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1 Coevolutionary models

1.1 Single-site coevolutionary model

Here we present the details of the single-site coevolutionary model, which was developed by (1). In this

single-site model, we represented each of the N species that are part of a mutualistic network as a single

population. We modeled the evolution of the mean value of a single trait of each species (zi) by explicitly

defining the selection gradient that drives evolutionary change. We assumed that population sizes are large

enough for genetic drift to be negligible. We also assumed that the phenotypic variance of the trait (σ2
zi) is

fixed through time, which is a reasonable approximation if population sizes are large and selection does not

modify the genetic variance. We considered that zi mediates mutualistic interactions between individuals

(e.g., flower tube length, pollinator mouthpart length) and affects the fitness benefits of mutualism. In

addition to mutualism, zi also determines fitness components related to abiotic factors and other ecological

interactions (2, 3). Thus, zi is under selection imposed by mutualism (hereafter mutualistic selection) and

selection imposed by abiotic factors and other ecological interactions (hereafter environmental selection).

The change in the mean trait value of species i between generation t and generation t + 1 was derived

using the classical equation by (4):

z
(t+1)
i = z

(t)
i + h2ziσ

2
zi

∂lnWi

∂z
(t)
i

[S1]

where h2zi (0 ≤ h2zi ≤ 1) is the heritability of the trait of species i that we assumed to be constant over

time and ∂lnWi

∂z
(t)
i

is the selection gradient. We assumed that the adaptive landscape of each species, defined

by mutualistic and environmental selection, has a single adaptive peak at each generation. We incorporated

temporal variation in the adaptive peaks, which were reshaped over time by the trait evolution of all species

in the mutualistic assemblage. To do so, we defined a linear selection gradient as follows:

∂lnWi

∂z
(t)
i

= ρi
[
z
(t)
i,p − z

(t)
i

]
[S2]

in which ρi is a scaling constant that relates changes in mean fitness to changes in mean trait values and z
(t)
i,p

is the trait value that defines the adaptive peak of the population at generation t. We decomposed z
(t)
i,p into

two components, one related to mutualism and one related to the environment:

z
(t)
i,p =

N∑
j=1

q
(t)
ij x

(t)
ij + (1−

N∑
j=1

q
(t)
ij )θi [S3]

In the equation above, q
(t)
ij is the interaction weight that describes the evolutionary effect of species j on the

selection gradient of species i (0 ≤ q(t)ij ≤ 1). We defined that the sum of all evolutionary effects acting on a

species is equal to the relative importance of mutualism as a selective pressure (i.e. 0 ≤
∑N
j=1 q

(t)
ij = mi ≤ 1).

Thus, parameter mi denotes the level of mutualistic selection and the term (1 −
∑N
j=1 q

(t)
ij ) = (1 − mi)

represents the level of environmental selection. Finally, x
(t)
ij is the trait value of species i favored by selection

imposed by species j and θi is the trait value favored by environmental selection, which we assumed to be

fixed over time.

We used one additional assumption to obtain a final equation describing the dynamics of trait zi at a

single site. We supposed that mutualistic selection favors the complementarity of traits, i.e., phenotype

matching (5, 2, 3). Thus, the selected trait value with respect to partner j at generation t is x
(t)
ij = z

(t)
j ,
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which corresponds to the value that maximizes the trait matching between zi and zj . Using equations [S1],

[S2], and [S3] and the fact that h2zi =
σ2
Gzi

σ2
zi

, in which σ2
Gzi

is the additive genetic variance of trait zi, the

dynamics of trait zi may be described as follows (1):

z
(t+1)
i = z

(t)
i + ϕi

[ N∑
j=1

q
(t)
ij (z

(t)
j − z

(t)
i ) + (1−

N∑
j=1

q
(t)
ij )(θi − z(t)i )

]
[S4]

in which ϕi is a compound parameter that depends on the additive genetic variance of the trait and on the

slope of the selection gradient (ϕi = σ2
Gzi

ρi).

We now describe how q
(t)
ij , which represents the evolutionary effect of species j on species i in relation to

all other mutualistic partners of i, changes through time. The term q
(t)
ij has two components that represent

how different traits mediate the fitness consequences of the interaction with species j. The first component

is related to trait zi and is given by the trait matching between zi and zj , which we defined using a gaussian

function as:

τ
(t)
ij = e−α(z

(t)
j −z

(t)
i )2 [S5]

where the parameter α controls the sensitivity of τ
(t)
ij to differences between traits and was assumed to

be the same for every species and to be fixed over time. The value of τ
(t)
ij is 1 when there is maximum

matching (z
(t)
j = z

(t)
i ) and approximates 0 if trait matching is poor. This gaussian function is widely used

in coevolutionary models to represent trait matching (1, 2, 3, 6). The second component is the binary term

a
(t)
ij , which encapsulates the effects of a suite of other traits not explicitly modeled by us and defines if an

interaction is allowed to occur (a
(t)
ij = 1) or represents an evolutionary forbidden link (a

(t)
ij = 0) (7). We

assumed that zi evolves at a faster rate than all other traits associated with the interaction and, therefore,

a
(t)
ij may be considered fixed (i.e., a

(t)
ij = aij). We also assumed that the genetic covariance between zi

and other traits related to the mutualism is negligible, which allowed us to consider these two components

independently. The combination of the two components leads to:

q
(t)
ij = mi

aijτ
(t)
ij∑N

k=1 aikτ
(t)
ik

[S6]

In our simulations, we parameterized aij and species richness (N) using the binary adjacency matrices A

of our dataset (Table S1). In matrix A (N × N), the row and column i represent species i and the binary

element aij indicates if species i and j interact in the mutualistic assemblage. Therefore, matrix A imposes a

fixed structure of potential interactions, whereas q
(t)
ij changes through time and defines a dynamic structure

of the evolutionary strength of interactions.

1.2 Two-site coevolutionary model

We extended the single-site coevolutionary model to a two-site model in order to incorporate simple

geographical variation in selection and gene flow. In our two-site model, one population of each species

occurs in each site, with NA species at site A and NB species at site B. At each site, species engage in

mutualistic interactions, forming a local mutualistic network. We considered that, after selection operates at

generation t, a fraction g
(t)
i of the population of species i migrates from site A to site B and from site B to

site A and a fraction (1− g(t)i ) remains at its own site. Therefore, we supposed that migration is symmetric

between sites, which would not alter population sizes through time. We also assumed that migration ability
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is a fixed property of each species and does not change over time, which allowed us to set g
(t)
i = gi. Finally,

we assumed that local individuals and migrants mate randomly, which allowed us to use gi as a measure of

gene flow. Thus, our two-site model describes coevolutionary dynamics in a metanetwork (8, 9) consisting

of two local mutualistic networks connected by gene flow. These assumptions allowed us to implement gene

flow as a process that mixes trait values across sites, as in other coevolutionary models (e.g., (2)), leading to

the following equation for the change in trait zi,A of species i at site A:

z
(t+1)
i,A = (1− gi)(z(t)i,A + δ(t)zi,A) + gi(z

(t)
i,B + δ(t)zi,B ) [S7]

where δ
(t)
zi,A and δ

(t)
zi,B are the evolutionary changes for both population of species i as defined in equation [S4]:

δ(t)zi,A = ϕi,A

[ NA∑
j=1

q
(t)
ij,A(z

(t)
j,A − z

(t)
i,A) + (1−

NA∑
j=1

q
(t)
ij,A)(θi,A − z(t)i,A)

]
[S8]

δ(t)zi,B = ϕi,B

[ NB∑
j=1

q
(t)
ij,B(z

(t)
j,B − z

(t)
i,B) + (1−

NB∑
j=1

q
(t)
ij,B)(θi,B − z(t)i,B)

]
[S9]

All model parameters have the same definitions as in the single-site coevolutionary model and q
(t)
ij,A and q

(t)
ij,B

are defined as in equations [S5] and [S6]. Most of the analyses described in the next sections are restricted

to the case in which both sites have the same species composition (NA = NB = N) and mutualistic network

(matrix A). These analyses allowed us to gain insight into how species coevolve under simple spatial scenarios

by deriving the evolutionary dynamics from first principles and without the complicating effects of spatial

turnover in species composition and mutualistic interactions. However, because spatial turnover is observed

in many spatial studies of mutualistic networks (10, 11, 9), we performed sensitivity analyses in which species

composition and mutualistic interactions vary across sites. Furthermore, in all of our analyses, the parameters

ϕi, mi, and θi could be different for the two populations of each species i, generating distinct local adaptive

landscapes for each population. This allowed us to explore the main focus of this study: how geographical

variation in mutualistic selection (mi,A and mi,B) and gene flow (gi) may affect trait evolution in mutualistic

networks.

