Supporting Information

Cu-Catalyzed Decarboxylative Borylation

Jie Wang^{†,[a]}, Ming Shang^{†,[a]}, Helena Lundberg^[a], Karla S. Feu^[a], Scott J. Hecker^[b], Tian Qin^[a], Donna G. Blackmond^{*[a]} and Phil S. Baran^{*[a]}

[a] The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, California, 92037, United States.
E-mail: <u>blackmon@scripps.edu</u>; <u>blaran@scripps.edu</u>
[b] The Medicines Company, 3013 Science Park Road, San Diego, California, 92121, United States.

[†] These authors contributed equally.

Table of Contents

General Experimental	S7
Handling of Cu Catalysts	S7
Synthesis of Redox-Active Esters	S8
General Procedure A	S8
Optimization Details	S10
Cu-Catalyzed Decarboxylative Borylation of Redox-Active Ester	S13
General Procedure B	S13
Graphical Supporting Information for General Procedure B	S14
One-pot Cu-Catalyzed Decarboxylative Borylation from Carboxylic Acid	S19
General Procedure C	S19
Graphical Supporting Information for General Procedure C	S20
Gram-Scale Cu-Catalyzed Decarboxylative Borylation of Redox-Active Ester	S25
General Procedure D	S25
Graphical Supporting Information for General Procedure D	S26
Troubleshooting: Frequently Asked Questions	S29
Experimental Procedures and Characterization Data for Redox-Active Esters	S33
Compound S26	S33
Compound S27	S33
Compound S28	S34
Compound S29	S34
Compound S30	S35
Compound S31	S35
Compound S32	S36
Compound S33	S36
Compound S34	S37
Compound 45	S37
Experimental Procedures and Characterization Data for Borylation Products	S39
Compound 2	S39
Compound 6	S39
Compound 11	S40
Compound 12	S40
Compound 13	S41
Compound 14	S41
Compound 15	S42

Compound 16	S42
Compound 17	
Compound 18	
Compound 19	
Compound 20	S44
Compound 21	S44
Compound 22	
Compound 23	
Compound 24	S46
Compound 25	S46
Compound 26	
Compound 27	
Compound 28	S48
Compound 29	S48
Compound 30	S49
Compound 31	S49
Compound 32	
Compound 33	
Compound 34	
Compound 35	
Compound 36	
Compound 37	
Compound 38	
Compound 39	
Compound 40	
Compound 41	
Compound 42	
Compound 48	
Mixture 49	
X-Ray Crystallographic Data for Compound 35	
Unsuccessful or Challenging Substrates	S69
Cost Calculations	
Price and Vendor of Reagents	
Cost Comparison	
Kinetic Studies	
General Method for Kinetic Studies	

Analysis	
Results	
References	
NMR Spectra	
Compound S26 ¹ H NMR	
Compound S26 ¹³ C NMR	
Compound S26 ¹⁹ F NMR	
Compound S27 ¹ H NMR	
Compound S27 ¹³ C NMR	
Compound S28 ¹ H NMR	
Compound S28 ¹³ C NMR	S84
Compound S29 ¹ H NMR	
Compound S29 ¹³ C NMR	S86
Compound S30 ¹ H NMR	
Compound S30 ¹³ C NMR	
Compound S31 ¹ H NMR	
Compound S31 ¹³ C NMR	
Compound S32 ¹ H NMR	
Compound S32 ¹³ C NMR	
Compound S33 ¹ H NMR	
Compound S33 ¹³ C NMR	
Compound S34 ¹ H NMR	
Compound S34 ¹³ C NMR	S96
Compound 45 ¹ H NMR	
Compound 45 ¹³ C NMR	
Compound 2 ¹ H NMR	S99
Compound 2 ¹³ C NMR	
Compound 6 1 H NMR	S101
Compound 6 ¹³ C NMR	
Compound 11 ¹ H NMR	
Compound 11 ¹³ C NMR	S104
Compound 12 ¹ H NMR	
Compound 12 ¹³ C NMR	S106
Compound 13 ¹ H NMR	
Compound 13 ¹³ C NMR	S108
Compound 13 ¹⁹ F NMR	

Compound 14 ¹ H NMR	S110
Compound 14 ¹³ C NMR	S111
Compound 15 ¹ H NMR	S112
Compound 15 ¹³ C NMR	S113
Compound 16 ¹ H NMR	S114
Compound 16 ¹³ C NMR	S115
Compound 17 ¹ H NMR	S116
Compound 17 ¹³ C NMR	S117
Compound 18 ¹ H NMR	S118
Compound 18 ¹³ C NMR	S119
Compound 19 ¹ H NMR	S120
Compound 19 ¹³ C NMR	S121
Compound 20 ¹ H NMR	S122
Compound 20 ¹³ C NMR	S123
Compound 21 ¹ H NMR	S124
Compound 21 ¹³ C NMR	S125
Compound 22 ¹ H NMR	S126
Compound 22 ¹³ C NMR	S127
Compound 23 ¹ H NMR	S128
Compound 23 ¹³ C NMR	S129
Compound 23 ¹⁹ F NMR	S130
Compound 24 ¹ H NMR	S131
Compound 24 ¹³ C NMR	S132
Compound 25 ¹ H NMR	S133
Compound 25 ¹³ C NMR	S134
Compound 26 ¹ H NMR	S135
Compound 26 ¹³ C NMR	S136
Compound 27 ¹ H NMR	S137
Compound 27 ¹³ C NMR	S138
Compound 28 ¹ H NMR	S139
Compound 28 ¹³ C NMR	S140
Compound 29 ¹ H NMR	S141
Compound 29 ¹³ C NMR	S142
Compound 30 ¹ H NMR	S143
Compound 30 ¹³ C NMR	S144
Compound 31 ¹ H NMR	S145

