Supplementary information

Genetic variation in *PTPN1* contributes to Metabolic Adaptation to High-Altitude Hypoxia in Tibetan Migratory Locusts

Ding et al.

Sample ID	Locality	Altitudes	Sampling date
			(year)
Tibetan-1	Maizhikungga	4,000 m	2005
Tibetan-2	Maizhikungga	4,000 m	2005
Tibetan-3	Maizhikungga	4,000 m	2005
Tibetan-4	Lhasa	3,700 m	2014
Tibetan-5	Lhasa	3,700 m	2014
Tibetan-6	Lhasa	3,700 m	2014
Tibetan-7	Lhasa	3,700 m	2014
Tibetan-8	Lhasa	3,700 m	2014
Tibetan-9	Lhasa	3,700 m	2014
Tibetan-10	Shannan Nedong	4,000 m	2015
Tibetan-11	Doilung Deqing	3,700 m	2005
Tibetan-12	Doilung Deqing	4,000 m	2015
HaiN-1	Dongfang	$\leq 20 \text{ m}$	2014
HaiN-2	Dongfang	$\leq 20 \text{ m}$	2014
HaiN-4	Dongfang	$\leq 20 \text{ m}$	2014
HaiN-5	Dongfang	$\leq 20 \text{ m}$	2014
HaiN-6	Danzhou	$\leq 20 \text{ m}$	2014
HaiN-7	Danzhou	≤20 m	2014
HaiN-9	Danzhou	$\leq 20 \text{ m}$	2014
HaiN-11	Danzhou	$\leq 20 \text{ m}$	2014
HaiN-19	Danzhou	\leq 20 m	2014
HaiN-21	Danzhou	\leq 20 m	2014
TJ	Dagang	$\leq 20 \text{ m}$	2014
LN	Huludao	\leq 20 m	2014

Supplementary Table 1. Locust sample information.

Samples	Mismatc	Mappin	Average	Coverage	Coverage	Coverage
	h rate	g rate	depth	1X	4 X	10X
Tibetan-1	2.70%	96.14%	9.74	87.01%	71.97%	28.98%
Tibetan-2	2.61%	96.55%	12.66	87.99%	78.08%	45.37%
Tibetan-3	2.94%	95.49%	12.31	88.37%	78.01%	45.05%
Tibetan-4	2.71%	92.79%	10.59	87.31%	73.09%	33.83%
Tibetan-5	2.73%	96.27%	10.7	87.03%	73.52%	35.73%
Tibetan-6	2.61%	96.18%	10.84	86.98%	73.00%	34.74%
Tibetan-7	2.64%	95.43%	10.77	87.46%	73.56%	36.19%
Tibetan-8	2.71%	96.17%	10.97	87.67%	74.87%	37.29%
Tibetan-9	2.66%	86.12%	10.94	87.67%	75.09%	36.81%
Tibetan-10	2.73%	96.09%	10.79	87.49%	75.07%	37.10%
Tibetan-11	2.63%	93.31%	9.86	87.07%	72.01%	28.59%
Tibetan-12	2.57%	96.34%	10.92	87.53%	75.01%	37.20%
HaiN-1	2.78%	64.17%	10.73	87.91%	74.75%	35.68%
HaiN-2	2.94%	76.71%	10.71	87.65%	74.45%	36.47%
HaiN-4	2.78%	91.11%	10.54	87.88%	74.45%	35.11%
HaiN-5	2.81%	81.81%	10.69	87.90%	74.83%	35.64%
HaiN-6	2.75%	89.40%	10.52	88.04%	75.70%	35.61%
HaiN-7	2.72%	76.65%	10.48	87.83%	75.12%	33.38%
HaiN-9	2.90%	93.44%	10.89	87.94%	75.89%	37.14%
HaiN-11	2.76%	71.99%	10.04	87.69%	74.04%	31.33%
HaiN-19	3.06%	95.04%	12.02	88.10%	77.76%	43.92%
HaiN-21	2.76%	96.32%	10.95	87.95%	75.23%	36.46%
TJ	2.44%	96.79%	13.22	89.75%	79.15%	46.68%
LN	2.39%	95.93%	10.87	89.42%	78.08%	38.41%