2 Gene flow, geographical variation in selection and the evolution

of trait patterns

2.1 Numerical simulations

We performed numerical simulations of our two-site coevolutionary model to understand how gene flow

(gi) and geographical variation in mutualistic selection (mi,A and mi,B) affect trait evolution. Simulations and

analyses were performed in R 3.3.2 (12) and all codes are available at www.github.com/wgar84/spatial_

coevo_mutnet. Our first step in performing simulations was to choose a mutualistic assemblage and to

parameterize the number of species (N) and the adjacency matrix A (i.e., aij values) using the empirical

information (Table S1). Next, we sampled initial trait values (z
(0)
i,A and z

(0)
i,B) and parameter values (mi,A, mi,B ,

gi, θi,A, θi,B , ϕi,A, ϕi,B) for each species at both sites from statistical distributions (Table S2). Therefore,

except for the parameter α, which was the same for all species, we incorporated variation in parameter values

across species and across sites. We then iterated equation [S7] until changes in trait values were less then
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10−6 (i.e., |z(t+1)
i,A − z(t)i,A| < 10−6 and |z(t+1)

i,B − z(t)i,B | < 10−6). This threshold was more than sufficient for

traits to reach equilibrium values (Fig. S1). For each simulation, we recorded trait values through time and

calculated trait matching (τ
(t)
ij ) using equation [S5] and setting the constant α to 0.2. We used τ

(t)
ij as our

metric for trait matching because it is linked to our coevolutionary model and because it is correlated with

another trait matching metric that is also based on differences between traits of interacting partners (13).

We also calculated the mean trait matching for all interacting species pairs as:

τ (t) =

∑N
i=1

∑N
j=1 aijτ

(t)
ij∑N

i=1

∑N
j=1 aij

[S10]

We performed simulations according to several different scenarios in order to extensively explore the

parameter space. In the main text, we report the results of our two main scenarios of geographical variation

in selection, which consist of two hotspots (mA = mB = 0.7) and a hotspot and a coldspot (mA = 0.9

and mB = 0.1). Here, we report the simulation results of our complete set of 15 combinations of mA and

mB (Table S2, Fig. S2). For each combination of mA and mB , we explored 31 different values of gene

flow (g = 0, 0.01, 0.02, ..., 0.28, 0.29, 0.3). For each combination of mutualistic selection and gene flow, we

performed 100 simulations per empirical network (n = 72 networks, total = 3,348,000 simulations). Note

that, when g = 0, the two-site coevolutionary model (eq. [S7]) becomes identical to the single-site model (eq.

[S4]), which allowed us to explore the coevolutionary dynamics of isolated sites as well (see below). These

simulations allowed us to investigate how trait patterns emerge in mutualistic networks in several distinct

scenarios of geographical variation in selection and gene flow across sites.

Although the scenarios outlined above allowed us to explore how gene flow and geographical variation in

selection affect the emergence of trait patterns, other parameters may affect trait evolution. In the main text,

we showed how network properties contained in the adjacency matrix A affect the emergence of trait matching

(Fig. 3). Here, we report additional evidence that network structure modulates the effects of gene flow and

mutualistic selection on trait evolution (Fig. S2, S3). Furthermore, we present simulation results for other

parameterizations for θi,A, θi,B , ϕi,A, ϕi,B , and α (Table S2; see Simulations with different parameterizations),

and for two other situations: when gene flow is correlated with the number of interactions of each species

(see Simulations with gene flow correlated with species degree) and when there is spatial species turnover (see

Simulations with spatial species turnover). We show that the majority of these other parameterizations do

not qualitatively change our main conclusions of how gene flow affects the emergence of trait matching (Fig.

S5, S6, S7).

2.1.1 Single-site coevolutionary model

We performed simulations without gene flow (i.e., g = 0) and with the same parameter choices of the

main text (Table S2) to understand how mutualistic selection (m) affects the strength of reciprocal selection

and the emergence of trait matching throughout the simulations (Fig. S1). We measured the reciprocity of

selection between mutualistic partners i and j at time t using the pairwise evolutionary effects between these

two species (eq. [S6]). We calculated the reciprocity of selection in log to avoid multiplying q
(t)
ij values close

to zero:

log(r
(t)
ij ) = log

(q(t)ij
mi

)
+ log

(q(t)ji
mj

)
[S11]
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Higher values of log(r
(t)
ij ) indicate that the selective pressures that species i and j exert on each other are more

reciprocal. We calculated the mean reciprocity of selection for all pairs of species in the network (log(r(t)))

through time for each simulation.

We found that higher values of mutualistic selection lead to stronger reciprocal selection (Fig. S1A) and

to higher values of trait matching over time (Fig. S1B). These results allowed us to define a site with a high

value of m as a hotspot and a site with a low value of m as a coldspot. Furthermore, these results served as

a baseline for our results of the two-site coevolutionary model (see below).

2.1.2 Two-site coevolutionary model

In addition to the two combinations of mutualistic selection presented in the main text (mA = mB = 0.7

and mA = 0.9,mB = 0.1), we performed simulations using 13 other combinations of mutualistic selection

(Table S2). Our results indicate that higher values of gene flow (g) favor higher levels of trait matching at

equilibrium (τ∗) for most scenarios of geographical variation in mutualistic selection (Fig. S2). However,

increasing gene flow causes trait matching to decrease in a hotspot when it is connected to a coldspot (e.g.,

mA = 0.9,mB = 0.1, Fig. S2).

2.1.3 Effect of gene flow on pairwise trait matching

Our previous results show that gene flow may cause the mean trait matching among all interacting

species to increase in mutualistic networks (Fig. S2). We now present our results of how gene flow affects

the evolution of trait matching in different pairs of interacting species. We first calculated the number of

interactions (or degree) of each species i in a network as ki =
∑N
j=1 aij . We then explored how gene flow

affects the trait matching between species i and j (τ
(t)
ij ) depending on the degree of both species (i.e., ki and

kj). By doing so, we aimed to understand how gene flow affects the coevolutionary dynamics of mutualistic

partners when the number of selective pressures acting upon the two interacting species (i.e., number of

additional interaction partners) varies. We measured the equilibrium value of trait matching (τ∗ij) for every

pair of species in our simulations using the complete dataset (72 empirical networks, 7,239 pairs of species).

We computed (τ∗ij) using the results of our two main scenarios of mutualistic selection (mA = mB = 0.7 and

mA = 0.9, mB = 0.1) with and without gene flow (g = 0.3 and g = 0, respectively). Because we performed

100 simulations per network for every combination of mA, mB , and g, we calculated the average value of

equilibrium trait matching for each pair of species across the 100 simulations (τ∗ij). Note that τ∗ij is different

from τ∗ (eq. [S10]), which is the mean equilibrium trait matching for all pairs of species in a given network.

Our final step was to calculate the difference between the mean pairwise trait matching with gene flow and

without gene flow (τ∗ij,g=0.3 − τ∗ij,g=0) for each pair of species i and j.

Our results show that the higher the degree of both interacting species, the greater the difference between

pairwise trait matching with (τ∗ij,g=0.3) and without gene flow (τ∗ij,g=0, Fig. S3). In two hotspots (mA =

mB = 0.7), pairs of specialist species (i.e., both species have low degree values) evolve high levels of trait

matching in the presence or absence of gene flow (Fig. 2). Pairs of generalist species (i.e., both species have

high degree values), on the other hand, evolve high levels of trait matching only in the presence of gene flow

(Fig. 2). Hence, pairs of generalist species show greater differences in trait matching with and without gene

flow than pairs of specialist species (Fig. S3A). In a hotspot and a coldspot (mA = 0.9 and mB = 0.1), we

also observe a greater difference in pairwise trait matching for pairs of generalist species (Fig. S3B). However,

because trait matching values in the hotspot (i.e., site A) are higher in the absence of gene flow, differences

in pairwise trait matching with and without gene flow are negative for this scenario (Fig. S3B). These results
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demonstrate that the changes we observe in mean trait matching (τ∗) as we increase gene flow (Fig. 2, Fig.

S2) are a consequence of changes in pairwise trait matching among generalist species.

2.1.4 Effect of gene flow on environmental matching and geographical divergence

In our simulations of the two-site coevolutionary model, we also measured how well matched species

traits are to the value selected by the local environment (θi,A or θi,B) and how divergent are the traits of

the two populations of the same species (z
(t)
i,A and z

(t)
i,B). We used our expression for trait matching (eq.