Compound 31 ¹³ C NMR	S146
Compound 32 ¹ H NMR	S147
Compound 32 ¹³ C NMR	S148
Compound 33 ¹ H NMR	S149
Compound 33 ¹³ C NMR	
Compound 34 ¹ H NMR	
Compound 34 ¹³ C NMR	
Compound 35 ¹ H NMR	
Compound 35 ¹³ C NMR	
Compound 36 ¹ H NMR	
Compound 36 ¹³ C NMR	S156
Compound 36 ¹⁹ F NMR	
Compound 37 ¹ H NMR	S158
Compound 37 ¹³ C NMR	S159
Compound 38 ¹ H NMR	S160
Compound 38 ¹³ C NMR	S161
Compound 39 ¹ H NMR	S162
Compound 39 ¹³ C NMR	S163
Compound 40 ¹ H NMR	S164
Compound 40 ¹³ C NMR	S165
Compound 41 ¹ H NMR	S166
Compound 41 ¹³ C NMR	S167
Compound 42 ¹ H NMR	S168
Compound 42 ¹³ C NMR	S169
Compound 48 ¹ H NMR	S170
Compound 48 ¹³ C NMR	S171
Mixture 49 ¹ H NMR	S172
Mixture 49 ¹³ C NMR	

General Experimental

Tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), N,N-dimethylformamide (DMF), and acetonitrile (CH₃CN) were obtained by passing the previously degassed solvents through an activated alumina column. N-hydroxyphthalimide (>98%) was purchase from Alfa Aesar (catalog # A13862). DIC (N,N'-diisopropylcarbodiimide) was purchased from Oakwood. Cu(acac)₂ was purchased from Aldrich (catalog # 51,436-5). MgCl₂ (<200 µm) was purchased from Sigma-Aldrich (lot # MKBX9508V). B₂pin₂ was purchased from Oakwood Chemical (catalog # 019250). LiOH•H₂O was purchased from Sigma-Aldrich and grinded to floppy powder prior to use. All the other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous material. TLC was performed on 0.25 mm E. Merck silica plates (60F-254), using short-wave UV light as the visualizing agent, and cerium ammonium molybdate (CAM) or KMnO₄ and heat as developing agents. NMR spectra were recorded on Bruker DRX-600, DRX-500, and AMX-400 instruments and are calibrated using residual undeuterated solvent (CHCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet, br = broad. Column chromatography was performed using E. Merck silica gel (60, particle size 0.043–0.063 mm). High-resolution mass spectra (HRMS) were recorded on Waters LC with G2-XS TOF mass spectrometer by electrospray ionization time of flight reflectron experiments. GCMS (EI) was recorded on Agilent 7820A GC systems and 5975 Series MSD. Melting points were recorded on a Fisher-Johns 12-144 melting point apparatus and are uncorrected.

Handling of Cu Catalysts

All Cu catalysts were handled open to air on the bench top, and the bottles were neither flame dried nor stored under inert atmosphere.

Synthesis of Redox-Active Esters

General Procedure A

Redox-active esters were prepared according to the previously reported procedure^{1,2}. In short, a round-bottom flask or culture tube equipped with a stir bar was charged with carboxylic acid (1.0 equiv), *N*-hydroxy-phthalimide (1.1 equiv) and DMAP (0 – 0.1 equiv). Dichloromethane was added (0.1 – 0.5 M) followed by DIC (1.1 equiv), and the mixture was allowed to stir vigorously for 0.5 - 2 hours. The mixture was filtered (over Celite, SiO₂, or through a fritted funnel) and rinsed with additional CH₂Cl₂/Et₂O. The solvent was removed under reduced pressure, and purification by column chromatography (and recrystallization, if necessary) afforded the corresponding redox-active ester.

Redox-active esters shown below (5, S1 - S25) were reported in literature¹⁻⁸. Please see these references for characterization as well as graphical supporting information^{1,2} for the synthesis of redox-active esters.

Figure S1. Known redox-active esters.

Figure S1. Known redox-active esters (continued).

New redox-active esters synthesized according to General Procedure A are listed below.

Figure S2. New redox-active esters.

Optimization Details

All optimization reactions were carried out on 0.1 mmol scale. LiOH•H₂O was grinded to floppy powder prior to use. The crude reaction mixture was analyzed by GC/FID with dodecane as internal standards.

Evaluation of different metals

Table SL Evaluation of different i	S1. Evaluation of different metals.
---	--

Entry	Conditions	Yield
1	NiCl ₂ •H ₂ O, diOMe-bipy (13 mol%), MeLi (1.5 equiv), MgBr ₂ •Et ₂ O (1.5 equiv)	43%
2	MnBr ₂ (5 mol%), TMEDA (20 mol%), EtMgBr (1.5 equiv), DME	6%
3	FeBr ₂ (10 mol%), MgBr ₂ •Et ₂ O (1.5 equiv), tBuLi (1.5 equiv), THF	trace
4	CuTc/ditBu-bipy/Pcy ₃ (10/10/10 mol%), tBuOLi (1.5 equiv), THF/NMP	0
5	CuTc/ditBu-bipy/PPh ₃ (10/10/10 mol%), tBuOLi (1.5 equiv), THF/NMP	0
6	Cul/PPh ₃ (10/10 mol%), <i>t</i> BuOLi (1.5 equiv), THF	0
7	CuI/tBubipy (10/10 mol%), tBuOLi (1.5 equiv), MgBr ₂ •Et ₂ O (0.2 equiv), THF	11%
8	CuI/ditBu-bipy (10/10 mol%), tBuOLi (1.5 equiv), THF	13%

Evaluation of Cu sources and solvents

Table S2. Evaluation of Cu sources and solvents.

Entry	Cu [w/ THF/DMF (4/1)]	Yield	Entry	Solvent [w/ Cu(OAc) ₂]	Yield
1	CuCl	12%	1	THF only	11%
2	CuBr	9%	2	THF/DMA 4/1	10%
3	CuCN	trace	3	THF/NMP 4/1	11%
4	Cu(MeCN) ₄ PF ₆	8%	4	THF/NMP 9/1	18%
5	CuCl ₂	11%	5	THF/MeCN 4/1	11%
6	CuCl ₂ •H ₂ O	19%	6	dioxane/DMF 4/1	24%
7	CuBr ₂	9%	7	glyme/DMF 4/1	20%
8	CuF_2	0	8	DMF only	5%
9	CuSO ₄ •5H ₂ O	Trace			
10	Cu(OAc) ₂	19%			

Evaluation of bases

Table S3. Evaluation of bases.

