
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
In this manuscript, Becker et al. investigate the relationship between mRNA and protein 
abundance during the highly dynamic process of D. melanogaster embryo development. The 
authors take advantage of a proteomic time-course dataset recently published by them (Casas-
Vila, et al., Genome Research 2017) and integrate it with RNAseq data obtained from the same 
samples. Similar RNAseq dataset were previously published by others, but the authors argue that 
having proteomic and transcriptomic data from the same samples might improve modeling. The 
authors confirm previously reported (also by them) low level of correlation between mRNA level 
and protein abundance during fly embryo development, and then demonstrate that by using a 
limited set of Ordinary Differential Equations (ODEs) it is possible to model dynamics of protein 
and transcript abundances for up to 80% of the quantified cases. Finally, the authors point to 
additional post-transcriptional mechanisms not taken into account in the models to explain the 
remaining 20% of the cases. In particular, they find an enrichment of motifs recognized by RNA 
binding proteins. Among these, they select the RNA binding protein HRB98D and attempt to 
demonstrate a potential role for these proteins in regulating glucose metabolism during embryo 
development via post-transcriptional mechanisms. The manuscript is well written and easy to 
follow, and the underlying data appear of high quality (even tough in part already published). The 
major novelty derives from the modeling with ODEs, which appears logically well designed, even 
tough I am not a modeling expert. The weakest point of the manuscript is the functional validation 
of the role of HRB98D in regulating glucose metabolism. In particular, I have serious doubts that 
the experiment performed support the claim made by the authors. Unless these functional aspects 
are considerably strengthened and supported by in vivo experiments, I find this manuscript more 
appropriate for a more specialized, “systems biology” oriented journal.  
 
Major points:  
- The authors should study in vivo the role of HRB98D during embryo development. They could 
use mutants or knock-down of HRB98D using germline specific lines and address whether this 
perturbation affects embryo development. If HRB98D has a relevant role in regulating glucose 
metabolism, I would expect some kind of effect on embryo development. Additionally, they should 
repeat the proteomic and RNAseq measurements upon perturbation of HRB98D to demonstrate its 
influence on protein abundance by post-transcriptional mechanisms. In this case, perhaps not all 
the time course need to be repeated, but select time points could be chosen on the basis of the 
experiments already performed.  
 
- It is not clear to me what is the rationale behind checking for alternative splicing events in S2R+ 
cell lines upon siRNA of HRB98D (Figure 7D). How is this supposed to influence the relationship 
between mRNA and transcript level? Do alternative spliced transcript show also protein abundance 
changes? Are the same splicing events also detected in the vivo data?  
 
- There is no description of how the siRNA experiments were performed. How many siRNA were 
used? If only one, how about off-targets effects?  
 
- It is not clear to me how the correlation between protein and mRNA levels were calculated. 
Which values were used in Fig. 2B? How were LFQ values “normalized”? Unless these were 
corrected for protein size, I found it a bizarre choice of using LFQ instead of iBAQ values. LFQ are 
generally not normalized by protein size while RPKM are (reads per kilobase). Using not 
normalized data for protein levels could of course reduce the correlation between mRNA and 
protein levels.  
 
- Were the RNAseq experiments performed using Spike-In controls? Burst in transcription at the 
end of MZD could lead to all transcripts being suddenly up regulated and normalization might 
produce artificial fold changes upon normalization. The authors should at least comment on this.  



 
Minor points:  
 
- Some of the mass spec data were imputed, have the authors assessed the impact of the 
correlation between protein and mRNA with and without imputation?  
 
- For the siRNA experiment, what is the rationale for choosing cut offs for RNAseq and proteome 
experiments? Is the cut off for proteomics data really based on “p value” and not adjusted for 
multiple testing? If this is case, it needs to be fixed.  
 
- While the manuscript is clearly written the Figures need to be improved. Some figures are 
cropped at the bottom (e.g. Fig.2B, Fig.4), some axis-label missing (Fig. 5).  
 
 
 
Reviewer #2:  
Remarks to the Author:  
General remarks  
The authors have investigated the mRNA-protein relationship during Drosophila embryogenesis 
using matching transcriptome and proteome data for 14 developmental time points. They observe 
that mRNA-protein correlations improve when considering delayed time points and that further 
improvements can be obtained using mass-action type models of translation and protein 
degradation. A notable discrepancy with a simple mass action model for a significant fraction of 
genes is dues to the is observed maternal-to-zygotic transition (MZT), after which the mass action 
models capture well the protein-mRNA relation. Finally, the authors have stated that proteins 
belonging to different kinetic models are enriched for different GO terms and their analysis has 
revealed RNA-binding protein Hrb98DE to be a post-transcriptional regulator of genes involved in 
sugar metabolism, which was validated by follow-up experiments.  
 
Overall, this study did not delineate well its novelty.  
 
Indeed, the biological conclusions of the authors about poor mRNA-protein correlations and kinetic 
models providing better insights about their relationship have been reported before (Jovanovic et 
al. 2015, Peshkin et al. 2015). Hence the most important biological message is already known. 
Furthermore, Peshkin et al. 2015 had generated and analysed a similar data for Xenopus and also 
reported differences for eth MZT transition. Hence the biological insights are confined to the fly 
community and to the RNA-binding protein Hrb98DE twist of the paper.  
 
Methodologically, the modeling approach has not been compared against alternative existing 
approaches (eg Teo et al 2014, Peshkin et al. 2015) nor it has been thoroughly benchmarked 
against simulations and independent data. Also, the model is based on strong modelling 
assumptions (absolute vs relative concentrations), and non-assessed assumptions important for 
statistical testing (normality). They were also errors in the python code. Therefore, the modelling 
itself will not be likely reused.  
 
Altogether, I recommend rejection of the paper. It would need re-working of the model, a clear 
delineation of the contribution of this study to state-of-the-art rather than a mere referencing 
(additional important references are Robles et al PLoS Genet, 2014, Cheng et al Mol Syst Biol 2016 
and Lau et al., Nature comms, 2018.), and the retargeting to a more specialized journal. I hope 
my detailed comments below will help the authors to this end.  
 
 
Minor points  
 
1. Abstract. “the direct correlation between mRNA levels and protein abundances is moderate in 



most studies” Most studies are comparing steady-state conditions. For steady-state data, using 
ODE would not help. Hence, the argument does not help for “most studies”.  
 
2. Abstract. “ODE models describing protein translation and degradation fit 81% of mRNA-protein 
profiles” is unclear. One needs to read the paper to understand it. I understand that no correction 
for multiple testing was done (see below).  
 
3. The discussion of the correlation of present RNA-seq data with previously published one is a bit 
lengthy and off the core topic of this paper. It could be made more succinct.  
 
 
4. From the publication and website, MISO seems to only estimate isoform distribution of genes 
with multiple isoforms (PSI). How did they get values for the whole locus?  
 
5. The iBAQ quantification has been developed for the purpose of absolute quantification. The 
authors should try with iBAQ instead of LFQ and report whether it improves the results.  
 
6. Since the protein and RNA quantifications are relative to each other, the ODEs assume that the 
total RNA mass and the total protein mass does not change over time. Is that realistic? That 
assumption should be made explicit and discussed if not assessed. Also RNA-seq protocol depletes 
for ribosomal RNAs.  
 
7. Why were the SR2+ data analysed differently (read mapping and counting, no isoform 
distribution estimation)?  
 
8. “In contrast to the Pearson correlation coefficient, Spearman correlation makes no assumptions 
about normality of the data or linearity in the dependence of the variables (de Sousa Abreu et al., 
2009; Tobias Maier et al., 2009)”. The ref (de Sousa Abreu et al., 2009; Tobias Maier et al., 2009) 
are not appropriate for this statement. It is not their work but Spearman’s.  
 
9. “We included only significantly changing proteins (n = 866) to avoid that random variations 
around the mean might mask existing trends between mRNA and protein”. What is the statistical 
test and multiple testing procedure applied? Which significance cutoff was used? The method 
refers back to Casas-Vila et al. Gen Res 2017. However, i) these informations are important to 
understand this paper so they must be recapitulated here and ii) Casas-Vila have multiple ways of 
selecting differentially regulated proteins. I could not find one that had the same number (866) 
than here.  
 