[S5]) to calculate these two quantities, which we called environmental matching and geographical divergence,

respectively. The environmental matching of trait z
(t)
i,A at generation t was calculated as:

ε
(t)
i,A = e−α(θi,A−z

(t)
i,A)2 [S12]

where α is a constant set to 0.2. We calculated ε
(t)
i,B using equation [S12] with subscript B instead of A. The

value of ε
(t)
i,A (ε

(t)
i,B) is 1 when trait z

(t)
i,A (z

(t)
i,B) is completely coupled with its local environmental optimum

and it approaches 0 when the trait value is very far from θi,A (θi,B). The geographical divergence of the trait

of species i at generation t was calculated as:

γ
(t)
i = e−α(z

(t)
i,B−z

(t)
i,A)2 [S13]

where α was also set to 0.2. The value of γ
(t)
i is 1 when both traits have the same value (i.e., z

(t)
i,A = z

(t)
i,B)

and it approaches 0 when z
(t)
i,A and z

(t)
i,B are very different from each other. In addition to calculating the

environmental matching and geographical divergence for each species, we also quantified these metrics for

the entire network by taking the average across all species (ε
(t)
A , ε

(t)
B , γ(t)). We computed the equilibrium

values of the mean environmental matching and mean geographical divergence (ε∗A, ε∗B , and γ∗) for all our

simulations using our two main scenarios of mutualistic selection (mA = mB = 0.7 and mA = 0.9, mB = 0.1)

and all values of gene flow (g = 0, 0.01, ..., 0.29, 0.3).

We found that the mean environmental matching at equilibrium decreases as gene flow increases irrespec-

tive of the values of mutualistic selection (Fig. S4A). This result confirms our expectation that gene flow

reduces the local adaptation of each population to its local environment by mixing the phenotypes of distinct

populations. Furthermore, we found that the mean geographical divergence at equilibrium also decreases as

gene flow increases for both combinations of mutualistic selection (Fig. S4B). Thus, as expected, gene flow

causes the trait values of different populations of the same species to become more similar to each other.

By causing species traits to move away from their local environmental optima and to become homogeneous

across sites, gene flow allows mutualistic selection to gain importance and trait matching to increase (Fig. 2,

Fig. S2).

2.1.5 Simulations with different parameterizations

In this first set of sensitivity analyses, we performed simulations to investigate how the parameters θi,A,

θi,B , ϕi,A, ϕi,B , and α affect trait evolution in mutualistic networks across space. In these analyses, we

changed the value or sampling distribution of one parameter while maintaining the other parameters un-

changed. In our main set of simulations, presented above and in the main text, we sampled θi,A from a

uniform distribution between 0 and 10, θi,B from a uniform distribution between 10 and 20, ϕi,A and ϕi,B

both from a normal distribution with mean 0.5, and α was set to 0.2 (Table S2). Here, we present simulation
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results for four additional parameterizations for θi,A and θi,B , two additional parameterizations for ϕi,A and

ϕi,B , and two additional parameterizations for α (Table S2). In these additional simulations, we used two

combinations of mutualistic selection (mA = mB = 0.7 and mA = 0.9, mB = 0.1) and 13 values of gene flow

(g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3). We used a random sample of 36 empirical networks of our complete

dataset (Table S1), but established a priori that our sample would include all types of mutualism and would

have a variation in network structure similar to our complete dataset (Table S1). For each combination of

mA, mB , g, θi,A, θi,B , ϕi,A, ϕi,B , and α we performed 50 simulations per empirical network (n = 36 networks,

total = 374,400 simulations).

We first present our results for the different parameterizations of θi,A and θi,B . In our main parameteriza-

tion (θi,A ∼ U [0, 10], θi,B ∼ U [10, 20]), we assumed that environmental factors select for lower trait values at

site A than at site B. Such geographical variation in environmental selection is observed for many systems of

interacting species (14, 15, 16, 17). In our first additional parameterization, we assumed that the environmen-

tal optima have the same distribution at both sites (θi,A ∼ U [0, 10], θi,B ∼ U [0, 10]). In our second additional

parameterization, we assumed that site A select for lower trait values than site B, but the distributions of

environmental optima overlap (θi,A ∼ U [0, 10], θi,B ∼ U [5, 15]). In our third additional parameterization,

we assumed that site A select for much lower trait values than site B (θi,A ∼ U [0, 10], θi,B ∼ U [20, 30]).

Importantly, θi,A and θi,B are sampled independently in all the parameterizations described so far.

Our results for these three additional parameterizations show that the mean distance between the two

distributions (θi,A and θi,B) does not affect our conclusions of how gene flow and geographical variation in

mutualistic selection influence trait matching (Fig. S5A-C). Although the variance of the distribution could

affect our results, we show below by changing the value of α that this is not the case. Finally, in our fourth

additional parameterization, we assumed that there is a correlation between the trait values selected at site A

and those selected at site B, that is, θi,A and θi,B were not sampled independently. For these simulations, we

sampled environmental optima for site A (θi,A ∼ U [0, 10]) and we defined environmental optima for site B as

θi,B = θi,A +N [µ = 10, σ2 = 1]. Using this sampling procedure, the mean correlation between θi,A and θi,B

values was 0.944 (n = 46,800 simulations). Our simulations using this fourth parameterization showed that

gene flow does not favor trait matching when θi,A and θi,B are highly correlated (Fig. S5D). Given indirect

coevolutionary effects (1), we can interpret θi,A and θi,B values as key components of the local selection

regime of each species in the network. Our results show that gene flow favors trait matching only when the

selection regime of each species varies geographically (i.e., θi,A and θi,B are uncorrelated).

We now present our results for the different parameterizations of ϕi,A and ϕi,B . In our main param-

eterization, we assumed that the distribution of ϕi,A and ϕi,B is the same for both sites and we sampled

these parameters from a normal distribution (N [µ = 0.5, σ2 = 0.0001]). We performed simulations using two

additional parameterizations in which we set the mean of the normal distribution to 0.1 and 1 (Table S2).

These simulations show that different parameterizations for ϕi,A and ϕi,B do not change our conclusions

about how gene flow and mutualistic selection affect trait matching (Fig. S5E, F). Therefore, although ϕi,A

and ϕi,B have an effect on the speed of the coevolutionary dynamics (1), these parameters do not affect the

emergence of trait matching.

Finally, we also performed simulations with different parameterizations for α. In our main parameteri-

zation, we assumed that α is the same for every species and is fixed over time and we set the value of this

parameter to 0.2. We performed simulations using two additional parameterizations in which we set the value

of α to 0.05 and 0.8 (Table S2). Note that multiplying trait differences (i.e., z
(t)
j − z

(t)
i ) by a constant c has
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the same effect on trait matching (eq. [S5]) as multiplying α by c2, because:

e−α[c(z
(t)
j −z

(t)
i )]2 = e−(αc

2)(z
(t)
j −z

(t)
i )2 [S14]

Therefore, because trait values (z
(t)
i,A and z

(t)
i,B) in our simulations follow the same distribution as θi,A and

θi,B , respectively (Table S2), changing α has the same effect on trait matching as modifying the range of θi,A

and θi,B values. In particular, by multiplying α = 0.2 by 1
4 to obtain α = 0.05 and by 4 to obtain α = 0.8,

we are also testing the effect of shrinking and expanding, respectively, the range of both θi,A and θi,B by 2.

Our simulations parameterized by α = 0.05 and α = 0.8 show that different values of α do not change our

results of how gene flow affect trait matching (Fig. S5G, H). Hence, our main conclusions of how gene flow

and geographic variation in selection affect trait matching are robust to several changes in the parameters of

our coevolutionary model.

2.1.6 Simulations with gene flow correlated with species degree

In this second set of sensitivity analyses, we explored how the correlation between gene flow (gi) and the

number of interactions of each species, (species degree, ki) may affect our previous results. To do so, we

performed simulations in which we imposed the highest possible positive correlation between the vector of gene

flow values (g1, g2, ..., gN ) and the vector of species degree values (k1, k2, ..., kN ) by aligning the two ordered

vectors before simulating the coevolutionary dynamics. These simulations allowed us to explore a scenario

in which generalist species are locally more abundant than specialist species (18) and, therefore, have more

individuals migrating across sites. In these simulations, we used two combinations of mutualistic selection

(mA = mB = 0.7 and mA = 0.9, mB = 0.1) and 13 values of gene flow (g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3).

In order to better explore the association between gene flow and species degree, we introduced a larger

variation in gene flow values across species in these simulations than in previous simulations (Table S2).

Finally, we used a random sample of 36 empirical networks of our complete dataset (Table S1). For each

combination of mA, mB , and g we performed 50 simulations per empirical network (n = 36 networks, total

= 46,800 simulations).

In the simulations with gene flow (i.e., g > 0), the mean value of Spearman’s rank correlation between

gene flow and species degree was 0.92 ± 0.07 (mean ± sd, n = 43,200). Our results show that the effect of

gene flow on the emergence of trait matching does not change when we impose a positive correlation between

gene flow and species degree (Fig. S6).

2.1.7 Simulations with spatial species turnover

In this final set of sensitivity analyses, we investigated the effects of spatial species turnover on the

emergence of trait matching in mutualistic networks. The turnover of species and their interactions across

landscapes is the outcome of a complex interplay between several ecological and evolutionary processes (19, 9).