Entry	Base	Yield
1	tBuOLi (1.5 equiv)	25%
2	MeOLi (in MeOH, 1.5 equiv)	<5%
3	MeONa	0
4	EtONa	0
5	<i>t</i> BuONa	0
6	tBuOK	0
7	K_2CO_3	0
8	<i>t</i> BuOLi (old bottle, 4.0 equiv), MgBr ₂ •Et ₂ O (0.2 equiv)	40%
9	<i>t</i> BuOLi (new bottle, 4.0 equiv), MgBr ₂ •Et ₂ O (0.2 equiv)	29%
10	<i>t</i> BuOLi (in THF, 4.0 equiv), MgBr ₂ •Et ₂ O (0.2 equiv)	30%
11	LiOH (4.0 equiv), MgBr ₂ •Et ₂ O (0.2 equiv)	47%
12	LiOH•H ₂ O (4.0 equiv), MgBr ₂ •Et ₂ O (0.2 equiv)	48%

Evaluation of Cu/ligand

Table S4. Eval	uation of	Cu/ligand.
----------------	-----------	------------

Entry	Cu/ligand	Yield	
1	Cu(OAc) ₂ /ditBu-bipy/PPh ₃ (10/10/10 mol%)	35%	
2	Cu(OAc) ₂ /ditBu-bipy/PCy ₃ (10/10/10 mol%)	35%	
3	Cu(OAc) ₂ /di <i>t</i> Bu-bipy/PCy ₃ •HBF ₄ (10/10/10 mol%)	34%	
4	Cu(OAc) ₂ /ditBu-bipy/dppe (10/10/10 mol%)	19%	R
5	$Cu(OAc)_2/dppe (10/10 mol\%)$	34%	$\rightarrow 0$
6	Cu(OAc) ₂ /dppe (10/15 mol%)	16%	
7	Cu(OAc) ₂ /dppe (10/20 mol%)	trace)_o_°°```o=(
8	Cu(acac) ₂ (10 mol%)	47%	R_2
9	L1 , $R_1 = R_2 = tBu$ (10 mol%)	45%	L1
10	L1, $R_1 = R_2 = iPr (10 \text{ mol}\%)$	35%	
11	L1 , $R_1 = R_2 = Ph (10 \text{ mol}\%)$	45%	
12	L1, R_1 , $R_2 = tBu$, Me (10 mol%)	48%	
13	L1 , $R_1 = R_2 = CF_3$ (10 mol%)	31%	
14	L1, R_1 , $R_2 = tBu$, CF_3 (10 mol%)	30%	

Evaluation of equivalents and additives

Cu/ligands and additives

Table S5. Cu/ligands and additives.

Entry	Conditions	Yield
1	Cu(OAc) ₂ /ditBu-bipy (10/10 mol%)	62%
2	$Cu(acac)_2$ (10 mol%)	51%
3	Cu(acac) ₂ (20 mol%)	62%
4	$Cu(acac)_2$ (30 mol%)	63%
5	$Cu(acac)_2$ (20 mol%), additive H ₂ O (50 µL, 28 equiv)	59%
6	$Cu(acac)_2$ (20 mol%), additive <i>t</i> BuOLi (2 equiv)	60%
7	$Cu(acac)_2$ (10 mol%), CuCl (10 mol%)	59%
8	$Cu(acac)_2$ (10 mol%), $Cu(OAc)_2$ (10 mol%)	50%
9	Cu(acac) ₂ (10 mol%), Cu(ClO ₄) ₂ •6H ₂ O (10 mol%)	48%
10	Cu(acac) ₂ /CuCl/ditBu-bipy (10/10/10 mol%)	59%
11	Cu(acac) ₂ /Cu(OAc) ₂ /ditBu-bipy (10/10/10 mol%)	59%

Magnesium sources

Table S6. Magnesium sources.

Entry	Instead of MgBr ₂ •Et ₂ O (w/ 20 mol% Cu(acac) ₂)	Yield
1	$MgCl_2$	61%
2	$Mg(OTf)_2$	19%
3	$Mg(ClO_4)_2$	12%
4	MgO	trace
5	Mg(OAc) ₂ •4H ₂ O	24%

Final conditions and deviations

Table S7. Final conditions and deviations.

Entry	With Cu(acac) ₂ (20 mol%)	Yield
1	LiOH•H ₂ O (15 equiv), MgBr ₂ •Et ₂ O (0.8 equiv)	69%
2	LiOH•H ₂ O (20 equiv), MgBr ₂ •Et ₂ O (0.8 equiv)	69%
3	LiOH•H ₂ O (30 equiv), MgBr ₂ •Et ₂ O (0.8 equiv)	67%
4	LiOH•H ₂ O (15 equiv), MgCl ₂ (1.5 equiv), dioxane/DMF 4/1	69%
5	Same as entry 4 with Cu(acac) ₂ (30 mol%), B ₂ pin ₂ (3.0 equiv)	86%
6	Same as entry 5, LiOH•H ₂ O not grinded	66%

Cu-Catalyzed Decarboxylative Borylation of Redox-Active Ester

$\begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\ 1.0 \\ equiv \end{array} \qquad \begin{array}{c} M_{e} \\ M_{e} \\ M_{e} \\ M_{e} \\ 1.0 \\ equiv \end{array} \qquad \begin{array}{c} M_{e} \\ M_{e}$

To a 15 mL culture tube equipped with a stir bar were added redox-active ester (1.0 equiv), B_2pin_2 (3.0 equiv), LiOH•H₂O (15 equiv), Cu(acac)₂ (30 mol%) and MgCl₂ (1.5 equiv). The tube was evacuated and backfilled with argon for 3 times. Degassed dioxane/DMF (6:1 – 1:2 ratio, 0.14 M) was added and the resulting mixture was stirred under 1000 rpm at RT until dark brown color was observed (typical reaction time < 10 min). The reaction mixture was diluted with Et₂O or EtOAc (7 mL for 0.2 mmol scale) and saturated NH₄Cl (7 mL for 0.2 mmol scale), and the resulting mixture was shaken vigorously until getting a clear biphasic solution. The organic phase was collected and dried over anhydrous Na₂SO₄, evaporated and purified by silica gel chromatography to afford the desired product.

Notes:

General Procedure B

- 1. LiOH•H₂O was grinded to floppy powder prior to use, otherwise lower yield was observed (see entry 6 vs entry 5 in the last optimization table).
- 2. Substrates 29 and 33 were obtained using MTBE/DMF = 6/1 as solvent.
- 3. All the primary substrates use dioxane/DMF = 4/1 as solvent.
- 4. Dioxane/DMF ratio used for secondary substrates varied from 6/1 to 1/2.
- For cases that the borylation product is close to B₂pin₂ on TLC and difficult to separate: upon completion, the reaction mixture was diluted with EtOAc and bubbled with air until green color was observed (typically < 3 min). Excess B₂pin₂ could be consumed this way.
- 6. For cases that the borylation product is close to phthalimide (PhthH) on TLC and difficult to separate: upon completion, the reaction mixture was diluted with EtOAc and washed with NH₄Cl followed by K₂CO₃ (10% aq). PhthH could be washed away by K₂CO₃.