10. It is not the “heavy-side” function, but the “Heaviside” function, named after its inventor.  
 
11. Equation (3) must be exp(-lambda*t) and not exp(lambda*t).  
 
12. Equation 4: h(-\tau) should be h(t-\tau)?  
 
13. If Equation (4) is correct (I think it is up to point #12) then the python code line 29 and line 
94, which calculates “c” in solve_modelD and in solve_modelC in the file solve_model.py are 
wrong. This must be corrected and the analysis re-done.  
 
14. The code and Suppl Table 1 should be provided (I got them afterward)  
 
15. According to the code, u(t) = mt + b is assumed in each interval. Hence interval indices should 
be introduced for the slope and intercept for clarity.  
 
16. How good does this model fit overall to the data? A global scatterplot must be provided.  
 



17. The model is written for protein and RNA expression in the natural scale. However, both for 
RNA and protein, noise is typically multiplicative in the natural scale. Therefore, the fitting can 
suffer from heteroscedasticity, whereby high expression data points, which also present largest 
noise, have strongest influence on the fits. Is that the reasons why weighted least squares are 
used? If so, how the weights are computed should be made clear.  
 
18. Normality assumption of the residuals is important for the chi-squared test. A quantile-quantile 
plot of the residual must be provided. If Normality is not met, alternative non-parametric testing 
strategies must be investigated and applied (eg Bootstrap of cases or of residuals). The same 
issue applies to the Durbin-Watson test.  
 
19. The cut-off on type I error was based on nominal p-value (alpha = 0.05). The authors should 
consider multiple testing corrections.  
 
20. The initial value y0 should be fitted rather than forced to be equal to the first measurement 
value. The reason is that every measured values entail noise. Errors in y0 propagate to all data 
points. They may also be a strong driver of the anti-correlation seen in Fig 4B.  
 
21. Fig 4B should be backed by independent measures. For instance, by comparing half-lives from 
other measurements of protein half-life and scatter plotting. Also, the anti-correlation might be a 
statistical artefact (correlation of estimation errors). One way to address this issue is to check that 
the trend holds when production rates and half-lives are estimated from independent subsets of 
the data (e.g. using the odd data points for production and the even data points for half-life).  
 
 
 
Reviewer #3:  
Remarks to the Author:  
This paper is a treasure trove of new information that should stimulate much productive further 
investigation. The most important point - for this reviewer - is the demonstration that the poor 
correlation between transcript and protein titers can, in a majority of cases, be explained without 
resort to idiosyncratic (i.e. gene-specific) post-transcriptional regulation. The authors show that 
relatively simple models containing delays and accounting for protein degradation do the trick. The 
robustness of the allocation of various genes to these separate models might have been 
strengthened by additional Monte Carlo simulations, but I consider that a quibble; the particular 
assignments aren't the great take-away lesson. The success in reconciling the majority of the 
cases is -- and that result should stimulate much new work by the authors and by others.  
The HRB98DE results I count as an additional bonus. They are persuasive and, again, I think they 
will stimulate others to try to do similar things.  
The manuscript is well written. A few figure legends could have been clearer, but they can be 
worked out.  



Response to reviewers comments

Reviewer #1 (Remarks to the Author):

In this manuscript, Becker et al. investigate the relationship between mRNA and protein
abundance during the highly dynamic process of D. melanogaster embryo development.
The authors take advantage of a proteomic time-course dataset recently published by them
(Casas-Vila, et al., Genome Research 2017) and integrate it with RNAseq data obtained
from the same samples. Similar RNAseq dataset were previously published by others, but
the authors argue that having proteomic and transcriptomic data from the same samples
might improve modeling. The authors confirm previously reported (also by them) low level of
correlation between mRNA level and protein abundance during fly embryo development,
and then demonstrate that by using a limited set of Ordinary Differential Equations (ODEs) it
is possible to model dynamics of protein and transcript abundances for up to 80% of the
quantified cases. Finally, the authors point to additional post-transcriptional mechanisms not
taken into account in the models to explain the remaining 20% of the cases. In particular,
they find an enrichment of motifs recognized by RNA binding proteins. Among these, they
select the RNA binding protein HRB98D and attempt to demonstrate a potential role for
these  proteins  in  regulating  glucose  metabolism  during  embryo  development  via  post-
transcriptional  mechanisms.  The manuscript  is  well  written  and easy to  follow,  and the
underlying data appear of high quality (even tough in part already published). The major
novelty derives from the modeling with ODEs, which appears logically well designed, even
tough I am not a modeling expert. The weakest point of the manuscript is the functional
validation of the role of HRB98D in regulating glucose metabolism. In particular,  I  have
serious  doubts  that  the  experiment  performed support  the  claim made by  the  authors.
Unless these functional aspects are considerably strengthened and supported by  in vivo
experiments,  I  find  this  manuscript  more  appropriate  for  a  more  specialized,  “systems
biology” oriented journal.

Major points:

1) The authors should study in vivo the role of HRB98D during embryo development.
They could use mutants or knock-down of HRB98D using germline specific lines and
address whether  this  perturbation affects embryo development.  If  HRB98D has a
relevant role in regulating glucose metabolism, I would expect some kind of effect on
embryo development.  Additionally,  they should repeat the proteomic and RNAseq



measurements upon perturbation of HRB98D to demonstrate its influence on protein
abundance by post-transcriptional mechanisms. In this case, perhaps not all the time
course need to be repeated, but select time points could be chosen on the basis of
the experiments already performed.

   
We agree with the reviewer that in vivo analysis of the role of Hrb98DE during embryonic
development  would  be  the  most  direct  validation  of  our  model  predictions.  We  thus
performed  the  proposed  in  vivo validation  experiment.  In  detail,  we  performed  in  vivo
Hrb98DE knockdown using two different  dsRNA constructs,  and collected flies 7:45h at
29°C  after  egg  deposition  for  analysis  (corresponding  to  10h  at  the  previously  used
temperature of 25°C). We separately used two different driver lines for the expression of the
dsRNAs: an  actin-GAL4 driver  that  starts  expressing GAL4 at  MZT and a  nanos-GAL4
driver that already expresses in the germline. Each experiment was performed in triplicates,
thus resulting in a total of 18 knockdowns (3 dsRNAs x 2 drivers x triplicates). We observed
low knockdown efficiencies (~50%) on protein and mRNA levels when KD was generated
with the actin driver line, as judged by qPCR and mass spectrometry, respectively (Figure 1
and not shown). With the nanos-GAL4 driver line, Hrb98DE protein was mostly unchanged
compared  to  animals  expressing  a  non-specific  dsRNA,  possibly  because  dsRNA
expression was too low when controlled by this driver (Figure 1). Nevertheless, using mass
spectrometry,  we compared the proteomes of control  embryos to the actin-GAL4 driver-
mediated KD3, showing the greatest knock-down on protein level (40% expression relative
to control).  Within the overlap of expressed proteins in this data with the 3761 proteins
expressed in the embryo time-course (2531 proteins), we found 75 differentially expressed
proteins (p-value < 0.01, fold-change > 2.0). Despite the low knock-down efficiency,  we
observe  a  significant  overlap  between  this  set  of  significantly  changing  proteins  and
transcripts  containing the Hrb98DE motif  (hypergeometric  test,  p-value < 0.05).  Further
there is a significant overlap between significantly changing proteins and proteins predicted
to  be  post-transcriptionally  regulated  based  on  our  model-based  classification
(hypergeometric test, p-value < 0.05). The same conclusion holds true when we analyze
actin-GAL4 driver mediated KD1, which shows reduced knock-down efficiency compared to
KD3. Taken together, these results indicate that our modeling approach indeed correctly
predicts post-transcriptionally regulated proteins and Hrb98DE is involved in the mechanism
of  regulation.  We  have  now  included  these  new  results  in  the  revised  version  of  the
manuscript.

As demonstrated the  in  vivo knock-down of  Hrb98DE indicates promising results,  but  it
remains  difficult  to  target  Hrb98DE  for  knockdown,  perhaps  because  the  maternally
provided Hrb98DE is exceptionally stable, preventing efficient depletion of the protein early
in development. The alternative strategy of knocking out Hrb98DE is impossible as loss of
Hrb98DE is lethal (Ji and Tulin, 2012). A last option to circumvent this issue would be to
generate  specific  germline  KO clones  in  an  otherwise  wild  type  background.  However,
Hrb98DE was shown to be required for normal oogenesis, which prevents us to obtain and
examine early embryos (Ji and Tulin, 2012).



