

Supplementary Information for

Crystal structure of heme A synthase from Bacillus subtilis

Satomi Niwa, Kazuki Takeda, Masayuki Kosugi, Erika Tsutsumi, Tatsushi Mogi, and Kunio Miki

Kunio Miki Email: miki@kuchem.kyoto-u.ac.jp

This PDF file includes:

Figs. S1 to S7 Tables S1 to S3 Captions for data S1

Other supplementary materials for this manuscript include the following:

Data S1

Fig. S1. Sequence alignment of HAS. Fully, highly and relatively conserved residues are shaded in red, light red and pale red, respectively. HASs from *B. subtilis, Geobacillus stearothermophilus* and *Aeropyrum pernix* are classified into type-1 HAS, and HASs from *Rhodobacter sphaeroides, Saccharomyces cerevisiae* and *Homo sapiens* are classified into type-2 HAS. Secondary structural elements of HAS from *B. subtilis* are indicated above the sequence alignment. The conserved glutamate residue and histidine residues are labeled with red and orange triangles, respectively. The disulfide bridges in ECL1 (conserved in only type-1 HAS) and ECL3 are indicated with green and yellow arrows.

Fig. S2. Purification and crystallization of HAS. (*A*) Elution profile of the BsHAS during the last size exclusion chromatography step. (*B*) The absorption spectrum for the air-oxidized, as prepared BsHAS (pink) and ascorbate-reduced BsHAS (blue). (*C*) Crystals of BsHAS obtained in lipidic cubic phase. (*D*) Crystal packing viewed along the *a* (left) and *c* (right) axes. The monoolein molecules are shown as green spheres.

Fig. S3. Electron density maps for BsHAS. (*A*) The initial electron density maps obtained from MIRAS (20–3.5 Å; gray mesh, 1.0 σ) superimposed onto a C α model. (*B*)–(*F*), The final $2mF_{obs}$ – DF_{calc} electron density map (30–2.2 Å; gray mesh, 1.0 σ). Close-up views of TM2 and TM3 (*C*), the substrate-heme-binding site (*D*), ECL3 (*E*) and cofactor-heme-binding site (*F*) are also shown. In panel (*F*), the additional final $2mF_{obs}$ – DF_{calc} electron density map (magenta mesh, 8.0 σ) and the omit map for a water molecule is also shown (cyan mesh, 4.0 σ).

Fig. S4. (*A*) Schematic representation of HAS from the *B. subtilis* construct used in this study. The conserved histidine residues serving as heme axial ligands, cysteine residues forming disulfide bridges and a part of the thrombin cleavage site are colored in orange, green/yellow, and gray, respectively. The α -helical structure of the transmembrane region is assigned from the crystal structure. (*B*) The crystal structure of BsHAS as viewed from within the membrane and the extracellular side.

Fig. S5. Structure of ECL1 and ECL3. (*A*) Structure of the extracellular loop region, ECL1 (left) and ECL3 (right). (*B*) Disulfide bridges of ECL1 and ECL3. Anomalous difference Fourier maps calculated with the data collected at 1.75 Å wavelength are indicated by red mesh (3.0σ). The final $2mF_{obs}$ -D F_{calc} electron density map for these data is also shown (1.0σ , gray mesh).

Fig. S6. Superimposition between C-half domain of BsHAS and the structurally similar proteins indicated by Dali. Main chains of the similar structures are shown as ribbon drawing (left). The C-half domain of BsHAS is shown in gray as a reference. In addition, close-up views of cofactor-heme-binding site are shown (right). (A) Subunit III in cytochrome c oxidase from bovine (PDB-ID: 10CC, chain C). (B) Superoxide oxidase from E. coli (PDB-ID: 50C0). (C) Cytochrome b in cytochrome bc_1 complex from R. sphaeroides (PDB-ID: 5KKZ, chain A).

Fig. S7. Proposed reaction mechanism for the formylation reaction of heme A synthesis. Proposed reaction mechanism for the formylation reaction of heme A synthesis. This reaction scheme consists of four steps: two steps of single-electron oxidation, followed by dehydration, and the final heme oxidation. In the first 8-substituent oxidation step, heme O yields a heme radical, which generates an ester cross-link of the C-8 methyl group of heme O with the carboxylate group of Glu57. Following hydrolysis of the ester cross-link, a heme I is generated. Then the second single-electron oxidation step takes place in a manner similar to the first step and generates a geminal diol. Subsequently, spontaneous dehydration at the 8-substituant group yields heme A. In the final heme oxidation step, both heme A and B are reoxidized by the electron acceptor.