Graphical Supporting Information for General Procedure B

$MeO_{2}C^{+}(+) + We^{+}(+) + We^{+}(+)$

Cu-Catalyzed Borylation Reaction:

(Left) DMF and dioxane. (Right) Reagents used in this reaction.

(Left) DMF (1 mL). (Center) Dioxane (4 mL). (Right) The mixed solvents were evacuated and backfilled with argon for twice.

(Left) RAE 5 (0.2 mmol, 1.0 equiv). (Center) B₂pin₂ (3.0 equiv). (Right) LiOH•H₂O (15 equiv).

(Left) $Cu(acac)_2$ (30 mol%). (Center) $MgCl_2$ (1.5 equiv). (Right) Put all the five materials into a 15 mL culture tube equipped with a stir bar.

(Left) The tube was evacuated and backfilled with argon for three times. (Right) Dioxane/DMF (4:1, 1.4 mL) was added.

(Above) After addition of solvent, the color change was recorded. The reaction was done (4'08") when dark brown color was observed.

(Left) The crude reaction was diluted with EtOAc (7 mL) and saturated NH_4Cl (7 mL), and the resulting mixture was shaken vigorously until getting a clear biphasic solution. (Right) TLC after stained with KMnO₄ (line 1: crude reaction mixture; line 2: co-spot; line 3: authentic product).

Removal of B₂pin₂ and Phthalimide:

(Left) After completion of borylation. (Center) Reaction mixture was diluted with EtOAc and bubbled with air. (Right) After ~3 min, the mixture color changed to green.

(Left) TLC (hexane:CH₂Cl₂:EtOAc 6:1:1) under UV (line 1: crude reaction mixture immediately after completion; line 2: co-spot of line 1 and 3; line 3: crude reaction mixture after bubbling with air). (Center) The same TLC after CAM stein. (**Right**) TLC (hexane:EtOAc 2:1) after washing with K_2CO_3 (10% aq). Line 1: PhthH authentic sample; line 2: co-spot of line 1 and 3; line 3: crude reaction mixture before washing with K_2CO_3 (10% aq); line 4: co-spot of line 3 and 5; line 5: crude reaction mixture after washing with K_2CO_3 (10% aq).

One-pot Cu-Catalyzed Decarboxylative Borylation from Carboxylic Acid

General Procedure C

To a 15 mL culture tube equipped with a stir bar were added carboxylic acid (0.2 mmol, 1.0 equiv) and NHPI (1.0 equiv). The tube was evacuated and backfilled with argon for three times followed by addition of CH_2Cl_2 (2 mL, 0.1 M) and DIC (1.0 equiv). The resulting mixture was stirred under 1000 rpm at RT for 2 h before removal of the solvent by rotavapor. Then B_2pin_2 (3.0 equiv), LiOH•H₂O (15 equiv), Cu(acac)₂ (30 mol%) and MgCl₂ (1.5 equiv) were added and the tube was evacuated and backfilled with argon for three times. Degassed dioxane/DMF (4:1, 1.4 mL, 0.14 M) was added and the resulting mixture was stirred at RT until dark brown color was observed (typical reaction time < 15 min). The reaction mixture was diluted with EtOAc and saturated NH₄Cl, and the resulting mixture was shaken vigorously until getting a clear biphasic solution. The organic phase was collected and dried over anhydrous Na₂SO₄, evaporated and purified by silica gel chromatography to afford the desired product.

This one-pot procedure was demonstrated with 4 examples:

Graphical Supporting Information for General Procedure C

(Left) *N*-Hydroxyphthalimide and 5-Phenylvaleric acid (Sigma-Aldrich). (Center) 5-Phenylvaleric acid (0.2 mmol). (**Right**) *N*-Hydroxyphthalimide (1.0 equiv).

(Left) Add the acid and NHPI to a 15 mL culture tube. (Center) CH_2Cl_2 (2 mL). (Right) The tube was evacuated and backfilled with argon for three times and CH_2Cl_2 was added.

(Left) Add DIC (1.0 equiv). (Center) After stirring at RT for 2h. (Right) CH₂Cl₂ was removed by rotavapor.

(Left) After removal of CH₂Cl₂. (Center) Reagents used for decarboxylative borylation. (Right) B₂pin₂ (3.0 equiv).

(Left) Cu(acac)₂ (30 mol%). (Center) MgCl₂ (1.5 equiv). (Right) LiOH•H₂O (15 equiv).

(Left) Add the four materials to the tube and the tube was evacuated and backfilled with argon for three times. (Center) Add solvent (dioxane/DMF = 4/1, 1.4 mL) to the tube. (Right) 10 mins after addition of solvent, the color changed to dark brown, which indicated the completion of the borylation reaction.

(Left) Quench the reaction with saturated NH_4Cl (aq) and EtOAc. (Center) Transfer the crude reaction mixture to a separation funnel. (Right) Organic phase was collected and dried over anhydrous Na_2SO_4 .

(Left) Crude TLC (right top spot is the product). (Center) Purification by flash column chromatography (silica gel). (Right) TLC after column.

(Left) Weight of empty vial. (Center) Weight of vial with product (29.5 mg, 57% yield).

Gram-Scale Cu-Catalyzed Decarboxylative Borylation of Redox-Active Ester

To a 50 mL flask equipped with a stir bar were added redox-active ester **5** (1.07 g, 3.5 mmol), B₂pin₂ (1.33 g, 1.5 equiv), LiOH•H₂O (2.21 g, 15 equiv), Cu(acac)₂ (183 mg, 20 mol%) and MgCl₂ (499 mg, 1.5 equiv). The flask was evacuated and backfilled with argon for three times. Degassed dioxane/DMF (4/1, 17.5 mL) was added at once and the resulting mixture was stirred under 1000 rpm at RT until the reaction color turned dark brown (typically < 10 min). The reaction mixture was diluted with Et₂O (50 mL) and washed with saturated NH₄Cl (30 mL), K₂CO₃ (10% aq, 30 mL) and brine (30 mL) successively. The organic phase was dried over anhydrous Na₂SO₄, evaporated and purified by flash column chromatography (silica gel, hexanes to 100:1 CH₂Cl₂:Et₂O) to afford 466 mg (55%) of the borylation product **6**.