Our aim in these sensitivity analyses was to explore how a simple scenario of species turnover could affect our

previous results. To do so, we explored the scenario in which generalist species have broad geographic ranges

(9, 20). We assumed that the geographical range of each species is proportional to its degree and randomly

removed species from each local network (site A and site B) with a probability based on the degree. Before

removing species, both local networks consisted of the same empirical network. In order to always maintain

a core of generalist species in both local networks, we defined the probability of removing a species as pi = 0

if ki ≥ k or pi = 1− ki
k

if ki < k, where k is the mean degree value in the network. Thus, species with degree
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values greater or equal to k always remained at both local networks and the other species were removed

independently from each network according to pi. After removing species from both networks according to

this process, we simulated the coevolutionary dynamics according to equation [S7]. Our removal procedure

generated three groups of species: (i) species present at site A and site B that could be affected by gene

flow across sites, (ii) species present at either site A or site B that coevolved locally without the effects of

gene flow, and (iii) species removed from both sites that did not participate in the coevolutionary dynamics.

In these simulations, we used two combinations of mutualistic selection (mA = mB = 0.7 and mA = 0.9,

mB = 0.1), 13 values of gene flow (g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3), and a random sample of 36 empirical

networks of our complete dataset (Table S1). For each combination of mA, mB , and g we performed 50

simulations per empirical network (n = 36 networks, total = 46,800 simulations).

In our simulations, the mean fraction of species removed from each network was 0.33± 0.12 (mean ± sd,

n = 93,600). We found that, when we allow species composition to vary across space, gene flow has the same

effects on trait matching as observed previously (Fig. S7). Although the effects of gene flow seem weaker

for intimate mutualisms in these simulations, the effects of gene flow are still strong for multiple-partner

mutualisms (Fig. S7).

Overall, our simulations that imposed a correlation between gene flow and species degree (see Simulations

with gene flow correlated with species degree) and our simulations with species turnover confirm the important

role of generalist species for multispecies coevolution across space. Because gene flow increases trait matching

at the network level mainly because of trait changes in generalist species, we should expect gene flow to have

an important role in promoting coadaptation whenever generalist species are present at multiple locations

and migrate between them.

2.2 Analytical approximations

2.2.1 Single-site coevolutionary model

We used analytical approximations of the coevolutionary models (eq. [S4] and [S7]) to understand how

trait patterns emerge in mutualistic networks. In this section, we present the analytical expression for the

equilibrium of the single-site coevolutionary model (eq. [S4]) as originally developed by (1). To obtain this

analytical expression, we assumed that the evolutionary effects q
(t)
ij are fixed over time (i.e., q

(t)
ij = qij). We

find the equilibrium by setting z
(t+1)
i = z

(t)
i = z∗i in equation [S4]:

0 = ϕi

[ N∑
j=1

qij(z
∗
j − z∗i ) + (1−

N∑
j=1

qij)(θi − z∗i )
]

[S15]

z∗i =

N∑
j=1

qijz
∗
j + (1−

N∑
j=1

qij)θi [S16]

Using the fact that
∑N
j=1 qij = mi, equation [S16] can be rewritten as:

z∗i =

N∑
j=1

qijz
∗
j + (1−mi)θi [S17]
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The above equation may be written for all the N species in the mutualistic assemblage as:

z∗ = Qz∗ + Ψθ [S18]

where z∗, θ, Q, and Ψ are the following vectors and matrices:

z∗ =


z∗1

z∗2
...

z∗N

 , θ =


θ1

θ2
...

θN

 , Q =


q11 q12 · · · q1N

q21 q22 · · · q2N
...

...
. . .

...

qN1 qN2 · · · qNN

 , Ψ =


1−m1 0 · · · 0

0 1−m2 · · · 0
...

...
. . .

...

0 0 · · · 1−mN


Equation [S18] may be further simplified, leading to the final equation in matrix form for the equilibrium of

the single-site model:

z∗ = (I−Q)−1Ψθ [S19]

where I is the identity matrix of dimension N . As described in detail in (1), the coevolutionary matrix

T = (I−Q)−1Ψ contains the direct and indirect effects that link the equilibrium trait value of each species

(z∗i ) to all values favored by the local environment (θ). In particular, each element tij of T contains all the

direct and indirect effects of species j on the selection gradient shaping the trait evolution of species i. Thus,

row i of T defines the mutualistic adaptive landscape of species i.

2.2.2 Two-site coevolutionary model

We now present our analytical expression for the equilibrium of the two-site coevolutionary model. To

obtain this expression we assumed that evolutionary effects at both sites are fixed over time (i.e., q
(t)
ij,A = qij,A

and q
(t)
ij,B = qij,B) and that ϕi,A = ϕi,B = 1 for every species i. Our sensitivity analyses show that setting

ϕi,A = ϕi,B = 1 does not change our results of how trait matching emerges in the two-site model (Fig. S2F).

Although species composition (NA and NB) and network structure may change across sites in our analytical

approximation, we focused on the simple case in which both sites contain the same species composition and

mutualistic network (NA = NB = N). For site A, we find an expression for the equilibrium by setting

z
(t+1)
i,A = z

(t)
i,A = z∗i,A and z

(t)
i,B = z∗i,B in equation [S7]:

z∗i,A = (1− gi)
[
z∗i,A +

N∑
j=1

qij,A(z∗j,A − z∗i,A) + (1−
N∑
j=1

qij,A)(θi,A − z∗i,A)
]

+ gi

[
z∗i,B +

N∑
j=1

qij,B(z∗j,B − z∗i,B) + (1−
N∑
j=1

qij,B)(θi,B − z∗i,B)
]

[S20]

z∗i,A = (1− gi)
[ N∑
j=1

qij,Az
∗
j,A + (1−mi,A)θi,A

]
+ gi

[ N∑
j=1

qij,Bz
∗
j,B + (1−mi,B)θi,B

]
[S21]

In the equation above we also used the fact that
∑N
j=1 qij,A = mi,A and

∑N
j=1 qij,B = mi,B . We can now

write equation [S21] using vectors and matrices to represent all species in both mutualistic assemblages:

z∗ = G(Qz∗ + Ψθ) [S22]
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where z∗, θ, G, Q, and Ψ are vectors and matrices similar to the ones for the single-site model, but they

are expanded to include the variables for both sites:

z∗ =



z∗1,A
...

z∗N,A
z∗1,B

...

z∗N,B


, θ =



θ1,A
...

θN,A

θ1,B
...

θN,B


, G =



1− g1 · · · 0
...

. . .
...

0 · · · 1− gN

g1 · · · 0
...

. . .
...

0 · · · gN

g1 · · · 0
...

. . .
...

0 · · · gN

1− g1 · · · 0
...

. . .
...

0 · · · 1− gN



Q =



q11,A · · · q1N,A
...

. . .
...

qN1,A · · · qNN,A

0

0

q11,B · · · q1N,B
...

. . .
...

qN1,B · · · qNN,B


, Ψ =



1−m1,A · · · 0
...

. . .
...

0 · · · 1−mN,A

0

0

1−m1,B · · · 0
...

. . .
...

0 · · · 1−mN,B


We now simplify equation [S22] further to obtain our final equilibrium expression in matrix form:

G−1z∗ −Qz∗ = Ψθ [S23]

z∗ = (G−1 −Q)−1Ψθ [S24]

In the equation above, the matrix T = (G−1 −Q)−1Ψ now contains the matrix G−1 instead of the identity

matrix. If we assume that gi is the same for every species i and that gi 6= 0.5 (if gi = 0.5, G is not invertible),

then G−1 has the following structure:

G−1 =



1 + g
1−2g · · · 0
...

. . .
...

0 · · · 1 + g
1−2g

− g
1−2g · · · 0
...

. . .
...

0 · · · − g
1−2g

− g
1−2g · · · 0
...

. . .
...

0 · · · − g
1−2g

1 + g
1−2g · · · 0
...

. . .
...

0 · · · 1 + g
1−2g


Therefore, if g = 0, G−1 = I and the equilibrium expression becomes identical to the expression for the

single-site model. However, if 0 < g < 1 (g 6= 0.5), then G−1 enables indirect coevolutionary effects

that connect populations at site A with populations at site B. In this sense, this expanded version of T

provides both the local coevolutionary effects (diagonal blocks) and the geographical coevolutionary effects

(off-diagonal blocks) that reshape species traits given the local level of mutualistic selection (Ψ) and the

local environmental selective pressures (θ). The element tij of T contains all the direct and indirect effects of

population j on the selection gradient shaping the trait evolution of population i, which may co-occur or not

with population j. Therefore, row i of T represents an enlarged adaptive landscape for species i, containing

local and spatial coevolutionary effects. Below, we describe a property of the matrix T that is associated
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with the emergence of trait patterns in mutualistic assemblages.

