The S-layer protein of a *Clostridium difficile* SLCT-11 strain displays a complex glycan required for normal cell growth and morphology

Emma Richards^{a1}, Laura Bouché^{a1}, Maria Panico¹, Ana Arbeloa¹, Evgeny Vinogradov², Howard Morris^{1,3}, Brendan Wren⁴, Susan M. Logan² Anne Dell^{1*} and Neil F. Fairweather^{1*}

Supporting Information

- Table S1
 Predicted functions of genes present in the S-layer glycosylation cluster
- Table S2ABacterial strains used in this study
- Table S2BPlasmids used in this study
- Table S2COligonucleotides used in this study
- Figure S1 MS data of Ox247 *orf3* mutant
- Figure S2 The GC-EIMS total ion current chromatograms for the alditol acetate derivatives of hydrolysed sugars from Ox247 LMW SLP
- Figure S3 Southern blot analysis of Ox247 mutants
- Figure S4 Complementation of cell length defects
- Figure S5 Summed MS data acquired at 40.2 min in the *online* nanoLC-ES-MS of a tryptic digest of the band at 20 kDa of Ox247 *orf4*::*erm* mutant.

Gene	Closest species match ¹	Identity (%)	Accession Number	Conserved Domains Identified ²	Putative Function	Homolog in Geobacillus stearothermophilus S-layer glycosylation system ³
orf1	-	-	-	none	-	-
orf2	Firmicutes bacterium CAG:424	57	CDC47796.1	WcaJ_sugtrans	Undecaprenyl-phosphate glucose phosphotransferase	WsaP
orf3	Methanobacterium	58	WP_048190924.1	GT_2_like_c	Glycosyltransferase	-
orf4	Planctomycetes bacterium	44	OHB99936.1	PKK12324 PT_UbiA_2	Phosphoribose diphosphate decaprenyl-phosphate phosphoribosyltransferase	-
orf5	Paenibacillus macerans	30	OMG48725.1	YfhO Glucos_Trans_II	Glycosyltransferase	-
orf6	Methanoculleus sediminis	56	WP_082122685.1	Glyco_tran_WbsX	Glycosyltransferase	-
orf7	Paenibacillus polymyxa	43	WP_023990592.1	Glyco_tran_WbsX	Glycosyltransferase	-
orf8	Marichromatium gracile	50	WP_062274959	GT8_Glycogenin Glyco Transf 8	Glycosyltransferase	-
orf9	Clostridium beijerinckii	37	WP_077854956.1	Glyco_tranf_GTA_type	Glycosyltransferase	-
orf10	Clostridium butyricum	71	WP 035762026	AdoMet_MTase	SAM methyltransferase Glycosyltransferase	-
orf11	Clostridium beijerinckii	65	WP_077868321	ABC_Kps_Wzt Wzt_C-like	ABC transporter; ATP binding protein	Wzt
orf12	Romboutsia maritimum	79	WP_095406846.1	TagG ABC2_membrane	ABC superfamily transporter: permease	Wzm
orf13	Romboutsia maritimum	73	ZP_08166203.1	RfbB	dTDP-glucose 4,6-dehydratase	RmlB
orf14	Clostridium perfringens	72	ZP_02863393.1	dTDP_sugar_isom	dTDP-4-dehydrorhamnose 3,5- epimerase	RmIC
orf15	Paenibacillus sp. NAIST15-1	49	GAV12381.1	none	ABC transporter related protein	
orf16	Multispecies Clostridiales	98	ZP_08166199.1	rmIA G1P_TT_shor	Glucose-1-phosphate thymidylyltransferase	RmIA

Table S1. Predicted functions of genes present in the S-layer glycosylation cluster

orf17	Candidatus Dorea	75	WP_053832674.1	RfbD	dTDP-4-dehydrorhamnose	RmID
	massiliensis				reductase	
orf18	Romboutsia maritimum	65	WP_095406851.1	BcsA Glyco_tranf_GTA_type	glycosyltransferase	-
orf19	Romboutsia lituseburensis	47	YP_004586423.1	sorted_by_XrtN	O-antigen polymerase/ligase	WsaB

¹ ORFs were analysed using BLASTP. To aid interpretation, *Clostridium difficile* was removed from the search database
 ² Top 1 or 2 hits from a Conserved Domain Database search
 ³ Novotny et al (2004) Microbiology <u>150</u>, 953–965

Table S2. Bacterial strains, plasmids and oligonucleotides used in this study

A. Strains

Strain	Characteristics and source
C. difficile Ox247	Ribotype 005, SLCT-11; Kate Dingle (1)
C. difficile Ox247 orf2::erm	Insertional mutant in <i>orf2</i> ; this study
<i>C. difficile</i> Ox247 <i>orf3::erm</i>	Insertional mutant in <i>orf3</i> ; this study
<i>C. difficile</i> Ox247 <i>orf4::erm</i>	Insertional mutant in <i>orf4</i> ; this study
C. difficile Ox247 orf7::erm	Insertional mutant in <i>orf7</i> ; this study
C. difficile Ox247 orf16::erm	Insertional mutant in <i>orf16</i> ; this study
C. difficile Ox247 orf19::erm	Insertional mutant in <i>orf19</i> ; this study
C. difficile 630	Ribotype 012, Peter Mullany (2)
C. difficile R20291	Ribotype 027; SLCT-4; Brendan Wren (3)