Figure 1 - Protein expression changes upon in vivo knock-down of Hrb98DE as assessed
by  mass  spectrometry:  The  left  panel  shows  the  observed  residual  Hrb98DE  protein
expression  upon  knock-down  using  two  different  GAL4  driver  lines  (actin,  nanos)  in
combination with three dsRNAs. The middle panel shows a scatter plot comparing protein
expression  between  actin  KD3  and  control.  Red  dots  highlight  significantly  changing
proteins. Right panel: Differentially expressed proteins are significantly (p < 0.05, indicated
by *) enriched for  genes containing an post-transcriptionally regulated proteins predicted by
the model (middle bar) and Hrb98DE motifs (right bar). The left bar shows the percentage of
differentially expressed in the background set of all differentially expressed proteins. 

Taken  together,  the  validation  of  Hrb98DE  function  in  early  embryo  indicates  some
promising  results,  but  is  compromised  by  low  KD  efficiency  and  the  requirement  of
Hrb98DE  during  oogenesis.  In  a  personal  communication,  the  editor  of  Nature
Communications, therefore, in principle, agreed that a detailed analysis of  in vivo knock-
down of  Hrb98DE is  not  absolutely  required in  light  of  these technical  challenges.  We
nevertheless  tried the  proposed  in  vivo validation and explain  in  the following  why the
results were not conclusive. We therefore had to resort to SR2+ cells that are more suitable
to  confirm  the  predicted  post-transcriptional  regulation,  as  strong  knockdown  can  be
achieved without adverse effects on cell survival. We included the in vivo knockdown  in the
revised  Results  section,  while  discussing  its  limitations  and still  using  the  more  robust
knockdown in the SR2+ cell culture system as the main validation for the role of Hrb98DE in
post-transcriptional regulation.

2) It is not clear to me what is the rationale behind checking for alternative splicing
events in S2R+ cell lines upon siRNA of HRB98D (Figure 7D). How is this supposed
to  influence  the  relationship  between  mRNA and  transcript  level?  Do  alternative
spliced transcript  show also protein  abundance changes? Are  the  same splicing
events also detected in the vivo data?
   

Based on the combination of sequence motif analyses and analysis of functional enrichment, we
hypothesized that Hrb98DE may be a post-transcriptional regulator of sugar metabolism.



Post-transcriptional  regulators  frequently  affect  multiple  aspects  of  RNA  metabolism.  For
instance,  it  is  well  established  that  micro  RNAs  affect  mRNA stability  as  well  as  mRNA
translation into protein (Bushati et al. 2008, Valencia-Sanchez et al. 2006). Likewise, Hrb98DE
has not only been described as a regulator of mRNA translation, but also as a factor controlling
RNA splicing (Blanchette et al. 2009, Brooks et al. 2015, Ji & Tulin 2016). Hence, we decided
to analyze knockdown effects on multiple mechanisms of post-transcriptional regulation.

Upon  knockdown,  we  found  the  predicted  evidence  for  translational  regulation,  as  a  large
fraction of  genes responding at the protein level (26 out  of  40) do not  show a concomitant
change at  the mRNA level (Figure 7B and 7C).  In line with our hypothesis,  some of  these
putative translationally regulated genes function in sugar metabolism. However, at the level of
splicing changes, the Hrb98DE knockdowns were more pronounced (higher number of affected
mRNAs), overlapped better with previously reported direct Hrb98DE targets and were highly
enriched for  the biological  function  'regulation of glucose metabolism' (GO:0010906).  This
suggests  that  in  SR2+ cells,  where we perform the knock-down,  the majority  of  Hrb98DE-
dependent effects on glucose metabolism are visible at the level of pre-mRNA splicing. In the
revised manuscript, we explain this rationale in more detail.

Concerning the relationship between splicing and protein vs. transcript levels, we reported in the
original manuscript that splicing changes observed at the RNA level are, in certain cases, also
eliciting  corresponding  isoforms  switches  in  the  respective  proteins  (Fig.  S6F).  Such
observations were, however, limited to a few cases, since only very few splicing changes can be
detected in proteomic data due to the requirement of having unique peptides for both isoforms.
During the revision,  we further  investigated whether  splicing changes at  the RNA level  are
related to absolute abundance changes at the protein level (sum of all protein isoforms). We
found that indeed splicing changes are visible at the level of protein, as 13 out of 40 (32.5%)
differentially expressed proteins also show splicing changes. For comparison, the fraction of
differentially spliced genes in the considered background of expressed mRNA and protein is
merely 5.7%. Therefore, a significant enrichment of differentially spliced mRNA is observed in
the group of differentially expressed protein (5.7-fold enrichment, hypergeometric test, p = 1.5e-
7).

We agree with the reviewer, that it would be of interest to check also for splicing changes in the
in vivo time-course data. However, time-resolved embryonic RNA sequencing was performed
using  single-end  50bp  sequencing  to  accomodate  the  large  number  of  samples.  This
sequencing mode has high throughput and allows for the quantification of total mRNA per locus,
but it is difficult to reliably detect splicing changes. We therefore did not attempt a time-resolved
splicing analysis.

3) There is no description of how the siRNA experiments were performed. How many
siRNA were used? If only one, how about off-targets effects?

We do agree with the reviewer about the importance of checking for potential off-target
effects. We therefore performed RNA-Sequencing measurements also for a second knock-
down experiment of Hrb98DE with an independent dsRNA. We see good overlap between
both dsRNA as well as a highly significant overlap of differentially expressed mRNA (Figure
2). We therefore conclude that off-target effects are minimal. These results are included in
the revised manuscript (Supplemental Figure S6E).



  
Figure 2 - Independent  dsRNA-mediated knockdowns of  Hrb98DE in SR2+ cells  show
highly similar effects at the mRNA level: The left panel shows the Pearson correlation (see
colormap) between Hrb98DE knock-downs using two different dsRNA (KD1 and KD2), each
being  performed  in  triplicates  (e.g.,  KD1_1  to  KD1_1).  The  knockdown  and  control
replicates are more correlated within than across each other.    The right panel shows a
strong overlap of the sets of differentially expressed mRNAs (BH corrected p-value < 0.05,
fold-change > 1.5) in the two knock-down experiments.

4) It is not clear to me how the correlation between protein and mRNA levels were
calculated. Which values were used in Fig. 2B? How were LFQ values “normalized”?
Unless these were corrected for protein size, I found it a bizarre choice of using LFQ
instead of iBAQ values. LFQ are generally not normalized by protein size while RPKM
are (reads per kilobase). Using not normalized data for protein levels could of course
reduce the correlation between mRNA and protein levels.

We agree with the reviewer that iBAQ values are normalized for protein size (whereas LFQ
values are not), and thus represent a more direct measure of protein concentrations. The
choice of LFQ vs. iBAQ may influence the global RNA-protein correlation (all genes - single
time  point;  Fig.  2A),  but  to  our  knowledge  no  systematic  comparison  how this  affects
modeling has been done. For the protein time course, the two measures are expected to
mainly differ by a scaling factor, suggesting that the local RNA-protein correlation (one gene
- all time points; Fig. 2C) will be essentially unaffected using iBAQ, as will be the modeling
results relating RNA protein time courses (except for a change in the estimated protein
translation rate). Thus, following our original publication for the proteome dataset (Casas-
Vila et al, 2017), which was reported as LFQ values we sticked to modeling with the LFQ
values. 
 
To address the reviewers’ comment (also raised by reviewer #2, minor point 5),  we re-



calculated the global RNA-protein correlation between samples, and indeed found a slightly
better correlation using IBAQ values. However, the RNA-protein correlation still remained
comparatively low, the maximum Pearson correlation coefficients being 0.64 and 0.68 for
the matched and un-matched (mRNA 12h - protein 16h) time points, respectively. These
results were essentially unchanged compared to LFQ quantification which yielded maximum
correlation coefficients of 0.56 and 0.63 (mRNA 12h - protein 16h), respectively.
 
As  expected,  the  difference between LFQ and iBAQ was  even less  pronounced when
calculating  local  RNA-protein  correlation:  When  considering  IBAQ  protein  values,  the
pairwise spearman correlations again showed a broad distribution over all mRNA/protein
pairs, the mean correlation being 0.025 when no time-shift between mRNA and protein is
assumed  (LFQ-based  mean:  0.009).  Furthermore,  the  maximum  mean  mRNA/protein
correlation  achieved  when  assuming  a  time-lag  of  protein  relative  to  mRNA is  slightly
smaller for iBAQ (rho=0.140, 4h lag) when compared to LFQ (rho=0.158, 6h lag). Finally,
the fraction of significant positive correlations between mRNA/protein pairs for non-shifted
and  shifted  time-courses  is  comparable  (33.7% vs.  33.5%)  when  assessing  correlation
either based on LFQ or IBAQ values.
 