Supplementary Table 2. Summary of whole-genome sequencing data

ID	Term Type	Description	n	P Value
GO:0051186	BP	Cofactor metabolic process	б	0.014846
GO:0048869	BP	Cellular developmental process	3	0.018246
GO:0051188	BP	Cofactor biosynthetic process	5	0.020146
GO:0048856	BP	Anatomical structure development	3	0.026556
GO:0009889	BP	Regulation of biosynthetic process	18	0.028479
GO:0006733	BP	Oxidoreduction coenzyme metabolic process	3	0.029702
GO:0008104	BP	Protein localization	14	0.030984
GO:0006732	BP	Coenzyme metabolic process	5	0.032354
GO:0009058	BP	Biosynthetic process	49	0.035345
GO:0044767	BP	Single-organism developmental process	3	0.03784

Supplementary Table 3. Gene Ontology (GO) enrichment of positively selected genes

Note: Only GO terms with more than 2 genes are shown, *n* represents the number of genes and BP represents biological process.

Gene ID	Name	Description	ZFST
LOCMI16039	sdhd-1	Putative succinate dehydrogenase [ubiquinone]	5.48
		cytochrome b small subunit, mitochondrial	
LOCMI09989	USP4	Ubiquitin carboxyl-terminal hydrolase 4	5.16
LOCMI16005	Fasn2	Fatty acid synthase	5.16
LOCMI16361	Ap3d1	AP-3 complex subunit delta-1	5.03
LOCMI07679	VKR	Venus kinase receptor	4.92
LOCMI15451	Osa	Trithorax group protein osa	4.86
LOCMI07281	Pof	Protein painting of fourth	4.84
LOCMI13746	If	Integrin alpha-PS2	4.83
LOCMI09680	Gas2l1	GAS2-like protein 1	4.83
LOCMI06683	rbm26	RNA-binding protein 26	4.78
LOCMI16009	Ndufb7	NADH dehydrogenase [ubiquinone] 1 beta subcomplex	4.75
		subunit 7	
LOCMI14495	Cull	Cullin-1	4.72
LOCMI16386	Su(dx)	E3 ubiquitin-protein ligase Su(dx)	4.70
LOCMI07987	Klhdc1	Kelch domain-containing protein 1	4.69
LOCMI12387	Rbm42	RNA-binding protein 42	4.68
LOCMI15987	Fasn1	Fatty acid synthase	4.63
LOCMI12038	COL11A2	Collagen alpha-2(XI) chain	4.58
LOCMI04142	Gphn	Gephyrin	4.58
LOCMI13542	ZC3H12C	Probable ribonuclease ZC3H12C	4.56
LOCMI05909	FLNA	Filamin-A	4.68

Supplementary Table 4. Top 20 genes with the highest ZF_{ST} value

Gene ID	Name	Description	XPCLR
LOCMI07893	stau2	Double-stranded RNA-binding protein Staufen homolog	129.77
		2	
LOCMI13788	CAPRIN1	Caprin-1	124.27
LOCMI08902	MDN1	Midasin	121.69
LOCMI05473	CAP1	Adenylyl cyclase-associated protein 1	118.16
LOCMI11968	tamm41	Mitochondrial translocator assembly and maintenance	113.18
		protein 41 homolog	
LOCMI10229	ABCG1	ATP-binding cassette sub-family G member 1	111.66
LOCMI11591	vac14	VAC14-like protein	98.48
LOCMI07509	naprt	Nicotinate phosphoribosyltransferase	98.06
LOCMI04670	D1Pas1	Putative ATP-dependent RNA helicase Pl10	96.64
LOCMI10276	WDR74	WD repeat-containing protein 74	90.28
LOCMI05539	PTPN1	Protein-tyrosine phosphatase-1B	89.60
LOCMI10185	HERC1	Probable E3 ubiquitin-protein ligase HERC1	88.82
LOCMI17208	proPo-A3	Phenoloxidase subunit A3	88.35
LOCMI09847	Zdhhc8	Probable palmitoyltransferase ZDHHC8	87.93
LOCMI15739	GRIK3	Glutamate receptor ionotropic, kainate 3	87.84
LOCMI13580	Ctdspl2	CTD small phosphatase-like protein 2	87.67
LOCMI15789	Taldo1	Transaldolase	86.25
LOCMI14383	Efhc1	EF-hand domain-containing protein 1	85.66
LOCMI13361	SLC18B1	MFS-type transporter SLC18B1	84.76
LOCMI10336	Stathmin	Stathmin	82.87