variant	expression host	types of heme	reference
wild type	B. subtilis	B, (A)	16
wild type	E. coli	$B, (O, O_X)$	10
W39A	E. coli	B, O, (O_X)	10
C35A	B. subtilis	B, O, (II, A)	17
C42A	B. subtilis	B, O, (II)	17
E57A	E. coli	B, O	10
E57Q	E. coli	B, O	10
H60L	B. subtilis	B, O	16
H60M	B. subtilis	B, (A)	16
H60A	E. coli	B, (O)	10
H60Q	E. coli	B, (O)	10
R61A	E. coli	B, (O)	10
R61Q	E. coli	B, (O)	10
Q103A	E. coli	$B, O_X, (O)$	10
H123L	B. subtilis	B, O	16
H123M	B. subtilis	B, O	16
H123A	E. coli	B, (O)	10
H123Q	E. coli	B, (O)	10
C191A	B. subtilis	N.D.	17
C197A	B. subtilis	N.D.	17
H216L	B. subtilis	not expressed	16
H216M	B. subtilis	B, O, I	16
H216A	E. coli	B, O, O_X, O_Y	10
H216Q	E. coli	B, O, O_X	10
R217A	E. coli	B, O, O_X	10
R217Q	E. coli	$B, O_X, (O)$	10
Q258A	E. coli	$B, O_X, (O)$	10
H278L	B. subtilis	(B, A)	16
H278M	B. subtilis	(B, A)	16
H278A	E. coli	$B, (O, O_Y)$	10
H278Q	E. coli	B, O, O_X	10
C35A/C42A	B. subtilis	N.D.	17
C35A/C42A	E. coli	B, O	10
C35A/C191A	B. subtilis	N.D.	17
C35A/C197A	B. subtilis	N.D.	17
C35A/C42A/C191A	B. subtilis	N.D.	17
C35A/C42A/C191A/C197A	B. subtilis	B, O, II	17
H60A/H123A	E. coli	$B, (O, O_X)$	10
H60Q/H123Q	E. coli	$B, O_X, (O)$	10
C191A/C197A	B. subtilis	B, A, II, (O)	17
C191A/C197A	E. coli	B, O, O_Y	10

Table S1. Properties of constructed variants of overproduced BsHAS.

Traces of heme are indicated with brackets.

O_X, O_Y: 8-hydroxymethyl derivatives of heme O. I: 8-alcohol derivative of heme O (heme I).

II: 8-carboxylate derivative of heme O (heme II).

N.D.: Not determined.

	Native	S-anomalous	Fe-anomalous	Hg-derivative	Pt-derivative
Data collection					
Wavelength (Å)	1.00	1.75	1.74	1.00	1.00
Space group	H3	НЗ	H3	H3	H3
Cell dimensions					
<i>a</i> = <i>b</i> (Å)	90.47	90.53	91.01	91.00	89.93
<i>c</i> (Å)	147.32	147.23	148.18	148.59	148.20
Resolution (Å)	50-2.20	50-3.00	50-3.50	50-3.38	50-4.00
	(2.32-2.20)*	(3.11–3.00)	(3.56–3.50)	(3.59–3.38)	(4.14-4.00)
No. of reflections	119,694	178,985	57,778	66,991	38,991
Unique reflections	22,834	8,987	5,737	6,387	3,797
Completeness (%)	99.9 (99.7)	100.0 (100.0)	100.0 (100.0)	99.6 (98.0)	100.0 (100.0)
Redundancy	5.2 (5.1)	19.9 (19.7)	10.1 (10.4)	10.5 (9.7)	10.2 (10.3)
R_{sym} (%) [†]	12.7 (123.0)	27.7 (113.0)	15.7 (85.6)	22.7 (110.3)	24.2 (106.7)
<i>Ι</i> /σ(<i>I</i>)	8.02 (1.20)	11.5 (2.3)	11.9 (2.3)	8.58 (2.02)	8.9 (1.92)
CC(1/2) (%)	99.7 (49.4)	- (82.4)	- (84.3)	99.6 (82.5)	- (85.8)
Twin fraction (%)	3	3	3	4	6
Phasing (MIRAS)					
No.of heavy atom sites			1 (Fe in heme)	3	2
Isomorphous phasing power			-	1.78	1.60
Anomalous phasing power			0.55	0.71	0.48
FOM [‡] (SOLVE, 20–4.2 Å)			0.63		
FOM (RESOLVE, 20-3.5 Å)			0.74		

Table S2. Data collection and phasing statistics.

* Values in parentheses are for the highest-resolution shell.

 $\ddagger R_{\text{sym}} = \sum_{hkl} \sum_{i} |I_{hkl,I} - \langle I_{hkl} \rangle | / \sum_{hkl} \sum_{i} I_{hkl,i}.$ $\ddagger \text{FOM} : \text{figure of merit.}$

	Native	S-anomalous
Resolution (Å)	30-2.2	20-3.0
$R_{\mathrm{work}}^{*}/R_{\mathrm{free}}^{\dagger}$ (%)	20.64/22.87	20.30/24.47
No. atoms		
Protein	2,431	2,431
Heme	43	43
Ion/lipid	368	48
Water	32	0
<i>B</i> -factors (Å ²)		
Protein	55.30	48.58
Heme	41.72	37.98
Ion/lipid	82.70	66.14
Water	49.90	-
R.m.s. deviations		
Bond lengths (Å)	0.017	0.012
Bond angles (°)	2.01	1.30
Ramachandran plot		
Favored (%)	96.74	95.77
Allowed (%)	2.93	3.90
Outlier (%)	0.33	0.33
PDB-ID	6A2J	6IED

Table S3. Refinement statistics.

* $R_{\text{work}} = \sum_{\text{hkl}} ||F_{\text{obs}}| - |F_{\text{calc}}|| / \sum_{\text{hkl}} |F_{\text{obs}}|.$ † R_{free} was calculated by using 5% of the reflections that were not included in the refinement as a test set.

Additional data S1 (separate file)

The coordinate file for the structural model for the substrate-binding state (the PDB format).