Notes:

LiOH•H₂O was grinded to floppy powder prior to use.

This procedure was also demonstrated on 2.5 mmol scale (1.19 g) with redox-active ester 45, $Cu(acac)_2$ (20 mol%) and B_2pin_2 (1.5 equiv). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded 622 mg (60%) of the borylation product **2**.

Graphical Supporting Information for General Procedure D

(Left) Reagents for this reaction. (Center) RAE 5 (1.07 g, 3.5 mmol). (Right) B_2pin_2 (1.33 g, 1.5 equiv).

(Left) Cu(acac)₂ (183 mg, 20 mol%). (Center) MgCl₂ (499 mg, 1.5 equiv). (Right) LiOH•H₂O (2.21 g, 15 equiv).

(Left) Dioxane (1 L sealed bottle, Acros). (Center) Prepare the solvent, DMF (4 mL), dioxane (16 mL). (Right) Premix the solvent in a 25 mL scintillation vial.

(Left) Evacuate the flask and backfill with argon for three times. (Center left) After addition of solvent (17.5 mL). (Center Right) 5 min after addition. (Right) 6 min.

(Left) 6.5 min. (Center left) 7 min. (Center right) 7.5 min. (Right) 8 min.

(Left) Quench the reaction by adding 10 mL NH₄Cl (aq) and 10 mL Et₂O. (Center) Transfer to a separation funnel. (Right) The organic phase was dried over anhydrous Na₂SO₄.

Troubleshooting: Frequently Asked Questions

Question 1:

Do I need to run the reaction in glovebox?

Answer:

We do not set up or run the reaction in glovebox. A glovebox is not necessary for this reaction. We do evacuate the air from the tube via vacuum manifold though.

Question 2:

How sensitive is this reaction to water and air?

Answer:

Addition of ~ 30 equivalents of H₂O resulted in < 5% drop in yield. Running the reaction under air without inert atmosphere resulted in $\sim 20\%$ drop in yield.

Question 3:

Why do you need 15 equivalents of LiOH•H₂O?

Answer:

The solubility of $LiOH \cdot H_2O$ in organic solvent is limited. So 15 equivalents is necessary to increase the actually effective amounts of $LiOH \cdot H_2O$.

Question 4:

Can I use LiOH instead of LiOH•H₂O?

Answer:

LiOH resulted in similar yield (within 5% difference) as long as LiOH was also grinded to floppy powder prior to use.

Question 5:

Is MgCl₂ essential for this reaction?

Answer:

Without MgCl₂, the yield dropped to <20%. However, instead of MgCl₂, many other metal salts also proved to be effective, such as MgBr•Et₂O, LiCl, FeCl₃•6H₂O, CoCl₂, NiCl₂•6H₂O, CrCl₃, MnCl₂•4H₂O, ZrCl₄ (control studies showed no product formation in the absence of Cu). We chose MgCl₂ because it's cheap, environment friendly and easy to handle.

Question 6:

How do I purify my products?

Answer:

The pinacol alkylboronate esters are not stable on preparative TLC due to possible oxidation of C–B bond or hydrolytic cleavage of pinacol esters. In all cases shown in this paper, we purify the products by flash column chromatography with gradient elution. For products that were very unstable on silica gel, deactivated silica gel ($35 \text{ wt}\% \text{ H}_2\text{O}$) could be used as suggested in reference 5.

Two major impurities, namely B_2pin_2 and phthalimide (PhthH), could be removed by methods shown below:

a. Upon completion, the reaction mixture was diluted with EtOAc and bubbled with air. Observing of green color (typically < 2 min) indicated complete consumption of excess B₂pin₂.

b. Upon completion, the reaction mixture was diluted with EtOAc and washed with NH_4Cl followed by K_2CO_3 (10% aq) for three times. PhthH could be washed away by K_2CO_3 .

Question 7:

Are the Bpin products volatile?

Answer:

Most of products reported in this study are not volatile except the radical clock products 43 and 44. You can use pentane and Et_2O for workup and column chromatography and keep the temperature of rotavapor water bath below 30 °C.

Question 8:

Sometimes emulsion formed during the workup. What should I do?

Answer:

After addition of NH_4Cl solution, shake the reaction tube vigorously until getting a clear biphasic solution. Intermittent introduce of air (oxygen) could help break the metal aggregates. If lighter color was observed but emulsion still existed, add more H_2O or brine and shake again.

Question 9:

I'm working on small scales, and the general procedure requires relatively high concentration (0.14 M). Can I dilute the reaction?

Answer:

The reaction can be diluted to 0.07 M by the addition of more solvent, thus diluting all reaction components, obtaining essentially the same yield, although the reaction will take a little longer to completion. Further dilution will cause decrease in yield.

Question 10:

Is this reaction exothermic? Does that affect the yield?

Answer:

The reaction became exothermic when brown color was observed. We didn't observe any appreciable ill effect to the yield though.

Question 11:

Dose longer reaction time cause decrease in yield?

Answer:

We left the reaction running overnight sometimes and no significant decrease of yield was observed.

Question 12:

Does the base-sensitive group survive under current base conditions?

Answer:

Base-sensitive functional groups such as ketone, ester, lactone, amide, free phenol, epoxide and carbamates such as Boc and Fmoc are all tolerated in this method.

Question 13:

How's the color changing during the transformation and which color indicates the completion of this reaction?

Answer:

Color change of this reaction was recorded graphically. The observation of dark brown color (4'08") indicated the completion of the reaction.

Question 14:

What's the limitation of current copper-catalyzed decarboxylative borylation?

Answer:

Substrates containing alkyl or aryl halogens (Br or I) gave lower yields due to competing

protodehalogenation and borylation of halogens. Tertiary and amino acid substrates are in general not working well in this method. Please see 'Unsuccessful or Challenging Substrates' section for the problematic examples we've tried.

Question 15:

Could external ligand on copper improve the yield?

Answer:

We've screened common nitrogen, phosphine and acac-type ligands and no appreciable improvement was observed.

Question 16:

Is a rigorous stirring rate required to maintain high yields? Does it have any effect on the yield?

Answer:

Rigorous stirring rate is not necessary. Stirring control experiments have been done under stir rates of 200, 400, 600, 800, 1000 and 1200 rpm on substrate **11**. All entries gave essentially the same yield of product (<5% difference).

