $\Delta pdaA1$ endospore TEM analysis (C to F). Black arrows shows detached external structures.

630∆*erm*

∆pdaA1

Spore		Core length nm	Core width nm	Cortex thickness nm	Core volume nm ³	Sporoplast volume nm ³	P/S ratio
Longitudinal section	630∆erm	912,90 ± 179,13	230,60 ± 39,60	34,17 ± 12,80	2,08E+08 ± 7,64E+07	2,83E+08 ± 9,67E+07	0,73 ± 0,08
	∆pdaA1	1122,00 ± 213,53	392,20 ± 49,22	74,54 ± 13,63	7,39E+08 ± 2,31E+08	1,11E+09 ± 3,02E+08	0,66 ± 0,06
Transversal section	630∆erm	455,80 ± 92,51	276,90 ± 73,30	36,85 ± 13,03	1,69E+08 ± 1,35E+08	2,31E+08 ± 1,68E+08	0,72 ± 0,07
	∆pdaA1	583,70 ± 179,06	418,70 ± 66,80	70,60 ± 12,22	4,63E+08 ± 2,11E+08	6,98E+08 ± 2,91E+08	0,65 ± 0,07
Average	630∆erm	684,35 ± 269,37	253,75 ± 63,29	35,51 ± 12,98	1,89E+08 ± 1,12E+08	2,57E+08 ± 1,39E+08	0,73 ±0,08
	∆pdaA1	852,85 ± 333,57	405,45 ± 60,15	72,57 ± 13,09	6,01E+08 ± 2,61E+08	9,03E+08 ± 3,61E+08	0,65 ± 0,07

Figure S5. TEM spore measurements

TEM images of *C. difficile* spore cross sections. Representative images of spores are shown in each panel, for the parental strain (A and C) and the *pdaA1* mutant (B and D). The scale is indicated in the bottom left corner of each image. Full measure results are detailed in the table: longitudinal and transversal values are averages of 10 measurement each \pm standard deviation. The protoplast volume (core) and sporoplast volume (core and cortex) were calculated according to Beaman *et al.*: volume = (4/3) π (width/2) X 2 X (length/2) (57). The protoplast-to-sporoplast (P/S) ratio was calculated by dividing the calculated core volume (protoplast) by the volume of the core plus cortex layer (sporoplast). Bold data indicate significant difference compared to the parental strain (Student test, p < 0.05).

Figure S6. *pdaA2* mutant has similar germination and sporulation compared to the parental strain. Germination assay by optical density monitoring (A). OD_{600nm} observed at time point (T); initial OD_{600nm} at T=0 (To). Quantification of sporulation titers after 72h incubation in SM broth (B), for the $630\Delta erm$ parental strain in blue and *pdaA2* mutant (CD630_27190) in grey.

Parameters		630∆erm	Δ630_14300	ΔCD630_27190	ΔCD14300 ΔCD27190
	monomers	90,23	93,80	89,78	85,33
Cross linking	dimers	9,77	6,20	10,22	14,67
Cross-linking	trimers	0,00	0,00	0,00	0,00
	cross-link	4,89	3,10	5,11	7,33
	none	21,92	55,35	25,16	30,67
	dipeptide	5,78	8,17	7,01	6,59
Side chains (% of muropeptides)	tripeptide	4,83	2,79	5,49	8,67
	tetrapeptide	43,52	33,30	40,61	54,08
	muramic-lactam	23,96	0,40	21,73	0,00
	disaccharides	45,85	42,57	48,11	54,54
Coopborido oboino	tetrasaccharides	52,26	40,30	48,90	40,10
Saccharide chains	hexasaccharides	1,80	11,57	2,85	3,93
	octasaccharides	0,10	5,56	0,14	1,43
N descetulation	N-deacetylated	54,73	51,85	49,15	57,65
in-deacetylation	Acetylated	45,27	48,15	50,85	42,35

Table S2. Cortex parameters of the $630\Delta erm$, the *pdaA1* mutant ($\Delta 630_14300$) and the *pdaA2* mutant ($\Delta CD630_27190$) strains. The cross-linking index was calculated with the formula ($1/2\Sigma$ dimers + $2/3\Sigma$ trimers)/ Σ all muropeptides (61).

Identity metric	PdaA	PdaA CD630_1430		CD630_27190	
Identity matrix	B. subtilis B. thuringiensis C.		C. difficile	C. difficile	
PdaA	100	F2 22	26.72	24.00	
B. subtilis	100	52.33	30.72	34.00	
PdaA	F2 22	100	24.5	20 52	
B. thuringiensis	52.33	100	34.5	39.53	
CD630_1430	26.72	24 5	100	40.67	
C. difficile	30.72	34.5	100	40.67	
CD630_2719	24.66	20 52	40.67	100	
C. difficile	34.00	39.53	40.67	100	

Table S3. Identity matrix of PdaA proteins

Identity matrix of protein sequences of PdaA from *B. subtilis*, PdaA from *B. thuringiensis*, CD630_14300 and CD630_27190 from *C. difficile*, obtained from ClustalW multiple sequence alignment (28).

Cortex purification	and	analysis	yields
----------------------------	-----	----------	--------

	Freeze-dried spores	Freeze-dried muropeptides	Total peaks area		
630∆ <i>erm</i>	5,0mg	2,0mg	2,25E+09		
ΔpdaA	5,3mg	2,0mg	1,17E+10		
Table S5 Contax analysis yields					

Table S5. Cortex analysis yields

Name	5' Sequence	3' Sequence	Use
M13F	/	tgtaaaacgacggccagt	Cloning screening
M13R	/	caggaaacagctatgacc	Cloning screening
TC157	/	gcagccagaagccatcgattacaaacgttg	Cloning screening
7315A	/	CCCGGGTACCGAGCTCGAATTCGCCCTTTA	nMTISC721E amplification
7315B	/	GATCCTCTAGAGTCGACGTCACGCGTCCATG	plwi1E3C7313 amplification
HC174	taaagggcgaattcgagctcggtacccggg	GACCCAAAGAATCTAACACATTTGG	
HC175	CTATAAATATTCAAACTATATTATAAG	tatcataaatttaaaaaaactctatcatg	<i>CD630_14300</i> deletion – DNA
HC176	catgatagagtttttttaaatttatgata	CTTATAATATAGTTTGAATATTTATAG	amplification
HC177	catggacgcgtgacgtcgactctagaggatc	CATATTTAGTACATAAATAATTAGTAAG	
HC178	/	GCTTCCAGTCTATCTATACAAATATAG	CD630_14300 deletion -
HC179	/	CCTTTGATTATGTCATGTACAATTTC	mutant screening
HC254	gaattcgagctc	CCTTGACAGCTC	CD630_14300
HC272	/	CTCTATCGAGAATTAAAGTATT	complementation – DNA amplification
HC185	taaagggcgaattcgagctcggtacccggg	TCCCCGTCAATTCCTTTGAGTTTCA	
HC186	CCAATTATAATAATACTATATGC	tatttataattacatctaaagtcta	CD630_27190 deletion - DNA
HC187	tagactttagatgtaattataaata	GCATATAGTATTATTATAATTGG	aplification
HC188	catggacgcgtgacgtcgactctagaggatc	CAGCTGGTGCAGCAGGTGTTGCAGTATC	
HC189	/	GGTAAGGTTCTTCGCGTTGCTTCG	CD630_27190 deletion -
HC190	/	TCATGGTCTTGCCTTATCTACAGAC	mutant screening

Table S6. Primers