Taken together, iBAQ and LFQ quantification yielded very similar results for the RNA-protein
correlation. Since a systematic comparison of iBAQ and LFQ values to our knowledge has
not yet been carried out on a global transcriptome-proteome dataset, we included these
results  in the revised Supplemental  material  and briefly  summarize them in the revised
Results section. All modelling analyses were still performed using LFQ quantification, the
main reason being that LFQ values, on average, had a smaller standard deviation between
replicates (17 % of the mean) when compared to iBAQ values (24 % of the mean). 

5)  Were  the  RNAseq  experiments  performed  using  Spike-In  controls?  Burst  in
transcription  at  the  end of  MZD could  lead  to  all  transcripts  being  suddenly  up
regulated  and  normalization  might  produce  artificial  fold  changes  upon
normalization. The authors should at least comment on this.

   
We did not use spike-in standard for the RNASeq analysis and assumed that all developmental
time  points  had  similar  total  RNA  expression  patterns,  as  was  done  in  other  dynamic
transcriptome  studies  analyzing  early  Drosophila  development  (e.g.,  Daines  et  al.,  2010;
Graveley et al., 2011). We agree with the reviewer that spike-in normalization could have been
beneficial  to  exclude  artificial  fold-changes  in  the  mRNA  dynamics.  However,  our  RNA
sequencing data argues against strong shifts in global gene expression, as we found that the
total  number  of  expressed transcripts  with significant  expression level  does not  appreciably
change during MZT (Fig. S1A).

Furthermore,a  recent  study  by  Sandler  &  Stathopoulos  used  spike-in  controls  for  absolute
quantification of molecule numbers of 68 mRNAs in embryos. They found that large increases in
zygotic mRNA expression due to genome activation during MZT are accompanied by similar
decreases in maternal mRNA numbers due to induced degradation. This simultaneous up- and



down regulation indicated that the total number of transcripts per embryo may be quite stable.

To  further  substantiate  this  conclusion,  we  quantitatively  compared  RPKM values  from our
dataset  (1,2,3  h,  respectively)  to   corresponding absolute transcript  counts  from Sandler  &
Stathopoulos  (NC10  [80min],  NC13  late  [120min],  Gastrulation  [180min],  respectively).   As
shown in  Figure  3,  we found a strong correlation between both studies  when  considering
mRNA numbers  at  each  time point  (R=0.88,  0.82 and  0.57,  respectively),  as  well  as  fold-
changes between time points (R=0.86 and 0.92).

 

Figure  3  - Comparison   of   our  RNA-Seq  results  (RPKM,  x-axis)  with  absolute  RNA
quantifications  reported  in  Sandler  &  Stathopoulos  (y-axis)  across  64  genes  overlapping
between both studies.  The top and bottom rows show comparisons  of corresponding time
points and fold-changes between time points, respectively. The Pearson correlation coefficient
(r) is indicated on the top left.  

The conclusion of a stable expression across developmental stages is further supported by a
recent  single-embryo proteome survey (Hughes,…, Krijgsveld,  MSB 2014),  in  which protein
expression  around  MZT  (2-4h;  i.e.,  before  genome  activation  affects  the  proteome)  was
compared to a later time point (10-12h). The average fold-change over all proteins was close to
zero, with strong increases and decreases in a few hundred zygotic and maternal proteins,
respectively.  This  again  suggests  compensatory  up-  and  downregulation  during  MZT  and
argues against strong shifts in global gene expression. 
We mention these arguments in the revised Discussion and explicitly mention that we assumed
the total  mRNA and protein  mass to be constant  during development  (also  in  response to
comment 8 by reviewer # 2)



Minor points:

6) Some of the mass spec data were imputed, have the authors assessed the impact
of the correlation between protein and mRNA with and without imputation?

We thank the reviewer for pointing out the need for clarification with respect to the usage of
imputed  protein  values.  Indeed,  we  only  use  imputed  protein  values  while  clustering
mRNA/protein time-courses (Figure 1B of the manuscript). All following analysis, including
assessment of mRNA/protein correlation as well as protein classification by ODE models,
was performed without imputing protein values (i.e., the corresponding data points were
removed from the dataset). We have now clarified the use of imputed protein values in the
updated manuscript (section 5.8 and section 5.9 of the Material and Methods).

7) For the siRNA experiment, what is the rationale for choosing cut offs for RNAseq
and proteome experiments? Is the cut off for  proteomics data really based on “p
value” and not adjusted for multiple testing? If this is case, it needs to be fixed.

Indeed the reviewer correctly points out that differentially expressed proteins are identified
by  uncorrected  p-values.  To  our  experience  the  currently  applied  multiple  testing
algorithms like Bonferroni or BH are easily applied, but too conservative for proteomics
data.  We  would  like  to  point  the  reviewer  to  a  viewpoint  published  in  Proteomics
(Pascovici  et  al.  2016) that nicely illustrates the issues when performing proteomics
data  analysis.  Indeed,  while  performing  Benjamini-Hochberg  correction  on  p-values
almost all significantly changing proteins are lost (Figure 4).

                                    
Figure  4  - Impact  of  multiple  testing  correction  on  the  identification  of  differentially
expressed  proteins  in  response  to  Hrb98DE  knockdown.  The  histogram  shows  the
frequency (y-axis) of p-values (x-axis) with (green) and without (blue) Benjamini-Hochberg



correction, respectively

As we do not correct for multiple testing in the proteomic data, we instead apply a more
stringent cut-off  to identify significantly changing proteins (p-value < 0.01, absolute fold-
change > 1.5) when compared to the identification of significant changes on the mRNA level
(BH corrected p-value < 0.05, absolute fold-change > 1.3). Please note also, that we also
find  differentially  expressed  protein  without  significant  change  in  mRNA if  an  even
detection criteria for significantly changing mRNA is considered. For example, if no fold-
change cut-off  is  applied  to  mRNA data  and the  threshold  for  identifying significant
changing mRNA is raised to BH corrected p-value < 0.1, we nevertheless identify 13
significantly changing protein without significant change on the level of mRNA.

We however notice the difficulty of comparing differentially regulated genes identified on
transcriptome and proteome level due to discrepancies in the sample size, effect size
and  significance  testing.  We  therefore  check  the  validity  of  our  results  by  visual
inspection of mRNA and protein changes and indeed confirm the existence of genes
with significant changes on protein level without changes on the level of mRNA (see
Figure 7C of the manuscript)

8) While the manuscript is clearly written the Figures need to be improved. Some
figures are cropped at the bottom (e.g. Fig.2B, Fig.4), some axis-label missing (Fig.
5).

We thank the reviewer for this valuable feedback, which we have used to improve figure
quality.



Reviewer #2 (Remarks to the Author):

General remarks

The  authors  have  investigated  the  mRNA-protein  relationship  during  Drosophila
embryogenesis using matching transcriptome and proteome data for 14 developmental time
points.  They observe that mRNA-protein correlations improve when considering delayed
time points and that further improvements can be obtained using mass-action type models
of translation and protein degradation. A notable discrepancy with a simple mass action
model  for  a  significant  fraction of  genes is  dues to the is  observed maternal-to-zygotic
transition  (MZT),  after  which  the  mass  action  models  capture  well  the  protein-mRNA
relation. Finally, the authors have stated that proteins belonging to different kinetic models
are enriched for different GO terms and their analysis has revealed RNA-binding protein
Hrb98DE to  be  a  post-transcriptional  regulator  of  genes  involved  in  sugar  metabolism,
which was validated by follow-up experiments.

1 ) Overall, this study did not delineate well its novelty.

Indeed,  the  biological  conclusions  of  the  authors  about  poor  mRNA-protein
correlations  and kinetic  models  providing  better  insights  about  their  relationship
have been reported before (Jovanovic et al. 2015, Peshkin et al. 2015). Hence the
most important  biological  message is already known.  Furthermore,  Peshkin et  al.
2015  had  generated  and  analysed  a  similar  data  for  Xenopus  and  also  reported
differences for eth MZT transition. Hence the biological insights are confined to the
fly community and to the RNA-binding protein Hrb98DE twist of the paper.