B. Plasmids

Plasmid	Description
pMTL007C-E5-	ClosTron plasmid retargeting <i>orf3</i> in Ox247 glycosylation
orf2	cluster
pMTL007C-E5-	ClosTron plasmid retargeting <i>orf3</i> in Ox247 glycosylation
orf3	cluster
pMTL007C-E5-	ClosTron plasmid retargeting <i>orf4</i> in Ox247 glycosylation
orf4	cluster
pMTL007C-E5-	ClosTron plasmid retargeting <i>orf</i> 7 in Ox247 glycosylation
orf7	cluster
pMTL007C-E5-	ClosTron plasmid retargeting <i>orf16</i> in Ox247 glycosylation
orf16	
pMTL007C-E5-	Clos I ron plasmid retargeting or f19 in Ox247 glycosylation
01119	DDE195 mith and along times Demili and Good sites
pAAM008	pRPF185 with <i>orj2</i> cloned into BamHI and SacI sites
pAAM009	pRPF185 with <i>orf19</i> cloned into BamHI and SacI sites
pAAM010	pRPF144 with <i>orf2</i> cloned into BamHI and SacI sites
pAAM011	pRPF144 with orf19 cloned into BamHI and SacI sites
pEJR003	pRPF185 with orf3 cloned to BamHI and SacI sites
pEJR004	pRPF144 with orf3 cloned to BamHI and SacI sites
pEJR006	pRPF144 with <i>orf4</i> cloned into BamHI and SacI sites
pEJR007	pRPF185 with orf4 cloned into BamHI and SacI sites
pEJR008	pRPF144 with orf16 cloned into BamHI and SacI sites
pEJR009	pRPF185 with orf16 cloned into BamHI and SacI sites

Figure S1 A

Fig. S1 A. Summed MS data acquired at 44.0 min in the *online* nanoLC-ES-MS of a tryptic digest of the 20 kDa band of the Ox247 *orf3::erm* mutant. Expanded middle mass region shows doubly-charged peaks that corresponds to glycans attached to the LMW SLP.

Fig S1 B. Summed MS data acquired at 40.6 min in the *online* nanoLC-ES-MS of a tryptic digest digest of the band at 25 kDa of the Ox247 *orf7::erm* mutant. Expanded middle mass region shows doubly-charged peaks that corresponds to glycan ranging from a single hexose up to PentdeoxyHex₅Hex.

Figure S2

Fig S2. The GC-EIMS total ion current chromatograms for the alditol acetate derivatives of hydrolysed sugars from the LMW SLP WT Ox247 (top trace) compared to individual sugar standards taken through the same protocol (40). For interpretation, see the text.

Figure S3 Southern blot analysis of Ox247 mutants

Southern blots were carried out using a probe that annealed to the 5' end of the group II intron. Genomic DNA was prepared and digested with Ndel and XmnI.

Expected sizes for A, Ox247, none (probe does not anneal to OX247 DNA);

B, Ox247 orf2::erm, ~3.9 kb, ~5.2 kb; C, Ox247 orf3::erm, ~6.4 kb, ~8.2kb;

D, Ox247 orf4::erm, ~5.9 kb, ~6.9 kb; E, Ox247 orf7::erm, ~2.8 kb, ~12.4 kb;

F, Ox247 orf16::erm,~1.3 kb, ~4.5 kb and G, Ox247 orf19::erm, ~2.1 kb, ~2.4 kb.

Figure S4

Fig S4. Complementation of cell length defect in (A), Ox247 orf3, (B) OX247 orf4, (C) Ox247 orf16 and (D) Ox247 orf19 mutants with the relevant plasmid expressing the wild type allele. The Ox247 data point in panel A is reused in panels B, C and D and is reused from Fig 10, because the data were acquired from the same experiment. The orf3::erm, orf4::erm, orf16::erm and orf19::erm data points are reused from Fig 10, panel A, because all the data was acquired from the same experiment.

Figure S5

Fig S5. Summed MS data acquired at 40.2 min in the online nanoLC-ES-MS of a tryptic digest of the band at 20 kDa of Ox247 *orf4::erm* mutant. Expanded middle mass region to show doubly-charged peaks that corresponds to glycan compositions ranging from a single hexose up to dHex3Hex. m/z 897.95 is from elsewhere in the digest.

References

- Dingle, K. E., Didelot, X., Ansari, M. A., Eyre, D. W., Vaughan, A., Griffiths, D., Ip, C. L., Batty, E. M., Golubchik, T., Bowden, R., Jolley, K. A., Hood, D. W., Fawley, W. N., Walker, A. S., Peto, T. E., Wilcox, M. H., and Crook, D. W. (2013) Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. *J Infect Dis.* 207, 675–686
- Novotny, R., Schaffer, C., Strauss, J., and Messner, P. (2004) S-layer glycan-specific loci on the chromosome of Geobacillus stearothermophilus NRS 2004/3a and dTDP-L-rhamnose biosynthesis potential of G. stearothermophilus strains. *Microbiology*. 150, 953–965
- Sebaihia, M., Wren, B. W., Mullany, P., Fairweather, N. F., Minton, N., Stabler, R., Thomson, N. R., Roberts, A. P., Cerdeno-Tarraga, A. M., Wang, H., Holden, M. T., Wright, A., Churcher, C., Quail, M. A., Baker, S., Bason, N., Brooks, K., Chillingworth, T., Cronin, A., Davis, P., Dowd, L., Fraser, A., Feltwell, T., Hance, Z., Holroyd, S., Jagels, K., Moule, S., Mungall, K., Price, C., Rabbinowitsch, E., Sharp, S., Simmonds, M., Stevens, K., Unwin, L., Whithead, S., Dupuy, B., Dougan, G., Barrell, B., and Parkhill, J. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. *Nat Genet.* 38, 779–786
- 4. Stabler, R. A., He, M., Dawson, L., Martin, M., Valiente, E., Corton, C., Lawley, T. D., Sebaihia, M., Quail, M. A., Rose, G., Gerding, D. N., Gibert, M., Popoff, M. R., Parkhill, J., Dougan, G., and Wren, B. W. (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. *Genome Biol.* **10**, R102