Supplementary Table 5. Top 20 genes with the highest XP-CLR score

Gene ID	Name	Description	∆ZHp
LOCMI14887	Znf235	Zinc finger protein 235	8.59
LOCMI14890	FAM103A1	RNMT-activating mini protein	8.12
LOCMI07893	stau2	Double-stranded RNA-binding protein Staufen homolog 2	7.76
LOCMI09930	DNAH3	Dynein heavy chain 3, axonemal	7.69
LOCMI06546	Osbpl1a	Oxysterol-binding protein-related protein 1	7.63
LOCMI06820	DNAH3	Dynein heavy chain 3, axonemal	7.45
LOCMI09748	CLCC1	Chloride channel CLIC-like protein 1	7.14
LOCMI05473	CAP1	Adenylyl cyclase-associated protein 1	7.09
LOCMI06460	Xpnpep3	Probable Xaa-Pro aminopeptidase 3	7.00
LOCMI11179	RPUSD1	RNA pseudouridylate synthase domain-containing protein	6.95
		1	
LOCMI14781	Rnf157	RING finger protein 157	6.94
LOCMI08902	MDN1	Midasin	6.85
LOCMI13561	CHD1	Chromodomain-helicase-DNA-binding protein 1	6.81
LOCMI17242	Adck1	Uncharacterized aarF domain-containing protein kinase 1	6.76
LOCMI07155	Aggfl	Angiogenic factor with G patch and FHA domains 1	6.69
LOCMI09680	Gas211	GAS2-like protein 1	6.66
LOCMI13361	SLC18B1	MFS-type transporter SLC18B1	6.66
LOCMI13651	FAM120B	Constitutive coactivator of peroxisome proliferator-	6.60
		activated receptor gamma	
LOCMI06948	Rpp40	Ribonuclease P, Rpp40	6.58
LOCMI04195	ilvbl	Acetolactate synthase-like protein	6.49

Supplementary Table 6. Top 20 genes with the highest ΔZHp (ZHp Lowland – ZHp Tibetan) value

Gene	Nonsynonymous mutations
PTPN1	p.Asn349Ile (c.1046A>T)
FAS1	p.Mel1242Leu (c.3724A>T)
	p.Ala675Gly (c.2024C>G)
	p.Lys664Arg (c.1991A>G)
FAS2	non
FAS3	p.Ser508Gly (c.1522A>G)
	p.Ala537Pro (c.1609G>C)
	p.Gln699Arg (c.2096A>G)
Ndufb7	non
PIK3CD	non
ADIPOR1	non
FAR1	non
PPT1	p.Ile13Met (c.39A>G)
ACO1	non
SDHD1	non
ATP1A2	p.Ser137Ala (c.409T>G)
VLCAD	non

Supplementary Table 7. Nonsynonymous mutations of PSGs involved in energy metabolism

Note: Only nonsynonymous mutations with $F_{ST} > 0.5$ are shown.