We thank the reviewer for his/her suggestion to better delineate the novelty of our work.
This helped us to improve the presentation of our results. We agree that previous studies
already used kinetic modeling of protein expression to gain better insights into the RNA-
protein relationship. Compared to these previous studies, we go several steps further and
describe  a  framework  for  the  systematic  discovery  of  post-transcriptional  regulation
mechanisms controlling a biological process of interest. Specifically, we quantify our model
fitting  results,  derive  specific  lists  of  proteins  predicted  to  be  under  post-transcriptional
control and make predictions about mechanisms fine-tuning their protein levels. The main
novelties of our approach are highlighted in bold below.



 
Our framework involves several steps, including state-of-the-art model rejection analyses

using χ
2
 and Durbin-Watson tests, by which we identify feasible model variants for each

protein. In response to the reviewers’ comments,  we now refined these methods in the
revision  by  testing  for  normality  in  the  residuals  (comment  20),  using  multiple-testing
correction by applying a parametric bootstrap strategy (comment 21). During the revision,
we  now  confirm  the  performance  of  such  model  rejection  analysis  using  in  silico
benchmarks (see comment #2). In contrast, previous studies mainly relied on qualitative
metrics such as the cosine distance (Peshkin et al.). Unlike earlier work, we proceed using
a likelihood ratio test for model selection to identify the most appropriate model variant for
each protein, thereby unequivocally assigning each protein to a certain class of regulation.
The resulting lists of proteins were then subjected to gene ontology and RBP sequence
motif  analyses  in  order  to:  (i)  discover  biological  processes  under  post-transcriptional
control and (ii) identify putative post-transcriptional regulators controlling large sets of target
genes.  We confirm the predictive  power of  our  framework by showing that  a  Hrb98DE
knockdown  leads  to  deregulation  at  the  level  of  protein  expression  and  splicing,  with
enriched effects at genes functioning in glucose metabolism.        
 
In our opinion, the biological insights are thus not simply confined to the fly community and
to  the RNA-binding protein  Hrb98DE twist  of  the  paper.  Instead,  our  work  describes  a
thorough quantitative analysis framework, that represents a blueprint for the discovery of
novel post-transcriptional regulation mechanisms. In response to comment #2 below, we
show that this framework is robust against experimental variation.

2)  Methodologically,  the  modeling  approach  has  not  been  compared  against
alternative existing approaches (eg Teo et al 2014, Peshkin et al. 2015) nor it has been
thoroughly benchmarked against simulations and independent data. Also, the model
is based on strong modelling assumptions (absolute vs relative concentrations), and
non-assessed assumptions important  for  statistical  testing (normality).  They were
also  errors  in  the  python  code.  Therefore,  the  modelling  itself  will  not  be  likely
reused.

Altogether,  I  recommend  rejection  of  the  paper.  It  would  need  re-working  of  the
model, a clear delineation of the contribution of this study to state-of-the-art rather
than  a  mere  referencing  (additional  important  references  are  Robles  et  al  PLoS
Genet, 2014, Cheng et al Mol Syst Biol 2016 and Lau et al., Nature comms, 2018.), and
the retargeting to a more specialized journal. I hope my detailed comments below will
help the authors to this end.

We agree with the reviewers’ criticism, and therefore decided to better  put  our  work in
context,  test  it  against  independent  benchmark  data  and  checked  several  model
assumptions. The results of these analyses are briefly summarized below:



We included an in silico benchmark, in which we simulated hundreds of time courses for
transcriptionally  and  post-transcriptionally  regulated  proteins  using  randomly  sampled
parameter  values.  We  add  noise  to  this in  silico data  and  then  use  our  model  fitting
framework to identify post-transcriptionally regulated proteins (Supplemental Text S3). At all
tested noise levels, we find an excellent precision (> 0.9) of our model-based classification,
implying that a protein will  most likely be regulated at the post-transcriptional  level  if  all
models have to be rejected. The recall was lower, but still significantly higher than picking
proteins  by  chance,  implying  that  we  did  not  identify  all  proteins  for  which  post-
transcriptional regulation was assumed in the simulation. Further analyses suggest that, in
many cases,  proteins with  simulated post-transcriptional  regulation can still  be fitted by
adjusting parameters in the production model, i.e., post-transcriptional regulation cannot be
unequivocally identified from the time courses. If we correct for such non-identifiability, we
obtain an excellent recall (> 0.99) at all noise levels. Taken together, our analysis suggests
that our framework reliably identified and rejected post-transcriptional regulation whenever
this kind of regulation leaves a unique footprint in a protein time course.

Given  these  high  precision  and  recall  values,  we  felt  it  is  no  absolute  requirement  to
compare our method against existing approaches and that  such analysis  is beyond the
scope  of  this  work.  This  decision  was  further  influenced  by  technical  difficulties:  The
publically available implementation of the time-discrete model to identify RNA- or protein-
level regulation (PECA) was not functional, even if provided example input files were used.
Unfortunately the developers of the package did not respond to our inquiry about possible
causes  for  this  non-functionality.  To  address  the  reviewers’  comment,  we  more  clearly
delineated the novelty of our work (see response to comment above),  and included the
suggested studies (Teo, Lau, Robbles, Cheng) in our Discussion. 

The reviewers’ concerns about modelling assumptions are addressed in response to more
detail  comments below:  For a discussion of the issue of absolute compared to relative
concentrations see comment #8. We further assessed normality of residuals (comment #
20) and checked for errors in the python code (comments #13-#17). The latter responses
demonstrate that our framework can very well be reused. 

Minor points

3. Abstract. “the direct correlation between mRNA levels and protein abundances is
moderate in most studies” Most studies are comparing steady-state conditions. For
steady-state data, using ODE would not help. Hence, the argument does not help for
“most studies”.

We agree with the reviewer that for steady-state data indeed ODE models would not be of



benefit.  This  is  why  we  explicitly  stated  in  the  last  sentence  of  the  Abstract  that  our
framework is suitable “for the identification of post-transcriptional gene regulation for large-
scale time-resolved mRNA and protein expression patterns”. Thus, we did not claim that our
approach is helpful for the analysis of steady state data.
 
To further  avoid confusion at  the begin of  the Abstract,  we now formulated the second
sentence more precisely as: “We asked whether the relation of mRNA and protein during a
dynamic developmental transition can be better explained by simple mathematical models
based on ordinary differential equations (ODEs) incorporating a temporal dimension.” We
did not change the first sentence, as our statement of a moderate mRNA-protein correlation
in most studies remains valid.

4. Abstract. “ODE models describing protein translation and degradation fit 81% of
mRNA-protein profiles” is unclear. One needs to read the paper to understand it. I
understand that no correction for multiple testing was done (see below).

We agree with the reviewer that the expression is open to misunderstanding and simplified
the terminology accordingly.

5.  The  discussion  of  the  correlation  of  present  RNA-seq  data  with  previously
published one is a bit lengthy and off the core topic of this paper. It could be made
more succinct.

We agree and shortened the corresponding paragraphs accordingly. 

6.  From  the  publication  and  website,  MISO  seems  to  only  estimate  isoform
distribution of genes with multiple isoforms (PSI). How did they get values for the
whole locus?   

Indeed  MISO  estimates  differential  splicing  of  individual  exons.  However,  most  genes
contain multiple exons. In order to determine differential splicing for the complete locus we
required at least one of the exons to significantly change upon knock down. We specifically
mention this in the revised version of our manuscript.

7.  The  iBAQ  quantification  has  been  developed  for  the  purpose  of  absolute
quantification. The authors should try with iBAQ instead of LFQ and report whether it
improves the results.

According to  comments  raised by  Reviewer #1 as  well  as  Reviewer #2,  we have now
checked the impact of using IBAQ quantification on the correlation of mRNA and protein.
Please refer  to  our  response to  comments  raised by  Reviewer  #1  for  a  more  detailed
discussion of this issue.



8. Since the protein and RNA quantifications are relative to each other,  the ODEs
assume that the total RNA mass and the total protein mass does not change over
time. Is that realistic? That assumption should be made explicit and discussed if not
assessed. Also RNA-seq protocol depletes for ribosomal RNAs.

This reviewer comment is related to major point 5 of reviewer #1 who suggested spike-in
controls  for  absolute  quantification.  In  fact,  we  did  not  express  mRNA and  protein  in
absolute molecule numbers, but in relative units as was done in previous related work (e.g.,
Daines et al., 2010; Graveley et al., 2011). Due to our normalization of mRNA and protein
counts by the total count at that time point it is possible that artificial fold-changes arise from
total mRNA or protein mass changes.
 