Question 17:

This is a heterogeneous reaction. Does the yield drop in a larger scale?

Answer:

We obtained similar yield when scaling up the reaction to 1 gram scale. Larger scale was not tested. We believe that it is very important to use well-grinded powder of $LiOH \cdot H_2O$, $MgCl_2$ and $Cu(acac)_2$ for scale up.

Experimental Procedures and Characterization Data for Redox-Active Esters

Compound S26

1,3-dioxoisoindolin-2-yl 3-(2-fluorophenyl)propanoate

Following General Procedure A on 1.0 mmol scale with 3-(2-fluorophenyl)propionic acid. Purification by flash column chromatography (silica, 8:1 hexanes:EtOAc) afforded 246 mg (79%) of the title compound **\$26**.

Physical State: white solid.

m.p.: 102 – 104 °C.

 $R_f = 0.45$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.28 (t, *J* = 7.6, 1H), 7.26 – 7.21 (m, 1H), 7.11 (td, *J* = 7.5, 1.3 Hz, 1H), 7.08 – 7.03 (m, 1H), 3.13 (t, *J* = 7.7 Hz, 2H), 3.05 – 2.97 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 168.9, 162.0, 161.3 (d, J = 245.6 Hz), 134.9, 130.9 (d, J = 4.4 Hz), 129.1, 128.8 (d, J = 8.2 Hz), 126.1 (d, J = 15.4 Hz), 124.4 (d, J = 3.6 Hz), 124.1, 115.6 (d, J = 21.9 Hz), 31.3 (d, J = 1.7 Hz), 24.5 (d, J = 2.8 Hz) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -118.6 ppm.

HRMS (ESI-TOF): calc'd for $C_{17}H_{13}FNO_4 [M+H]^+$ 314.0823; found 314.0829.

Compound S27

tert-butyl 3-(2-((1,3-dioxoisoindolin-2-yl)oxy)-2-oxoethyl)azetidine-1-carboxylate

Following General Procedure A on 2.0 mmol scale with 2-(1-(*tert*-butoxycarbonyl)azetidin-3-yl)acetic acid. Purification by flash column chromatography (silica, 3:1 hexanes:EtOAc) afforded 540 mg (75%) of the title compound **S27**.

Physical State: white amorphous solid.

 $R_f = 0.25$ (3:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.86 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 4.14 (t, *J* = 8.2 Hz, 2H), 3.71 (dd, *J* = 8.9, 4.7 Hz, 2H), 3.04 – 2.95 (m, 3H), 1.42 (s, 9H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 167.9, 161.8, 156.3, 135.0, 128.9, 124.1, 79.7, 54.0, 35.4, 28.5, 25.1

ppm.

HRMS (ESI-TOF): calc'd for $C_{18}H_{21}N_2O_6[M+H]^+$ 361.1394; found 361.1393.

Compound S28

1,3-dioxoisoindolin-2-yl 3-((tert-butoxycarbonyl)amino)-3-methylbutanoate

Following General Procedure A on 1.0 mmol scale with 3-((*tert*-butoxycarbonyl)amino)-3methylbutanoic acid. Purification by flash column chromatography (silica, 4:1 hexanes:EtOAc) afforded 297 mg (82%) of the title compound **S28**.

Physical State: white solid.

m.p.: 103 - 105 °C.

 $R_f = 0.30$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.87 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.77 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.79 (s, 1H), 3.13 (s, 2H), 1.46 (s, 6H), 1.40 (s, 9H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 167.1, 162.0, 154.7, 134.9, 129.0, 124.0, 79.4, 51.3, 40.4, 28.5, 27.8 ppm.

HRMS (ESI-TOF): calc'd for $C_{18}H_{22}N_2O_6Na [M+Na]^+$ 385.1370; found 385.1375.

Compound S29

1,3-dioxoisoindolin-2-yl 3-(4-acetylphenyl)propanoate

Following General Procedure A on 1.0 mmol scale with 3-(4-acetylphenyl)propanoic acid. Purification by flash column chromatography (silica, 3:1 hexanes:EtOAc) afforded 239 mg (71%) of the title compound **S29**.

Physical State: white solid.

m.p.: 159 – 160 °C.

 $R_f = 0.20$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.93 (d, *J* = 8.3 Hz, 2H), 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 3.16 (t, *J* = 7.7 Hz, 2H), 3.01 (t, *J* = 7.7 Hz, 2H), 2.59 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 197.9, 168.7, 162.0, 144.8, 135.9, 135.0, 129.0, 129.0, 128.7, 124.2,

32.3, 30.6, 26.8 ppm.

HRMS (ESI-TOF): calc'd for $C_{19}H_{16}NO_5 [M+H]^+$ 338.1023; found 338.1028.

Compound S30

1,3-dioxoisoindolin-2-yl 3-(3,4,5-trimethoxyphenyl)propanoate

Following General Procedure A on 1.0 mmol scale with 3-(3,4,5-trimethoxyphenyl)propanoic acid. Purification by flash column chromatography (silica, 6:1 hexanes:EtOAc) afforded 327 mg (85%) of the title compound S30.

Physical State: light yellow solid.

m.p.: 124 – 126 °C.

 $R_f = 0.4$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.91 – 7.86 (m, 2H), 7.82 – 7.77 (m, 2H), 6.47 (d, J = 1.8 Hz, 2H), 3.87 (d, *J* = 2.8 Hz, 6H), 3.83 (d, *J* = 2.8 Hz, 3H), 3.07 – 3.02 (ddd, *J* = 9.9, 5.5, 2.3 Hz, 2H), 3.00 – 2.96 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 169.0, 162.0, 153.5, 136.8, 135.1, 134.9, 129.03, 129.02, 124.1, 105.3, 61.0, 56.3, 33.0, 31.1 ppm.

HRMS (ESI-TOF): calc'd for $C_{20}H_{20}NO_7 [M+H]^+$ 386.1234; found 386.1234.

Compound S31

1-(tert-butyl) 3-(1,3-dioxoisoindolin-2-yl) piperidine-1,3-dicarboxylate

Following General Procedure A on 5.0 mmol scale with 1-(tert-butoxycarbonyl)piperidine-3carboxylic acid. Purification by flash column chromatography (silica, 2:1 hexanes:EtOAc) afforded 1.42 g (76%) of the title compound S31.

Physical State: white solid.

m.p.: 135 – 137 °C.