Supplementary Table 8. Primers used in this study

Primer name	Sequence, 5'-3'	Description
PTP1BF	ATGAGCAGGACTCCTGGTAA	Clone the full
PTP1BR	TCAAACACGGTTAGAGAAGTA	length of PTP1B
PTP1BT7F	TAATACGACTCACTATAGGTATACTACATGGCCTGACTT	DTDN/1 4-DNIA
PTP1BT7R	TAATACGACTCACTATAGGTCTGCAGAGACCTCAGGTTC	PIPNI dSKINA
PTP1BexF1	TATCGAATTCATGAGCAGGACTCCTGGTAA	
PTP1BexR1	TATCAAGCTTTCAAACACGGTTAGAGAAGTA	Quarayprossion
PTP1BexF2	TATCGAATTCGCCATGGGCAGGACTCCTGGTAA	Overexpression
PTP1BexR2	TATCGCGGCCGCCAACACGGTTAGAGAAGTAAC	
PTP1BrtF	AGCCAACAAACCACTCCCTG	
PTP1BrtR	TCATCATCACCTGCTTCCTTA	
IlprtF	ATGGACTGACCAGCCCCTAA	
IlprtR	CGGCTCCATCTCCTAAAACAAA	
ACA rtF	TGATTTATCTGTCGGCTCCTA	-
ACA rtR	GAGACCTGCAATATGGTATGA	-
ACC rtF	CATTGCCGAGCATTCATCGTG	-
ACC rtR	GGCCGTAATTGAGTCAACAGG	-
PDH E3rtF	TGGAATGTGATGTCCTGCTCG	-
PDH E3rtR	CCTCATCTTCAGCTTTGTGGG	-
ETIF rtF	ACCATATCAAAGCAGCAAGCG	
ETIF rtR	TTAATCAACCAACGTCCACCC	
GYS rtF	TGCATTCCTGATATTCCCTACC	
GYS rtR	AATCTCATACATCCGCTTTCC	
PDHE1brtF	GATTCTCCAGTTATCCGTGTCA	qPCR
PDHE1brtR	TCGCTCTGCTCACTTCCTCA	
PYKrtF	CAGGCATGAATGTAGCGAGGTT	
PYKrtR	CCCTTCAAGTAGCCCTGTTCT	
RPS6rtF	AGGCGAGATGGTGAAAGAAAG	
RPS6rtR	AAACGACGAGGAATCGTATTG	
Ald1rtF	ACTCAGGGACTCGACGACTTG	
Ald1rtR	GCGTGCCAGAACATTAGCATT	
Ald2rtF	TGCTGGGATTGCTTTCCTTTC	
Ald2rtR	CTCGCTTCTTAAACTCCTCTTGG	
HexrtF	GGCCTTAATCATGCAACAGAC	
HexrtR	AGCCATCAATGCCCACTGTAA	
PTIrtF	GGCGGGCCTTTCGATTATT	
PTIrtR	GGCTCCAGTCCGTTATCTTGT	

Supplementary Figure 1. Difference in body size between the Tibetan and lowland locusts. *Field-collected* represents sexually mature adults newly collected from the field. *Lab-reared* represents sexually mature adults that had been reared in laboratory under normoxic condition for two generations. Measurements are shown as mean \pm standard error (s.e.m.). **P < 0.01, ***P < 0.001 (Student's *t*-test). These samples are selected randomly from stock locust populations. Sample size: $n \ge 8$ individuals.

Supplementary Figure 2. Saturation curve of coverage rate and sequencing depth based on the wholegenome sequence data of a Tibetan locust.

Supplementary Figure 3. Genetic structure analysis of Tibetan and lowland locusts from K = 2-4.

Supplementary Figure 4. Heterozygosity across populations. Shown is estimated ratio of homozygous SNPs (HOM) to heterozygous SNPs (HET) /individual. * P < 0.05 (Student's *t*-test). The center lie of boxplots represents median value, the bounds of the box represents 75th and 25th percentile and the whiskers represent maximum and minimum value.

Supplementary Figure 5. Demographic histories of the locusts. (a) Effective population size of the Tibetan and lowland locust. LGM represents the last glacial maximum, LGP represents the last glacial period. (b) Relative cross coalescence rates between Tibetan and lowland locusts. *g*, generation time; μ , neutral mutation rate per generation.

3.0

0.0

-3.0

Supplementary Figure 6. Expression of metabolism-related genes in different tissues. Heat map signal indicates log2 fold-change values relative to the mean expression level within each group. Yellow signal represents higher expression and blue represents lower expression relative to the mean expression level within the group. Expression levels were measured through transcriptome sequencing.

Supplementary Figure 7 Expression levels of metabolism-related genes in response to hypoxia. These genes are involved in glycolysis, pyruvic acid metabolism, fatty-acid synthesis and protein synthesis. mRNA level was measured by quantitative real-time PCR and normalized against that of the internal control *rp49*. The values are expressed in mean \pm s.e.m. * *P* < 0.05, ** *P* < 0.01 (Student's *t*-test) compared to control (i.e., normoxia) (*n* = 5 replicates).