2.2.3 Matrix T and the emergence of trait matching

Our analytical study shows that trait values at equilibrium (z∗) are connected to environmental optimum

values (θ) through a matrix (T) containing coevolutionary effects. In the single-site model, T contains

local coevolutionary effects and in the two-site model, T contains coevolutionary effects within and between

communities. Here we describe a property of T that is related to the emergence of trait matching in both

models. In the single-site model, row i of T represents how all species in the network directly or indirectly

affect the adaptive landscape of species i. Because the element z∗i in z∗ is the result of the dot product

of row i of T and θ, two identical rows in T lead to two identical trait values in z∗, regardless of the

values in the vector θ. In other words, if the mutualistic adaptive landscapes of two species are identical,

their equilibrium trait values will be the same. In this sense, similar rows in the matrix T should lead to

similarity in equilibrium trait values (i.e., trait convergence) and, as a consequence, to trait matching between

interacting species.

We developed a metric to measure the similarity among rows of T. We called our metric the similarity of

adaptive landscapes and calculated it as the mean correlation among all rows of T. We now describe how we

used our simulation results and additional empirical information on mutualistic interactions to investigate

how mutualistic selection (mi,A, mi,B) and gene flow (gi) affect the similarity of adaptive landscapes, leading

to the emergence of trait matching. We first explored our results for the single-site coevolutionary model

to understand the effect of mi. To do so, we used the equilibrium trait values and parameter values of our

simulations in order to build the matrices Q and Ψ, which make up the matrix T. Note that we used only the

mean value of mutualistic selection to build matrix Ψ (i.e., mi = m ∀ i), for simplicity. For each simulation

result, we built the matrix T = (I−Q)−1Ψ and calculated the correlation among all possible pairs of rows.

We then computed the mean correlation value and defined this value as the similarity of adaptive landscapes.

Finally, we calculated the equilibrium trait values (z∗i ) using the θi values and our equilibrium expression

(eq. [S19]). We then computed the mean equilibrium trait matching using equation [S10].

Our analyses show that higher values of mutualistic selection (mi) lead to a greater similarity of mutualistic

adaptive landscapes in the network (Fig. S8). As shown in Fig. S8, this result is a consequence of the fact

that indirect effects become stronger when mutualistic selection is higher (1). We also found that a greater

similarity of adaptive landscapes is associated with higher values of trait matching in our simulations for all

types of mutualism (Fig. S9).

Our next step was to analyze how gene flow (gi) affects the similarity of adaptive landscapes in the

matrix T in two hotspots (mA = mB = 0.7) and in a hotspot and a coldspot (mA = 0.9 and mB = 0.1). As

described above for the single-site model, we used the equilibrium trait values and parameter values of our

simulations in order to build the matrix T = (G−1 − Q)−1Ψ. We used the mean values of gene flow and

mutualistic selection (i.e., gi = g, mi,A = mA, mi,B = mB ∀ i) to build G and Ψ, respectively. For each

simulation result, we built the matrix T, calculated the mean correlation among its rows, and computed the

mean equilibrium trait matching for each site using our analytical expression (eq. [S24]) and trait matching

formula (eq. [S10]).

We found that, with two hotspots, gene flow (gi) favors the similarity of mutualistic adaptive landscapes

in the matrix T (Fig. S10). By promoting indirect coevolutionary effects that connect species present in

different sites, gene flow makes mutualistic adaptive landscapes more similar to each other (Fig. S10). As

a result, gene flow favors the emergence of trait matching in our simulations with two hotspots for all types
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of mutualism (Fig. S11A). However, when a hotspot is connected to a coldspot, gene flow decreases the

similarity of adaptive landscapes and, as a consequence, inhibits the emergence of trait matching for all

types of mutualism (Fig. S11B). Therefore, by measuring how mutualistic selection and gene flow affect an

important property of the matrix T, we showed how these parameters can allow trait matching to emerge

by homogenizing adaptive landscapes of different species through local and spatial indirect coevolutionary

effects.

3 Network structure and the evolution of trait patterns

Having shown that gene flow favors the emergence of trait matching in mutualistic networks, our next

step was to investigate how the organization of interactions in these networks affects trait evolution. To do

so, we measured four metrics of network structure and performed a Principal Component Analysis (PCA) to

summarize the variation in network structure of our dataset (Table S1). Here we describe in detail how we

characterized network structure and performed our PCA.

3.1 Network structure metrics

Each mutualistic network in our dataset is composed of two distinct sets of species (e.g., pollinators and

plants) and interactions only occur between species of different sets. To quantify structural metrics, we

represented each network as a bipartite matrix B containing the N1 species of the first set on the rows and

the N2 species of the second set on the columns. In matrix B (N1 × N2), an element bij = 1 if species i

and j interact as mutualistic partners or bij = 0 if they do not interact. Note that the adjacency matrix A

used to parameterize the coevolutionary models (see Coevolutionary models) contains the same information

as matrix B, but has all species in the rows and in the columns.

Using matrix B, we calculated four metrics: (i) species richness, (ii) connectance, (iii) nestedness, and

(iv) modularity. Species richness was calculated as N = N1 +N2. Connectance represents the proportion of

all possible interactions that are in fact realized (21). We calculated connectance using the following formula:

C =
L

N1N2
[S25]

in which L =
∑N1

i=1

∑N2

j=1 bij is the total number of interactions in the network. Nestedness measures how

much the interactions of species with low degree values are proper subsets of the interactions of species from

the same set that have higher degree values (22). We quantified nestedness using a metric based on overlap

and decreasing fill (NODF ), which varies from 0 (no nestedness) to 100 (perfect nestedness) (23, 24). NODF

was computed using the following equation:

NODF =

∑N1

i<jMij +
∑N2

i<jMij

[N1(N1−1)
2 ] + [N2(N2−1)

2 ]
[S26]

in which the sum on the left is over all pairs of species in the first set and the sum on the right is over all

pairs of species in the second set. For each pair of species i and j, Mij is defined in the following way:

Mij =

{
nij

min(ki,kj)
, if ki 6= kj

0, if ki = kj
[S27]
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in which nij is the number of common interactions between i and j and ki is the number of interactions (or

degree) of species i.

Finally, modularity measures how much the network is partitioned in groups of species (i.e., modules) with

many interactions within groups and few interactions among different groups (25). We quantified modularity

using a bipartite version of the metric Q, which varies from 0 (no modularity) to 1 (perfect modularity)

(26, 24). The bipartite version of Q has the following equation:

Q =

n∑
i=1

(
ei
L
− dN1

i

L

dN2
i

L

)
[S28]

where n is the number of modules, ei is the total number of interactions within module i, and dN1
i (dN2

i ) is the

sum of the degrees of species from the first (or second) set within module i. Each partition of a network in

modules renders a different value of Q. Thus, we used an optimization algorithm based on simulated annealing

that numerically maximizes Q and finds the partition that best reflects the organization of the network in

modules (27). Modularity was calculated using the program MODULAR (27) and the other metrics were

calculated in R 3.3.2 (12). All codes are available at www.github.com/wgar84/spatial_coevo_mutnet.

3.2 Principal Component Analysis

Because network structural metrics are often highly correlated among each other (21, 22, 28), we used

Principal Component Analysis (PCA) to describe how the values of our four metrics covary across networks

(29, 1). We used the correlation matrix among our four metrics in the PCA because of large differences in the

scale of our metrics (Table S1). By using PCA, we were able to obtain two axes of structural variation—the

first two principal components (PC1 and PC2)—that describe the variation in network structure of our

dataset. We decided to use only those two principal components because together they explain over 93% of

the variation in our dataset (percentage of variance explained by each PC: PC1 = 60.94%, PC2 = 32.43%,

PC3 = 4.76%, and PC4 = 1.86%). In the main text, we reported only the strongest correlations of PC1 and

PC2 with our network metrics. Here, we report all the correlations between PC1 and PC2 and our network

structure metrics (Table S3). The relationship between trait matching and PC1 and PC2 (Fig. 3) allows

us to conclude that networks with few species, low connectance, low nestedness, and high modularity favor

higher values of trait matching. However, when gene flow connects two mutualistic assemblages, the effect of

network structure on the emergence of trait matching is much weaker (Fig. 3).