As discussed in our response to reviewer #1, we consider strong mass changes as unlikely:
At the mRNA level, we compared our RNASeq time courses to a recent medium-scale study
in  which  spike-in  standards  were  used  for  absolute  quantification  and  found  a  strong
correlation. At the protein level, a proteomics study compared expression around and after
MZT at the single-embryo level. The average fold-change over all  proteins was close to
zero, with strong increases and decreases in a few hundred zygotic and maternal proteins,
respectively.  Collectively,  these  observations  argue against  strong  shifts  in  global  gene
expression during embryonic development.
 
We  explicitly  discuss  our  assumption  in  the  revised  Discussion  and  mention  that  the
depletion of ribosomal RNAs might mask total RNA mass changes.

9.  Why were the  SR2+ data  analysed differently  (read mapping and counting,  no
isoform distribution estimation)?

  
The reviewer is correct that differences exist in the processing of the RNA-Seq data from full
embryos compared to S2R+ cells. This difference came as a result of minor modifications in our
data processing pipeline,  in  which the ‘featurecounts’ method was replaced by the updated
‘htseq-count’ method. Both methods however use equivalent quantification procedures of RNA
read counts, and have been applied using the same parameters. These minor differences in the
RNA-Seq processing pipeline therefore do not impact the overall result of our study. We clarify
this in the revised manuscript.
Concerning the isoform distribution, it is important to keep in mind that the S2R+ and  in vivo
samples were analyzed using different sequencing protocols (different read length). A longer
read length while sequencing allows for more reliable detection of splicing changes and was
used in the SR2+ Hrb98DE knockdown experiment (75bp), as this factor is known to control
alternative splicing at the post-transcriptional level. On the contrary, shorter read length allows
for higher throughput and was therefore used for the embryo dataset due to large number of



time points and replicates, at the expense of a comprehensive characterization of alternative
splicing. We clarify this in the revised manuscript (Section 5.7).

10. “In contrast to the Pearson correlation coefficient, Spearman correlation makes
no assumptions about normality of the data or linearity in the dependence of the
variables (de Sousa Abreu et al., 2009; Tobias Maier et al., 2009)”. The ref (de Sousa
Abreu et al., 2009; Tobias Maier et al., 2009) are not appropriate for this statement. It
is not their work but Spearman’s.

We thank the reviewer for pointing out this inaccuracy. Spearman is a very well established
measure of correlation and therefore decided to remove the previously mentioned citations.

11. “We included only significantly changing proteins (n = 866) to avoid that random
variations around the mean might mask existing trends between mRNA and protein”.
What  is  the  statistical  test  and  multiple  testing  procedure  applied?  Which
significance cutoff was used? The method refers back to Casas-Vila et al. Gen Res
2017. However, i) these informations are important to understand this paper so they
must  be  recapitulated  here  and  ii)  Casas-Vila  have  multiple  ways  of  selecting
differentially regulated proteins. I could not find one that had the same number (866)
than here.

Casas-Vila  et  al.  2017  found  1644  developmentally  regulated  protein  groups  in
embryogenesis, applying the statistical test described in the supplemental material within
(Casas-Vila et al. 2017). Since in our study we only consider proteins with a maximum of 4
missing measurements across the full time-course (NaN values), the overlap between these
two  sets  resulted  in  866  significantly  changing  proteins.  In  order  to  avoid  any  further
confusion about statistical testing, we have now adapted Figure 2A to include only proteins
which show high absolute fold changes (top 500) instead of using significantly changing
proteins.  This further allows for  a better  comparison between LFQ and iBAQ quantified
proteins. Results obtained by this strategy do not impact the overall conclusions obtained
from the previous approach based on statistical testing.

12. It is not the “heavy-side” function, but the “Heaviside” function, named after its
inventor.

We  thank  the  reviewer  for  noticing  this  error,  which  we  have  now  corrected  in  the
manuscript.

13. Equation (3) must be exp(-lambda*t) and not exp(lambda*t).

Indeed, Equation (3) in the manuscript was malformed and is now corrected. We appreciate



the  detail,  with  which  the  reviewer  inspected  our  manuscript  and  have  made  the
corresponding corrections. Also in response to multiple following comments, we additionally
provided a more extensive and point-by-point derivation of model equations, with the aim to
more clearly communicate our modelling approach (Supplemental Text S2).
14. Equation 4: h(-\tau) should be h(t-\tau)?

As the value of t in Equation (4) is equal to zero, indeed both expressions are correct. We
have now adapted the description of our modelling approach accordingly to clarify for this
potential misunderstanding. As mentioned before we also provide a point-by-point derivation
of model equations in Supplemental Text S2.

15. If Equation (4) is correct (I think it is up to point #12) then the python code line 29
and line 94, which calculates “c” in solve_modelD and in solve_modelC in the file
solve_model.py are wrong. This must be corrected and the analysis re-done.

Again we want to thank the reviewer for the detailed inspection of our manuscript together
with the supplied source code. Based on these comments, we have once again thoroughly
checked all equations and their implementation. Indeed, we discovered that Equation (4)
provided in the manuscript was badly formatted, while in the Python code the variable “c”
was calculated correctly. As mentioned before, we now provide a more detailed derivation of
model equations in Supplemental Text S2.

16. The code and Suppl Table 1 should be provided (I got them afterward)

We agree this critical information needs to be provided. Accordingly, we included it in the
revised manuscript.

17. According to the code, u(t) = mt + b is assumed in each interval. Hence interval
indices should be introduced for the slope and intercept for clarity.

We thank the reviewer for pointing out that introducing interval indices may increase the
clarity and reproducibility of model equations. Accordingly we have taken this into account
while providing a more detailed derivation of model equations in Supplemental Text S2.

18. How good does this model fit overall to the data? A global scatterplot must be
provided.

According to the reviewers’ comment we now provide global scatter plots of modeled vs
measured  protein  expression  in  Supplemental  Figure  S3.  Analyzing  all  four  proposed
models  and  the  genes  best  described  by  them,  we  find  that  the  Pearson  correlation
between modeled and measured protein expression is above 0.99. For mRNA/protein pairs
for which all four proposed models needed to be rejected, we made use of simulated protein



expression resulting from the best-fits of the ‘delay’-model (which contains most degrees of
freedom) and compared these values to the data. For proteins falling into the ‘rejected’
category, the Pearson correlation drops to a value of 0.92, demonstrating that even the
most complex model fails to fully describe these data.
19.  The  model  is  written  for  protein  and  RNA expression  in  the  natural  scale.
However, both for RNA and protein,  noise is typically multiplicative in the natural
scale.  Therefore,  the  fitting  can  suffer  from  heteroscedasticity,  whereby  high
expression data points, which also present largest noise, have strongest influence
on the fits. Is that the reasons why weighted least squares are used? If so, how the
weights are computed should be made clear.

Heteroscedasticity and the multiplicative nature of the noise can be accounted for by a
logarithmic data transformation or by assuming relative errors (which are proportional to the
mean signal). We used a linear model with a relative (but without absolute) error to describe
the relationship between noise levels and expression values. The estimated slope (0.17)
corresponds to 17% relative error which is used for weighted least squares. A similar error
model was also used when fitting other models describing RNA and protein dynamics, e.g.,
in the benchmark models for gene regulatory networks in the so-called DREAM challenges
(Steiert et al. 2012, Meyer et al. 2014). We appreciate the comment made by reviewer #2
and clarified the description of this part of analysis in the new version of our paper.

20. Normality assumption of the residuals is important for the chi-squared test.  A
quantile-quantile  plot  of  the  residual  must  be  provided.  If  Normality  is  not  met,
alternative non-parametric testing strategies must be investigated and applied (eg
Bootstrap of cases or of residuals). The same issue applies to the Durbin-Watson
test.

We agree that the assignment of mRNA-protein pairs to regulatory mechanisms may be
problematic  if normality is not met. For instance, non-normality (e.g. caused by outliers in
the data) might lead to rejecting basic mechanisms by the chi-squared test or by the Durbin-
Watson test. If all basic mechanisms would be rejected, we would consequently incorrectly
claim post-transcriptional  regulation. To address the reviewer comment,  we analyzed for
normality as explained in the following.