Supplementary Figure 8. GO enrichment of differentially expressed genes in response to hypoxia exposure of locust adults.

Supplementary Figure 9. Selective sweep signal of PSGs involved in energy metabolism. PSG, positively selected genes. (a) Genomic landscape of the XP-CLR values. All the scaffolds were arranged end to end in random order, as shown on the x-axis. Each point represents a 100-kb sliding window. Red colored points indicate gene regions. The region above the dashed line is top 0.5% XP-CLR statistics. (b) Tajima's *D* and average LD values of Tibetan locusts' genome. Data are plotted using a 40-kb sliding window in a scaffold. The red regions at bottom are the gene regions of the PSGs.

PTPN14 H.sapiens

Supplementary Figure 10. Phylogenetic tree analysis and sequence alignment of PTP1B. (a) Phylogenetic tree construction of PTP1B. MEGA 5.0 was used for phylogenetic tree analysis with the corresponding amino acid sequences of non-transmembrane PTP family genes from Homo sapiens, Drosophila melanogaster and Locusta migratoria. One thousand bootstraps were performed. Only bootstrap values >85 are shown. (b) Amino acid alignment of the PTP1B in different species. The alignment among L. migratoria, Tribolium castaneum, D. melanogaster and H. sapiens was performed using MEGA 5.0 and GENEDOC. The region in red box represents PTP domain.

Supplementary Figure 11. Protein level detection and enzyme activity assay of locust PTP1B. (a) Quantitative real-time PCR and western blot detecting the mRNA and protein level of *PTPN1* in the Tibetan and lowland locusts in vivo. Supplementary Figs. 15a and 15b show the original images. (b) Expression and purification of locust PTP1B recombinant protein in S2 cells. (c) The enzyme activity of the recombinant locust PTP1B under normoxic condition, Bovine serum albumin (BSA) is used as negative control. WT represents wild-type PTP1B, whereas Mut represents mutant-type PTP1B. N.S represents no significant difference. The values are expressed as mean \pm s.e.m (n = 3 replicates). Supplementary Fig. 15c shows the original image.

Supplementary Figure 12. mRNA levels of locust insulin like peptides in brain and thoracic muscle after hypoxia induction. The mRNA level was normalized against that of the internal control rp49. The values are expressed as mean \pm s.e.m. N.S. represents no significant difference compared with normoxia (n = 5 replicates).

Supplementary Figure 13. In situ cell death detection assay. The cell death level of myocyte was tested by an in situ cell death detection kit. Cell nuclei were stained in blue using Hoechst. DNA fragments in dead cell nuclei were stained in green using TUNEL. Locust adult was injected with 100 µg/µl trehalose solution in trehalose treatment. Normoxia represents 21% Po2. Hypoxia represents exposure to $2\% Po_2$ for 6h. Bar length = 50 µm. (b) Percentage of dead cells represented as the TUNEL/ Hoechst ratio. The values are expressed as mean ±s.e.m. Significant differences are denoted by different letters (one-way ANOVA, P < 0.05) (n = 5 replicates).

Supplementary Figure 14. Effects of *PTPN1* knockdown on adult lifespan. (a) RNAi efficiency in *PTPN1* expression knockdown. The mRNA and protein expression level of *PTPN1* in thoracic muscle was measured by quantitative real-time PCR and western blot, respectively. Double strand RNA (dsRNA) was injected to knock down expression. ds*GFP* was used as control. The values are expressed as mean \pm s.e.m. Significant differences are denoted by different letters (one-way ANOVA, *P* < 0.05). Supplementary Fig. 151 shows the original image. (b) Effect of *PTPN1* knock-down on survivorship curves of locust adult under normoxia and hypoxia condition. Survival was recorded from 5-d-old adults when first dsRNA was injected. Wilcoxon rank sum test was used to test the significance of difference. *n* = 30. All assays were repeated twice with similar results.

Supplementary Figure 15. The full-size western blot and SDS-PAGE scan.