4 Disruption of gene flow and its consequences for coevolution

We used our analytical equilibrium expression and additional empirical data on mutualistic interactions

to understand the consequences of the disruption of gene flow to the evolution of trait patterns. Here, we

explain in detail how we performed this analysis and present additional results. For this analysis, we used a

sample of our complete dataset of mutualistic networks for which we had data on the interaction weights (n

= 29 networks, Table S1). These interaction weights represent the frequency with which two species interact

at a given location and, therefore, are a proxy for how much one partner depends on the other for its survival

or reproduction (24). In this sense, this information may be used to parameterize the evolutionary effect

of species j on species i in our coevolutionary model (qij). We are aware that ecological effects are not

equivalent to evolutionary effects, but we decided to use this approach as a first approximation that allows
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inferences from empirical data. By using empirical information, we avoided using our simulation results (i.e.,

equilibrium trait values) to parameterize qij , as we did in Matrix T and the emergence of trait matching. For

each of the 29 quantitative empirical networks, we simulated the progressive loss of gene flow using different

scenarios of mutualistic selection (mi,A and mi,B) and gene flow (gi).

We started our simulations by building the matrices that are needed to obtain equilibrium trait values via

our analytical expression (eq. [S24]), that is, G, Ψ, and Q. Matrix G was initially built using a high value

of gene flow, which was either gi = 0.1 ∀ i or gi = 0.3 ∀ i. Matrix Ψ was built using a given value for mi,A

and mi,B . All species from a given site had the same value of mi,A or mi,B . We performed simulations using

15 different combinations of mi,A and mi,B (Table S2). Matrix Q was built using the mi,A and mi,B values

as well as the empirical information on interaction weights contained in our quantitative empirical networks.

After building those matrices, our simulations had three additional steps. First, we computed equilibrium

trait values (z∗) using equation [S24] for 10 different samples of θ with θi,A ∼ U [0, 10] and θi,B ∼ U [10, 20].

Second, we quantified the mean equilibrium trait matching (τ∗) within each site using equation [S10] for

each of our 10 samples of θ. Third, we perturbed G by randomly choosing 5% of the species in the network

and changing their gene flow value from high to low, which was either gi = 0.05, gi = 0.01, or gi = 0. By

doing so, we altered the direct and indirect coevolutionary effects present in the matrix T = (G−1−Q)−1Ψ.

After perturbing the matrix G, we repeated these three steps until all species in the network had a low value

of gene flow, which was the end of the simulation. For each network and each parameter choice (i.e., each

combination of mi,A, mi,B , high gi, and low gi; n = 105 combinations), we performed 10 simulations in order

to vary the sequence of species that lost gene flow (n = 29 networks, total = 30,450 simulations). All codes

are available at www.github.com/wgar84/spatial_coevo_mutnet.

Our results for high gi = 0.3 and low gi = 0 show that disruption of gene flow causes trait matching to

initially decrease in mutualistic networks (Fig. S12). However, we found that extreme loss of gene flow may

cause trait matching to increase (Fig. S12). For some specific combinations of mutualistic selection, such as

a hotspot and a coldspot (mi,A = 0.9, mi,B = 0.1), trait matching values in the absence of gene flow (gi = 0)

are higher than initial trait matching values (gi = 0.3). Thus, our results suggest that the effect of gene flow

on trait matching depends not only on the levels of mutualistic selection, but also on the fraction of species

with a high value of gene flow.

We also found that, for mi,A = 0.5 and mi,B = 0.5, the choice of the high and low values of gene flow

do not qualitatively affect our conclusion that losing gene flow causes trait matching to decrease (Fig. S13).

These different parameterizations for high and low gene flow also allowed us to explore how the variation in

gene flow across species in the network affects the emergence of trait matching. To do so, we calculated the

standard deviation of gi values throughout the simulations. Our results show that a larger variation of gene

flow values leads to a stronger decrease in trait matching as gene flow is lost (Fig. S13). Furthermore, our

results suggest that the slight increase in trait matching in the end of the simulations is associated with a

decrease in the variation of gene flow values (Fig. S13). Therefore, variation in dispersal ability and gene

flow across species should play an important role in trait evolution in mutualistic assemblages.
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Figure S1: Higher values of mean mutualistic selection (m) lead to (A) stronger reciprocal selection and to
(B) higher trait matching values. Each line represents the value of (A) mean reciprocity of selection (log(r(t)))
or (B) mean trait matching (τ (t)) through time for one simulation of the single-site coevolutionary model
parameterized by one empirical network (network 64 in Table S1). Each panel shows simulations for the
indicated value of mean mutualistic selection (m). Results are shown for the first 30 timesteps to facilitate
visualization, although some simulations lasted much longer. Sample distributions and values for simulation
parameters: ϕi ∼ N [µ = 0.5, σ2 = 10−4], θi ∼ U [a = 0, b = 10], mi ∼ N [m, 10−4], and α = 0.2.
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Figure S2: Gene flow favors local trait matching for the majority of combinations of mutualistic selection
(mA and mB). Each panel shows the mean trait matching at equilibrium (τ∗) for different values of gene flow
(g) for the indicated combination of mutualistic selection (mA: rows, mB : columns). (A and B) Each point
is the mean of 100 simulations for a given empirical mutualistic network (total = 72 networks). Different
colors represent distinct mutualisms. (A) Trait matching at site A. (B) Trait matching at site B. Sample
distributions and values for simulation parameters: ϕi,A, ϕi,B ∼ N [µ = 0.5, σ2 = 10−4], θi,A ∼ U [0, 10],
θi,B ∼ U [10, 20], mi,A ∼ N [mA, 10−4], mi,B ∼ N [mB , 10−4], gi ∼ N [g, 10−6], and α = 0.2.
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Figure S3: Gene flow fuels trait matching especially in pairs of generalist species (i.e., species with many
interactions). (A and B) Each panel shows the mean difference in pairwise trait matching for simulations with
and without gene flow (τ∗ij,g=0.3− τ∗ij,g=0) parameterized with empirical networks of the indicated mutualism
type (n = 72 networks). Each point indicates the degree values (ki) of two interacting species (x and y axes)
and the mean difference in pairwise trait matching with and without gene flow for 100 simulations (warmer
colors depict higher differences in absolute value). Species with degrees larger than 40 were removed to
facilitate visualization. (A) Trait matching calculated for a hotspot (site A) connected to another hotspot
(mA = mB = 0.7). (B) Trait matching calculated for a hotspot (site A) connected to a coldspot (mA = 0.9,
mB = 0.1). Simulation parameters as in Fig. S2.
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Figure S4: Gene flow promotes the uncoupling of species traits from their local environmental optima and
the geographical homogenization of species traits. Panels contain the equilibrium values of (A) the mean
environmental matching at site A (ε∗A) or (B) the mean geographical divergence (γ∗) for different values of
gene flow (g) and for the indicated combination of mutualistic selection (mA and mB). Each point represents
the mean of 100 simulations for a given empirical mutualistic network (total = 72 networks). Different colors
represent distinct mutualisms. Simulation parameters as in Fig. S2.
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Figure S5: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) for several different
parameterizations of the two-site coevolutionary model. However, gene flow does not favor trait matching
when environmental optima (θi,A, θi,B) are correlated across sites (D). Each panel shows the mean trait
matching at site A at equilibrium (τ∗A) for different values of gene flow (g) and for the indicated combination of
mutualistic selection (mA and mB) and parameterization (see Simulations with different parameterizations).
Each point represents the mean of 50 simulations for a given empirical mutualistic network (total = 36
networks). Different colors represent distinct mutualisms. (A-D) Different parameterizations of θi,A and
θi,B , which are the trait values selected by the local environment. (E and F) Different parameterizations of
ϕi,A and ϕi,B , which are related to the additive genetic variance of the trait and to the slope of the selection
gradient. (G and H) Different parameterizations of α, which measures the sensitivity of trait matching to
differences between traits of mutualistic partners. Simulation parameters as in Fig. S2, except were noted.
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Figure S6: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) in simulations of the
coevolutionary model in which gene flow (gi) is positively correlated with species degree (ki) (see Simulations
with gene flow correlated with species degree). (A) Trait matching at site A. (B) Trait matching at site B.
(A and B) Each point represents the mean of 50 simulations for a given empirical mutualistic network (total
= 36 networks). Different colors represent distinct mutualisms. Simulation parameters as in Fig. S2, except
for gene flow, which had a larger variance (gi ∼ N [g, 10−4]).
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Figure S7: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) in simulations of the
coevolutionary model with spatial species turnover. Before simulating the coevolutionary dynamics, species
were randomly removed from each local mutualistic network with a probability based on species degree (see
Simulations with spatial species turnover). (A) Trait matching at site A. (B) Trait matching at site B. (A
and B) Each point represents the mean of 50 simulations for a given empirical mutualistic network (total =
36 networks). Different colors represent distinct mutualisms. Simulation parameters as in Fig. S2.
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Figure S8: Higher values of mutualistic selection (mi) lead to greater similarity of adaptive landscapes (i.e.,
greater correlation among rows of matrix T). Each panel shows an example of a matrix T for a seed dispersal
network (network 72 in Table S1) for the indicated value of mutualistic selection (colors depict the magnitude
of matrix elements). Each matrix was built using the analytical expression for the single-site coevolutionary
model: T = (I − Q)−1Ψ. Each matrix Ψ was built using mi = 0.1 ∀ i (left) or mi = 0.9 ∀ i (right).
Each matrix Q was built using equilibrium trait values (z∗i ) and mi values from one simulation. Sample
distributions and values for simulation parameters: ϕi ∼ N [µ = 0.5, σ2 = 10−4], θi ∼ U [a = 0, b = 10],
α = 0.2, and mi ∼ N [m, 10−4], where m = 0.1 (left) or m = 0.9 (right).
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Figure S9: Greater similarity of adaptive landscapes (i.e., greater correlation among rows of matrix T) lead
to higher values of trait matching. Each panel shows the mean trait matching at equilibrium (τ∗) as a
function of the mean correlation among mutualistic adaptive landscapes for different values of mutualistic
selection (mi, warmer colors depict higher mi values) and for the indicated mutualism type. Trait matching
and correlation among adaptive landscapes were calculated using our analytical equilibrium expression (eq.
[S19]) and simulation results for the single-site coevolutionary model (see Matrix T and the emergence of
trait matching). Each point corresponds to the mean value of 100 simulations and lines connect points from
the same empirical mutualistic network (n = 72 networks). Simulation parameters as in Fig. S1.
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Figure S10: Higher values of gene flow (gi) lead to greater similarity of adaptive landscapes (i.e., greater
correlation among rows of matrix T). Each panel shows an example of a matrix T for a seed dispersal
network (network 72 in Table S1) for the indicated value of gene flow (colors depict the magnitude of matrix
elements). Each matrix was built using the analytical expression for the two-site coevolutionary model:
T = (G−1 −Q)−1Ψ. Each matrix Ψ was built using mi,A = mi,B = 0.7 ∀ i. Each matrix G was built using
gi = 0 ∀ i (left), gi = 0.05 ∀ i (middle), or gi = 0.3 ∀ i (right). Each matrix Q was built using equilibrium trait
values (z∗i,A and z∗i,B), mi,A values, and mi,B values from one simulation. Sample distributions and values