 $R_f = 0.30$ (1:1 hexanes: EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 7.88 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 4.51 – 4.14 (m, 1H), 3.95 (d, J = 13.3 Hz, 1H), 3.29 - 3.02 (m, 1H), 2.94 - 2.80 (m, 2H), 2.33 - 2.19 (m, 1H), 2.34 - 2.19 (m, 2H), 2.33 - 2.19 (m, 2H), 2.34 - 2.19 1.88 - 1.72 (m, 2H), 1.61 - 1.50 (m, 1H), 1.47 (s, 9H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 169.6, 161.9, 154.6, 134.9, 129.0, 124.1, 80.2, 45.4 (br), 43.5 (br), 39.2, 28.5, 27.6, 24.1 (br) ppm.

HRMS (ESI-TOF): calc'd for C₁₉H₂₃N₂O₆ [M+H]⁺ 375.1551; found 375.1546.

Compound S32

1,3-dioxoisoindolin-2-yl 3-((tert-butoxycarbonyl)amino)-2-methylpropanoate

Following General Procedure A on 2.0 mmol scale with 3-((*tert*-butoxycarbonyl)amino)-2methylpropanoic acid. Purification by flash column chromatography (silica, 4:1 hexanes:EtOAc) afforded 501 mg (72%) of the title compound **S32**.

Physical State: white solid.

m.p.: 77 – 80 °C.

 $R_f = 0.25$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.87 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 5.27 (t, J = 6.5 Hz, 1H), 3.57 – 3.52 (m, 1H), 3.37 – 3.32 (m, 1H), 3.12 – 3.08 (m, 1H), 1.43 (s, 9H), 1.34 (d, J = 7.1 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 171.7, 162.1, 156.2, 135.0, 129.0, 124.2, 79.7, 43.5, 38.5, 28.5, 14.3 ppm.

HRMS (ESI-TOF): calc'd for $C_{17}H_{21}N_2O_6[M+H]^+$ 349.1394; found 349.1392.

Compound S33

Following General Procedure A on 6.0 mmol scale with 4-(4-methoxyphenyl)-2-methylbutanoic acid. Purification by flash column chromatography (silica, 6:1 hexanes:EtOAc) afforded 1.80 g (85%) of the title compound **S33**.

Physical State: white solid.

m.p.: 54 – 55 °C.

 $R_f = 0.40$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.89 – 2.81 (m, 1H), 2.80 – 2.67 (m, 2H), 2.17 – 2.09 (m, 1H), 1.92 – 1.84 (m, 1H), 1.38 (d, *J* = 7.0 Hz, 3H) ppm.
¹³C NMR (151 MHz, CDCl₃): δ 172.8, 162.2, 158.1, 134.9, 133.3, 129.6, 129.1, 124.1, 114.0, 55.4, 36.6, 35.9, 32.2, 17.2 ppm.
HRMS (ESI-TOF): calc'd for C₂₀H₂₀NO₅ [M+H]⁺ 354.1336; found 354.1325.

Compound S34

1,3-dioxoisoindolin-2-yl heptadecanoate

Following General Procedure A on 1.5 mmol scale with heptadecanoic acid. Purification by flash column chromatography (silica, 8:1 hexanes:EtOAc) afforded 433 mg of the title compound **S34** (70%).

Physical State: white fluffy solid.

m.p.: 62 – 63 °C.

 $R_f = 0.51$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.91 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.81 (dd, *J* = 5.5, 3.1 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 1.81 (p, *J* = 7.5 Hz, 2H), 1.52 – 1.40 (m, 2H), 1.40 – 1.24 (m, 24H), 0.90 (t, *J* = 7.0 Hz, 3H) ppm .

¹³C NMR (151 MHz, CDCl₃): δ 169.7, 162.0, 134.7, 129.0, 123.9, 31.9, 31.0, 29.71, 29.70, 29.69, 29.68, 29.67, 29.64, 29.58, 29.39, 29.37, 29.1, 28.8, 24.7, 22.7, 14.1 ppm.

HRMS (ESI-TOF): calc'd for $C_{25}H_{38}NO_4 [M+H]^+ 416.2795$; found 416.2787.

Compound 45

Following General Procedure A on 10.0 mmol scale with **4**. Purification by flash column chromatography (silica, 8:1 hexanes:EtOAc) afforded 4.25 g of the title compound **45** (89%).

Physical State: white solid.

m.p.: 69 – 70 °C.

 $R_f = 0.54$ (3:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.88 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.22 (tdd, *J* = 6.9, 5.6, 4.2 Hz, 1H), 2.85 – 2.66 (m, 2H), 2.47 (dd, *J* = 14.9, 5.7 Hz, 1H), 2.35 (dd, *J* = 14.9, 6.9 Hz, 1H), 2.09 – 2.01 (m, 1H), 1.97 – 1.89 (m, 1H), 1.45 (s, 9H), 0.90 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 170.3, 169.8, 162.0, 134.9, 129.1, 124.1, 80.9, 67.9, 43.7, 31.8, 28.3,

26.7, 26.0, 18.1, -4.5, -4.6 ppm.

HRMS (ESI-TOF): calc'd for $C_{24}H_{36}NO_7Si [M+H]^+ 478.2254$; found 478.2256.

Experimental Procedures and Characterization Data for Borylation Products

Compound 2

Tert-butyl

3-((tert-butyldimethylsilyl)oxy)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanoate

Following General Procedure B on 0.1 mmol scale with redox-active ester **45**, $Cu(acac)_2$ (20 mol%) and B_2pin_2 (1.5 equiv) in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded 26.6 mg (64%) of the title compound **2**.

Physical State: colorless oil.

 $R_f = 0.54$ (8:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 4.04 (p, *J* = 5.9 Hz, 1H), 2.33 (dd, *J* = 6.1, 2.0 Hz, 2H), 1.66 – 1.56 (m, 2H), 1.44 (s, 9H), 1.24 (s, 12H), 0.87 (s, 9H), 0.78 (ddd, *J* = 11.6, 9.6, 6.4 Hz, 2H), 0.07 (s, 3H), 0.05 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 171.3, 83.1, 80.3, 70.8, 43.6, 31.6, 28.3, 26.7, 25.0, 18.2, -4.3, -4.5 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. HRMS (ESI-TOF): calc'd for C₂₁H₄₃BNaO₅Si [M+Na]⁺ 437.2865; found 437.2874.