In 3007 out of 3761 mRNA/pairs the most complex delay model could not be rejected. As all
our models are nested (stationary < degradation <  production < delay), we expect only a
small  number of  models being rejected without  simultaneous rejection of  the ‘full’ delay
model. Indeed for only 52 mRNA-protein pairs, the delay model needed to be rejected while
other,  more  simple  models  remained  possible.  This  implies  that  the  set  of  post-
transcriptionally regulated proteins identified by model rejection analysis via the combined
chi-squared and Durbin-Watson test is to a large extent dependent only on the rejection of
the delay model.



To simplify the analysis, we therefore focused on analysis on the 3007 proteins explained by
the delay model in order to assess whether normality  assumptions of the residuals  are
fulfilled. We initially analyzed each time course fit individually and used the Shapiro-Wilk
test to assess for normality of residuals. Based on this criterion, in only 6.2% of all 3007
mRNA/protein pairs non-normality of the residuals was observed with a p-value of 0.05. As
a second analysis,  we more globally  analyzed the residuals  across all  time points  and
proteins together and plotted them as a  histogram which again indicated good agreement
with a normal distribution (Fig. 5, left). This conclusion is further supported  by an almost
linear quantile-quantile plot  which again indicates a close match of the distribution to the
standard normal distribution (Fig. 5, right).

Figure 5 - Histogram and Q-Q-Plot  of residuals over all time points and all 3007 proteins
fitted by the delay model indicate a close-to-normal  distribution.

We therefore conclude that for almost all mRNA/protein pairs the assumption of normality of
residuals  holds.  Non-normality  in  specific  cases  should  not  impact  the  overall  results
produced by our model  rejection approach. However,  in  order to prevent claiming post-
transcriptional regulation erroneously only due to outliers/non-normality, in the new version
of our manuscript, we applied more stringent model rejection criteria, in which nominal p-
values for chi-squared and Durbin-Watson test were further corrected for multiple testing
(see next paragraph).

21.  The cut-off  on type I  error was based on nominal  p-value (alpha = 0.05).  The
authors should consider multiple testing corrections.

According to the reviewers we have now considered multiple testing corrections for model
rejection  analysis.  Multiple  testing  is  usually  applied  to  reduce the  absolute  number  of
rejections (false positives), based on corrected p-values. P-values in the case of the chi-



squared test are readily available via the respective subroutine (scipy.stats.chi2), while this
was not the case for the Durbin-Watson test. In order to be able to correct for multiple
testing also for the Durbin-Watson test, we therefore implemented a parametric bootstrap
procedure  (n=1000)  from  which  p-values  can  be  calculated  based  on  the  empirical
distribution. For both test criteria, obtained by the parametric bootstrap approach, p-values
were then corrected using Benjamini-Hochberg correction. 

For a more stringent significance threshold - e.g. when applying multiple testing correction -
one would expect a lesser number of proteins for which all model variants have to rejected.
In  accordance with  this  expectation,  after  multiple  testing  correction less  mRNA/protein
pairs are classified as post-transcriptionally regulated after applying multiple-testing criteria
(16% pt-regulated, as opposed to 19% in the previous analysis). We therefore believe that
the  updated  list  contains  putative  post-transcriptionally  regulated  proteins  of   higher
confidence when compared to the previous list. The overall distribution of the remaining not-
rejected mRNA/protein pairs across the different model classes remains similar.

The  revised  manuscript  was  updated  according  to  these  refined  classification  results.
Subsequent analysis steps (e.g., GO term and motif enrichment analysis) which were based
on the classification of mRNA/protein pairs have been updated as well, without any major
changes in the conclusions drawn.

22. The initial value y0 should be fitted rather than forced to be equal to the first
measurement value. The reason is that every measured values entail noise. Errors in
y0  propagate  to  all  data  points.  They  may  also  be  a  strong  driver  of  the  anti-
correlation seen in Fig 4B.

As stated in the results section of our original  Manuscript,  the value of y0 is estimated
together with other model parameters instead of being equal to the first measurement value.
We thank  the  reviewer  for  pointing  out  this  potential  miscommunication  and have now
provided a more comprehensive summary of model formulations together with details on
parameter estimation (Supplementary Text S2).

23. Fig 4B should be backed by independent measures. For instance, by comparing
half-lives from other measurements of protein half-life and scatter plotting. Also, the
anti-correlation might be a statistical artefact (correlation of estimation errors). One
way to address this issue is to check that the trend holds when production rates and
half-lives are estimated from independent subsets of the data (e.g. using the odd data
points for production and the even data points for half-life).

We carried out the proposed cross-validation, and found that the correlation in Fig. 4B is no
longer visible if production and degradation are estimated independently. Hence we agree
with the reviewer that this may be an artifact of parameter correlations in the model and



have therefore removed the corresponding paragraph from our manuscript, as this was not
a  major  result  of  our  work.  Accordingly,  the  comparison  to  independent  half-life
measurements was also obsolete.

Reviewer #3 (Remarks to the Author):

This  paper  is  a  treasure  trove  of  new  information  that  should  stimulate  much
productive further investigation. The most important point - for this reviewer - is the
demonstration that the poor correlation between transcript and protein titers can, in a
majority  of  cases,  be explained without  resort  to idiosyncratic  (i.e.  gene-specific)
post-transcriptional  regulation.  The  authors  show  that  relatively  simple  models
containing  delays  and  accounting  for  protein  degradation  do  the  trick.  The
robustness of the allocation of various genes to these separate models might have
been  strengthened  by  additional  Monte  Carlo  simulations,  but  I  consider  that  a
quibble; the particular assignments aren't the great take-away lesson. The success in
reconciling the majority of the cases is -- and that result should stimulate much new
work by the authors and by others.
The HRB98DE results I count as an additional bonus. They are persuasive and, again,
I think they will stimulate others to try to do similar things.
The manuscript is well written. A few figure legends could have been clearer, but they
can be worked out.

We thank the reviewer for supporting our work and for his/her constructive criticism. In order
to address the comments, we reworked the figure legends and tested our model selection
using  an in  silico  benchmark,  in  which assumed different  types  of  (post-)transcriptional
regulation and randomly sampled model parameters as suggested (see new Supplemental
Text S3). In addition, we improve the identification of post-transcriptional regulation using a
parametric bootstrap approach and adjust by multiple testing procedures.
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REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
I appreciate the efforts made by the author to generally address my comments in a 
definitely improved version of the manuscript. I also appreciate the efforts to validate in 
vivo the role of HRB98D during embryo development and I understand the technical 
difficulties that prevented the authors to perform a deeper analysis. However, my 
concerns remain regarding their claim of having validated the role of HRB98D in post-
transcriptional regulation of sugar metabolism in early embryogenesis. Their claim is 
currently based on two pieces of evidence:  
 
- (i) the overlap between proteins affected by HRB98D knockdown in vivo and the 
proteins that they define as post-transcriptionally regulated during embryogenesis 
(‘rejected’). They show this overlap in Figure 7A and they express it in term of ‘% of 
differentially expressed’ proteins. If I read the graph correctly, this means that a bit 
more than 5% of the proteins affected by HRB98D knockdown where classified as 
‘rejected’, and thus post-transcriptionally regulated, by their models. This equals to 5% 
of the 75 proteins that they found to be differential expressed upon HRB98D 
knockdown, which means 4 proteins!! If my interpretation is correct, the authors must 
indicate that although significant by hypergeometric test, their statement is based only 
on 4 proteins. This should be indicated in the main text as well as in Figure 7A. 
Additionally, for transparency, the authors should test the overlap also with other 
categories of proteins (‘stationary’, ‘degradation’, ‘production’, etc…) and display it as 
additional bars in the same plot. This of course should also be applied to Figure S6C.  
 
- (ii) the knockdown experiment performed in SR2+ cells, where they achieved much 
higher knockdown efficiency. Despite the higher knockdown efficiency, they found again 
very few proteins affected in their abundance (only 40), which is a bit surprising for a 
supposed post-transcriptional regulator of protein abundance. Surprisingly, in this case 
they did not check the overlap with the ‘rejected’ proteins. The authors should test this 
and report the result even if negative. Finally, because of a substantial lack of signal at 
the protein level, the authors resort in checking for alternative splicing events and 
indeed found among the affected genes some involved in glucose metabolism, and some 
that overlap (13 out of 40) with significantly affected proteins. Although this is 
reassuring to see, I do not appreciate the novelty of the finding since the mammalian 
homologue of HRB98D is a well known splicing factor, see for example: 
https://www.ncbi.nlm.nih.gov/pubmed/1531115 
https://www.ncbi.nlm.nih.gov/pubmed/23863836  
 
In summary, I believe that the validation experiments are still very weak and the 
authors should at minimum include the changes that I suggested above to improve 
transparency, and drastically down tone their statements regarding validation both in 
the abstract and at the end of the result paragraph where they state:  
 
In summary, the identification of post-transcriptionally regulated genes together with 
the subsequent bioinformatic analysis suggested post-transcriptional regulation of 
glucose metabolism by the RBP Hrb98DE, which we were able to confirm 
experimentally.  
 