for simulation parameters: ϕi,A, ϕi,B ∼ N [µ = 0.5, σ2 = 10−4], θi,A ∼ U [0, 10], θi,B ∼ U [10, 20], α = 0.2,
mi,A ∼ N [0.7, 10−4], mi,B ∼ N [0.7, 10−4], and gi ∼ N [g, 10−6], where g = 0 (left), g = 0.05 (middle), or
g = 0.3 (right).
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Figure S11: Greater similarity of adaptive landscapes (i.e., greater correlation among rows of matrix T)
lead to higher values of trait matching. Each panel shows the mean trait matching at equilibrium at site
A (τ∗A) as a function of the mean correlation among mutualistic adaptive landscapes for different values of
gene flow (gi, warmer colors depict higher gi values) and for the indicated mutualism type. Trait matching
and correlation among adaptive landscapes were calculated using our analytical equilibrium expression (eq.
[S24]) and simulation results for the two-site coevolutionary model (see Matrix T and the emergence of trait
matching). Each point corresponds to the mean value of 100 simulations and lines connect points from the
same empirical mutualistic network (n = 72 networks). (A) Results for two hotspots (mi,A = mi,B = 0.7).
(B) Results for a hotspot and a coldspot (mi,A = 0.9, mi,B = 0.1). Simulation parameters as in Fig. S2.
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Figure S12: The ongoing disruption of gene flow causes trait matching to decrease in mutualistic networks,
but extreme loss of gene flow may lead to a small increase in trait matching. Each panel shows the mean
trait matching at equilibrium (τ∗) as gene flow is progressively lost in simulations with the indicated values
of mutualistic selection (mi,A: rows, mi,B : columns). In these simulations, all species in the network start
with a high value of gene flow (gi = 0.3 ∀ i) and species randomly lose gene flow until all species lack gene
flow (gi = 0 ∀ i). Trait matching was calculated using our analytical equilibrium expression (eq. [S24]) and
empirical data on ecological dependencies for 29 networks in our dataset (Table S1). (A and B) Each point
is the mean trait matching for 10 different θ samples in each of 10 distinct simulations. Lines connect points
from the same network and different colors indicate different types of mutualism. (A) Trait matching at site
A. (B) Trait matching at site B. Sample distributions and values for simulation parameters: ϕi,A = ϕi,B = 1,
θi,A ∼ U [0, 10], θi,B ∼ U [10, 20], α = 0.2.
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Figure S13: Trait matching in mutualistic networks is affected by the progressive loss of gene flow and the
lowest values of trait matching occur when gene flow is highly variable across species in the network. Each
panel shows the mean trait matching at equilibrium at site A (τ∗A) as gene flow is progressively lost in
simulations with the indicated parameterization for the high (initial) and low (final) values of gene flow.
In these simulations, all species in the network start with a high value of gene flow and species randomly
lose gene flow until all species have a low value of gene flow. Trait matching was calculated using our
analytical equilibrium expression (eq. [S24]) and empirical data on ecological dependencies for 29 networks
in our dataset (Table S1). Each point is the mean trait matching for 10 different θ samples in each of 10
distinct simulations and lines connect points from the same network. Warmer colors indicate higher standard
deviation in gene flow values across species in the network. Sample distributions and values for simulation
parameters: ϕi,A = ϕi,B = 1, θi,A ∼ U [0, 10], θi,B ∼ U [10, 20], mi,A = mi,B = 0.5, and α = 0.2.
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Table S1: Empirical mutualistic networks used in this study. Mutualism: AA, anemones–anemonefishes;
AM, ants–myrmecophytes; AN, ants–nectary-bearing plants; MC, marine cleaning; P, pollination; SD, seed
dispersal. Each mutualism is identified by two sets of species that interact. N1: number of species in the
first set (e.g., plant species in the plant-animal mutualisms). N2: number of species in the second set. N :
total species richness (N = N1 + N2). C: connectance. NODF : nestedness. Q: modularity. PC1: first
principal component of a PCA with network metrics. PC2: second principal component. Availability: IWDB,
dataset available for download at www.nceas.ucsb.edu/interactionweb; Web of Life, dataset available for
download at www.web-of-life.es; Rico-Gray, dataset kindly provided by Victor Rico-Gray; Izzo, dataset
kindly provided by Thiago Izzo; Sazima, dataset kindly provided by Cristina and Ivan Sazima; Donatti,
dataset kindly provided by Camila Donatti. *Network contains quantitative information on the ecological
dependencies between species pairs. †Network used in sensitivity analyses.