There are also a couple of imprecisions and mistakes that should be corrected 
throughout the manuscript (here two examples, but there might be more):  
 
- Figure 4, the legend states ‘Left’ mRpL23 while the plot show su(Hw);  
- Page 14, This agrees with previous evidence showing post-transcriptional control of 



genes functioning in glucose metabolism (Robles et al., 2014). It is not clear in which 
context, please specify.  
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The manuscript has improved. The model is now much better explained and statistically 
justified. All my points have been addressed with satisfaction.  
 
Regarding the impact, the second sentence of the abstract remains very misleading: 
“We asked whether the relation of mRNA and protein during a dynamic developmental 
transition can be better explained by simple mathematical models based on ordinary 
differential equations (ODEs) incorporating a temporal dimension.”, which is a 
fundamental question – but already answered. As the authors replied to my point #1, 
the actual novelty is the follow-up step to detect known post-transcriptional regulatory 
elements enriched in some gene class (using some standard tool). The authors argue 
that ODE modeling is done now with greater care than previous papers, but these are no 
significant conceptual advances.  
 
The abstract and introduction should be articulated around the actual novelty. Some 
better version of “The role of post-transcriptional regulation play in development 
remains poorly understood. To detect such regulation, we propose to detect genes with 
apparent strong post-transcriptional regulation by jointly modeling RNA and protein 
time series and search these genes for enriched RBP motifs. Applying this approach to D. 
mel. we discovered…”. A paper title along these lines would also be helpful.  
 
Moreover, I also think that to avoid confusions, the delineation with the state of the art, 
as motivation for the present work, belongs to the introduction (comparison with Teo, 
Lau, Robbles, Cheng) and not to discussion.  
 
It will then be acceptable. I leave the appreciation of the relevance for the nature 
communication readership to the editors.  



Response to reviewers comments 

Reviewer #1 (Remarks to the Author): 
 

I appreciate the efforts made by the author to generally address my comments in a definitely 

improved version of the manuscript. I also appreciate the efforts to validate in vivo the role of 

HRB98D during embryo development and I understand the technical difficulties that prevented the 

authors to perform a deeper analysis. However, my concerns remain regarding their claim of 

having validated the role of HRB98D in post-transcriptional regulation of sugar metabolism in early 

embryogenesis. Their claim is currently based on two pieces of evidence: 

 

- (i) the overlap between proteins affected by HRB98D knockdown in vivo and the proteins that 

they define as post-transcriptionally regulated during embryogenesis (‘rejected’). They show this 

overlap in Figure 7A and they express it in term of ‘% of differentially expressed’ proteins. If I read 

the graph correctly, this means that a bit more than 5% of the proteins affected by HRB98D 

knockdown where classified as ‘rejected’, and thus post-transcriptionally regulated, by their 

models. This equals to 5% of the 75 proteins that they found to be differential expressed upon 

HRB98D knockdown, which means 4 proteins!! If my interpretation is correct, the authors must 

indicate that although significant by hypergeometric test, their statement is based only on 4 

proteins. This should be indicated in the main text as well as in Figure 7A. Additionally, for 

transparency, the authors should test the overlap also with other categories of proteins 

(‘stationary’, ‘degradation’, ‘production’, etc…) and display it as additional bars in the same plot. 

This of course should also be applied to Figure S6C. 

 

We apologize that our previous presentation of these results might have been misleading: 

Figure 7A (and Figure S6C) shows the percentage of differentially expressed genes within 

the the set of post-transcriptionally regulated genes (compared to background genes as 

well as the set of Hrb98DE targets). 
In the case of KD2, the figure therefore indicates that 5.3% of 456 putative post-

transcriptionally regulated genes are differentially expressed, compared to only 3.0% of 

differentially expressed genes in the set of background genes. In explicit numbers, this 

relates to 24 observed differentially expressed genes within the set of post-transcriptionally 

regulated genes compared to a number of 13.26 expected genes. Hence, the significant p-

value of 1.6e-3 (hypergeometric test). We have now modified these figures to avoid 

confusion and have implemented the suggestion from the reviewer to include all models in 

Figure 7A (and Figure S6C). 

 

- (ii) the knockdown experiment performed in SR2+ cells, where they achieved much higher 

knockdown efficiency. Despite the higher knockdown efficiency, they found again very few proteins 



affected in their abundance (only 40), which is a bit surprising for a supposed post-transcriptional 

regulator of protein abundance. Surprisingly, in this case they did not check the overlap with the 

‘rejected’ proteins. The authors should test this and report the result even if negative. Finally, 

because of a substantial lack of signal at the protein level, the authors resort in checking for 

alternative splicing events and indeed found among the affected genes some involved in glucose 

metabolism, and some that overlap (13 out of 40) with significantly affected proteins. Although this 

is reassuring to see, I do not appreciate the novelty of the finding since the mammalian homologue 

of HRB98D is a well known splicing factor, see for example: 

https://www.ncbi.nlm.nih.gov/pubmed/1531115 

https://www.ncbi.nlm.nih.gov/pubmed/23863836 
 

We performed now the statistical tests for overlap between differentially changing proteins 

and differentially spliced genes to the group of rejected proteins. We do not find find any 

overlap and mention this result in the manuscript. 

 

In summary, I believe that the validation experiments are still very weak and the authors should at 

minimum include the changes that I suggested above to improve transparency, and drastically 

down tone their statements regarding validation both in the abstract and at the end of the result 

paragraph where they state: 

In summary, the identification of post-transcriptionally regulated genes together with the 

subsequent bioinformatic analysis suggested post-transcriptional regulation of glucose metabolism 

by the RBP Hrb98DE, which we were able to confirm experimentally. 
 

As suggested by the reviewer we rephrased parts of the manuscript to eliminate 

overstatements. 

 

There are also a couple of imprecisions and mistakes that should be corrected throughout the 

manuscript (here two examples, but there might be more): 

- Figure 4, the legend states ‘Left’ mRpL23 while the plot show su(Hw); 
 

We thank the reviewer for this information and have corrected the error. 

 

- Page 14, This agrees with previous evidence showing post-transcriptional control of genes 

functioning in glucose metabolism (Robles et al., 2014). It is not clear in which context, please 

specify. 

 

We removed this statement in the process of shortening the MS. 



Reviewer #2 (Remarks to the Author): 
 

The manuscript has improved. The model is now much better explained and statistically justified. 

All my points have been addressed with satisfaction. 

 

We thank the reviewer for the previous helpful comments and agree that they did improve 

the manuscript. 

 

Regarding the impact, the second sentence of the abstract remains very misleading: “We asked 

whether the relation of mRNA and protein during a dynamic developmental transition can be better 

explained by simple mathematical models based on ordinary differential equations (ODEs) 

incorporating a temporal dimension.”, which is a fundamental question – but already answered. As 

the authors replied to my point #1, the actual novelty is the follow-up step to detect known post-

transcriptional regulatory elements enriched in some gene class (using some standard tool). The 

authors argue that ODE modeling is done now with greater care than previous papers, but these 

are no significant conceptual advances. 

 

To avoid this putative overstatement, we have reformulated the beginning of the abstract 

and dropped this sentence completely. 

 

The abstract and introduction should be articulated around the actual novelty. Some better version 

of “The role of post-transcriptional regulation play in development remains poorly understood. To 

detect such regulation, we propose to detect genes with apparent strong post-transcriptional 

regulation by jointly modeling RNA and protein time series and search these genes for enriched 

RBP motifs. Applying this approach to D. mel. we discovered…”. A paper title along these lines 

would also be helpful. 

 

We thank the reviewer for the suggestion and modified our abstract along these lines. We 

furthermore accepted the title changes provided by the editor. 

 

Moreover, I also think that to avoid confusions, the delineation with the state of the art, as 

motivation for the present work, belongs to the introduction (comparison with Teo, Lau, Robbles, 

Cheng) and not to discussion. 
 

As suggested by the reviewer, we moved this part to the Introduction. 

 

It will then be acceptable. I leave the appreciation of the relevance for the nature communication 

readership to the editors. 
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