Network Mutualism N1 N2 N C NODF Q PC1 PC2 Availability
1† AA 6 5 11 0.33 38.00 0.44 0.78 -0.94 IWDB, (30)
2† AA 4 5 9 0.40 34.38 0.44 0.96 -1.19 IWDB, (30)
3 AA 3 4 7 0.50 22.22 0.33 1.41 -1.39 IWDB, (30)
4† AA 4 4 8 0.44 37.50 0.37 1.47 -1.09 IWDB, (30)
5 AA 5 3 8 0.47 38.46 0.41 1.46 -1.26 IWDB, (30)
6† AA 4 4 8 0.44 62.50 0.39 2.11 -0.81 IWDB, (30)
7† AA 4 5 9 0.30 12.50 0.56 -0.50 -1.52 IWDB, (30)
8 AA 4 4 8 0.44 29.17 0.39 1.15 -1.25 IWDB, (30)
9 AA 4 4 8 0.38 16.67 0.47 0.23 -1.47 IWDB, (30)
10† AA 5 5 10 0.32 22.50 0.48 0.12 -1.24 IWDB, (30)
11 AA 4 5 9 0.35 12.50 0.47 0.02 -1.43 IWDB, (30)
12* AM 8 16 24 0.15 4.28 0.78 -2.23 -1.50 Web of Life, (31)
13* AM 15 24 39 0.12 12.80 0.67 -1.78 -0.76 Web of Life, (32)
14 AM 5 6 11 0.23 8.00 0.69 -1.41 -1.72 Izzo, (33)
15† AM 7 9 16 0.17 7.02 0.78 -2.00 -1.69 Izzo, (33)
16† AM 8 13 21 0.16 11.32 0.69 -1.61 -1.27 Izzo, (33)
17† AM 7 8 15 0.16 0.00 0.79 -2.30 -1.80 Izzo, (33)
18† AM 9 12 21 0.15 4.90 0.78 -2.21 -1.56 Izzo, (33)
19 AM 8 10 18 0.15 4.11 0.78 -2.20 -1.63 Izzo, (33)
20* AN 48 41 89 0.14 44.82 0.30 0.28 1.56 Web of Life, (34)
21† AN 38 10 48 0.25 39.17 0.37 0.54 0.23 Rico-Gray, (35)
22† AN 99 28 127 0.10 40.59 0.47 -0.80 1.98 Rico-Gray, (35)
23 AN 12 5 17 0.22 2.63 0.75 -1.85 -1.76 Rico-Gray, (35)
24† AN 46 13 59 0.21 35.55 0.46 -0.11 0.28 Rico-Gray, (35)
25 MC 32 4 36 0.41 46.30 0.36 1.50 -0.33 (36)
26† MC 35 5 40 0.42 70.73 0.26 2.56 0.33 Sazima, (37)
27† MC 50 6 56 0.35 64.47 0.30 1.87 0.63 (38)
28† P 84 101 185 0.04 14.46 0.52 -2.31 2.82 Web of Life, (39)
29 P 43 64 107 0.07 15.36 0.53 -1.78 1.15 Web of Life, (39)
30 P 36 25 61 0.09 19.19 0.59 -1.57 0.06 Web of Life, (39)
31*† P 12 102 114 0.14 30.78 0.49 -0.95 1.44 Web of Life, (40)
32* P 13 13 26 0.42 84.93 0.23 3.16 0.30 Web of Life, (41)
33* P 17 61 78 0.14 52.27 0.40 0.20 1.21 Web of Life, (42)
34*† P 16 36 52 0.15 35.66 0.43 -0.23 0.36 Web of Life, (42)
35 P 11 38 49 0.25 35.97 0.36 0.49 0.22 Web of Life, (43)
36† P 24 118 142 0.09 15.39 0.50 -1.81 1.89 Web of Life, (44)
37† P 29 81 110 0.08 25.68 0.48 -1.29 1.47 Web of Life, (45)
38* P 40 85 125 0.08 19.31 0.43 -1.37 1.81 Web of Life, (46)
39*† P 58 100 158 0.09 34.35 0.30 -0.59 2.96 IWDB, (47)
40 P 21 45 66 0.09 18.02 0.62 -1.74 0.08 Web of Life, (48)
41† P 23 72 95 0.08 22.88 0.58 -1.64 0.88 Web of Life, (48)
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Network Mutualism N1 N2 N C NODF Q PC1 PC2 Availability
42* P 11 18 29 0.19 32.07 0.48 -0.20 -0.39 Web of Life, (49)
43* P 14 13 27 0.29 51.87 0.34 1.26 -0.06 IWDB, (50)
44* P 10 12 22 0.25 35.96 0.44 0.31 -0.54 IWDB, (50)
45*† P 9 56 65 0.20 35.49 0.43 -0.08 0.47 Web of Life, (51)
46 P 18 60 78 0.11 13.94 0.56 -1.61 0.37 Web of Life, (52)
47† P 28 53 81 0.07 11.16 0.58 -1.94 0.43 Web of Life, (53)
48† P 51 25 76 0.15 46.36 0.32 0.34 1.26 IWDB, (54)
49 P 7 33 40 0.28 56.66 0.36 1.25 0.24 Web of Life, (55)
50* P 13 34 47 0.32 40.96 0.26 1.27 0.33 Web of Life, (56)
51*† P 10 29 39 0.15 29.54 0.54 -0.72 -0.26 IWDB, (57)
52*† P 9 33 42 0.15 18.66 0.62 -1.33 -0.55 IWDB, (57)
53* P 10 29 39 0.14 26.31 0.58 -0.96 -0.39 IWDB, (57)
54*† P 8 26 34 0.17 23.28 0.54 -0.77 -0.50 IWDB, (57)
55* P 8 27 35 0.22 30.31 0.50 -0.24 -0.40 IWDB, (57)
56*† SD 7 21 28 0.34 50.98 0.32 1.51 -0.15 Web of Life, (58)
57*† SD 31 9 40 0.43 67.66 0.22 2.64 0.35 Web of Life, (59)
58*† SD 25 16 41 0.17 44.70 0.40 0.31 0.28 Web of Life, (60)
59* SD 34 20 54 0.14 43.38 0.40 0.07 0.60 Web of Life, (60)
60* SD 25 13 38 0.15 29.69 0.54 -0.69 -0.28 Web of Life, (60)
61*† SD 21 15 36 0.16 34.17 0.47 -0.26 -0.11 Web of Life, (60)
62 SD 72 7 79 0.28 51.67 0.33 0.99 1.02 Web of Life, (61)
63 SD 45 46 91 0.13 27.80 0.41 -0.67 1.13 Donatti, (62)
64*† SD 35 29 64 0.14 35.49 0.38 -0.13 0.74 Web of Life, (63)
65† SD 16 17 33 0.44 78.76 0.24 3.02 0.28 Web of Life, (64)
66 SD 5 27 32 0.64 67.34 0.18 3.67 -0.25 Web of Life, (65)
67 SD 24 61 85 0.34 58.84 0.20 1.87 1.41 Web of Life, (66)
68† SD 29 32 61 0.07 11.21 0.65 -2.07 -0.13 Web of Life, (67)
69* SD 4 19 23 0.43 48.29 0.35 1.73 -0.60 Web of Life, (68)
70* SD 13 11 24 0.37 73.90 0.25 2.56 0.17 Web of Life, (68)
71* SD 33 88 121 0.14 34.58 0.31 -0.20 2.06 Web of Life, (69)
72† SD 7 6 13 0.52 66.67 0.26 3.02 -0.55 Web of Life, (70)
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Table S2: List of parameters and variables used in the numerical simulations of the two-site coevolutionary
model. Parameter/variable: mathematical notation for each parameter/variable (site S is either A or B).
Definition: verbal definition of parameters/variables. Sampling distribution: statistical distribution used
to sample parameters/variables for each species. Values for simulations: values used to sample parame-
ters/variables or the values attributed to parameters/variables in simulations (values in bold indicate the
main set of simulations reported in the main text).

Parameter/
variable

Definition Sampling distribution Values for simulations

mi,S

Level of mutualistic se-
lection of species i at
site S

N [µ = mS , σ
2 = 0.0001];

0 ≤ mi,S ≤ 1

(mA,mB) = (0.1, 0.1); (0.3, 0.1);
(0.5, 0.1); (0.7, 0.1); (0.9, 0.1); (0.3,
0.3); (0.5, 0.3); (0.7, 0.3); (0.9, 0.3);
(0.5, 0.5); (0.7, 0.5); (0.9, 0.5); (0.7,
0.7); (0.9, 0.7); (0.9, 0.9)

gi
Level of gene flow of
species i across sites

N [µ = g, σ2 = 0.000001 or
0.0001]; 0 ≤ gi ≤ 1

g = 0; 0.01; 0.02; ...; 0.29; 0.3

θi,S

Trait value of species
i selected by the envi-
ronment at site S

U [θS,min, θS,max]; θi,S > 0

([θA,min, θA,max], [θB,min, θB,max]) =
([0, 10], [0, 10]); ([0, 10], [5, 15]); ([0,
10], [10, 20]); ([0, 10], [20, 30]); ([0,
10], θi,A +N (µ = 10, σ2 = 1))

ϕi,S

Additive genetic vari-
ance of trait zi,S mul-
tiplied by the slope of
the selection gradient
(ϕi,S = σ2

Gzi,S
ρi,S)

N [µ = ϕS , σ
2 = 0.0001];

ϕi,S > 0
ϕS = 0.1; 0.5; 1

α
Sensitivity of trait
matching to differ-
ences between traits

-
α = 0.05; 0.2; 0.8 (same value for all
species; α > 0)

NS

Number of species in
the mutualistic assem-
blage at site S

-
Parameterized with empirical net-
works (see Table S1)

A (aij)

Adjacency matrix de-
scribing if species i and
j interact (aij = 1) or
not (aij = 0) in a mu-
tualistic assemblage

-
Parameterized with empirical net-
works (see Table S1)

z
(t)
i,S

Mean trait value of the
population of species i
at site S

Sampled at t = 0 from

U [θS,min, θS,max]; z
(t)
i,S > 0

Values change over time according to
equation [S7]

τ
(t)
ij,S

Trait matching be-
tween species i and j
at site S

-
Values change over time according to

z
(t)
i,S and z

(t)
j,S (eq. [S5]; 0 ≤ τ (t)ij,S ≤ 1)

q
(t)
ij,S

Evolutionary effect of
species j on species i at
site S

-

Values change over time according

to τ
(t)
ij,S (eq. [S6]; 0 ≤ q

(t)
ij,S ≤ 1;∑NS

j=1 q
(t)
ij,S = mi,S)
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Table S3: Correlations between the first principal components (PC1 and PC2) and our four metrics of
network structure.

PC1 PC2
richness (N) -0.22 0.81

connectance (C) 0.56 -0.35
nestedness (NODF ) 0.58 0.27

modularity (Q) -0.56 -0.39
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