Compound 6

Following General Procedure B on 0.2 mmol scale with redox-active ester **5** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, hexanes to $100:1 \text{ CH}_2\text{Cl}_2:\text{Et}_2\text{O}$) afforded 36.8 mg (76%) of the title compound **6**.

Following General Procedure B on 0.1 mmol scale with redox-active ester 5, $Cu(acac)_2$ (20 mol%) and B_2pin_2 (1.5 equiv) in dioxane/DMF (4:1). Purification by flash column chromatography (silica, hexanes to 100:1 CH₂Cl₂:Et₂O) afforded 14.3 mg (59%) of the title compound 6.

Physical state: colorless oil.

 $R_f = 0.55$ (silica gel, 6:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 3.65 (s, 3H), 2.30 (t, *J* = 7.6 Hz, 2H), 1.66 – 1.59 (m, 2H), 1.46 – 1.40 (m, 2H), 1.23 (s, 12H), 0.78 (t, *J* = 7.9 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 174.4, 83.1, 51.6, 34.1, 27.7, 25.0, 23.8, 11.1 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 11

Following General Procedure B on 0.2 mmol scale with redox-active ester S1 in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes: Et_2O) afforded 36.5 mg (70%) of the title compound 11.

Physical state: colorless oil.

 $R_f = 0.50$ (silica gel, 12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 – 7.25 (m, 2H), 7.18 – 7.15 (m, 3H), 2.61 (t, *J* = 7.8 Hz, 2H), 1.66 – 1.61 (m, 2H), 1.50 – 1.45 (m, 2H), 1.24 (s, 12H), 0.82 (t, *J* = 7.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 143.1, 128.5, 128.3, 125.6, 83.0, 35.9, 34.3, 25.0, 23.9 11.3 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 12

4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester S2 in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes: Et_2O) afforded 33.3 mg (72%) of the title compound 12.

Physical State: colorless oil.

 $R_f = 0.50$ (silica gel, 12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.28 – 7.24 (m, 2H), 7.24 – 7.19 (m, 2H), 7.18 – 7.10 (m, 1H), 2.75 (t, *J* = 8.2 Hz, 2H), 1.22 (s, 12H), 1.15 (t, *J* = 8.3 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 144.5, 128.3, 128.1, 125.6, 83.2, 30.1, 25.0, 13.2 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁹

Compound 13

$\label{eq:2-2-fluorophenethyl} 2-(2-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane$

Following General Procedure B on 0.2 mmol scale with redox-active ester **S26** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded 30.2 mg (60%) of the title compound **13**.

Physical State: colorless oil.

 $R_f = 0.51$ (silica gel, 12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.23 (t, J = 7.7 Hz, 1H), 7.16 – 7.10 (m, 1H), 7.03 (t, J = 7.5 Hz, 1H), 7.00 – 6.91 (m, 1H), 2.77 (t, J = 8.2 Hz, 2H), 1.22 (s, 12H), 1.14 (t, J = 8.2 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 161.2 (d, *J* = 244.6 Hz), 131.3 (d, *J* = 15.9 Hz), 130.2 (d, *J* = 5.2 Hz), 127.3 (d, *J* = 8.2 Hz), 123.9 (d, *J* = 3.5 Hz), 115.2 (d, *J* = 22.3 Hz), 25.0, 23.3 (d, *J* = 3.0 Hz), 11.8 (br, C–B) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.1.

Spectroscopic data are in accordance with that reported in the literature.⁹

Compound 14

tert-butyl (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)carbamate

Following General Procedure B on 0.2 mmol scale with redox-active ester **S3** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes:acetone) afforded 31.4 mg (55%) of the title compound **14**.

Physical State: colorless oil.

 $R_f = 0.54$ (8:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 4.73 (br s, 0.86H), 4.38 (br s, 0.14H), 3.17 – 2.95 (m, 2H), 1.63 – 1.53 (m, 2H), 1.42 (s, 9H), 1.24 (s, 12H), 0.78 (t, *J* = 7.7 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 156.1, 83.3, 79.0, 42.8, 28.6, 25.0, 24.3, 8.6 (br, C–B) ppm.

HRMS (ESI-TOF): calc'd for C₁₄H₂₈BNNaO₄ [M+Na]⁺ 308.2004; found 308.2015.

Compound 15

4,4,5,5-tetramethyl-2-(4-(oxiran-2-yl)butyl)-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S4** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 15:1 hexanes:EtOAc) afforded 31.0 mg (69%) of the title compound **15**.

Physical State: colorless oil.

 $R_f = 0.4$ (10:1 hexanes:EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 2.92 – 2.88 (m, 1H), 2.75 – 2.71 (m, 1H), 2.45 (dd, J = 5.1, 2.7 Hz, 1H), 1.58 – 1.40 (m, 6H), 1.24 (s, 12H), 0.81 – 0.77 (m, 2H) ppm.
¹³C NMR (151 MHz, CDCl₃): δ 83.1, 52.5, 47.3, 32.4, 28.7, 25.0, 24.0, 11.4 (br, C–B) ppm.

HRMS (ESI-TOF): calc'd for $C_{12}H_{24}BO_3 [M+H]^+ 227.1813$; found: 227.1815.

Compound 16

$tert-butyl\ 3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl) azetidine-1-carboxylate$

Following General Procedure B on 0.144 mmol scale with redox-active ester **S27** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 10:1 hexanes: EtOAc) afforded 24.0 mg (56%) of the title compound **16**.

Physical State: colorless oil.

 $R_f = 0.2$ (10:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 4.05 – 3.98 (m, 2H), 3.51 (dd, *J* = 8.5, 5.7 Hz, 2H), 2.70 – 2.65 (m, 1H), 1.43 (s, 9H), 1.22 (s, 12H), 1.10 (d, *J* = 7.9 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 156.6, 83.4, 79.1, 56.6 (br), 28.6, 25.3, 24.9 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

HRMS (ESI-TOF): calc'd for C₁₅H₂₈BNO₄Na [M+Na]⁺ 320.2004; found: 320.2010.

 $\label{eq:constraint} 3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl) pyridine$

Following General Procedure B on 0.2 mmol scale with redox-active ester **S5** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 10:1 hexanes:acetone) afforded 18.6 mg (40%) of the title compound **17**.

Physical State: colorless oil.

 $R_f = 0.48$ (4:1 hexanes:acetone).

¹H NMR (600 MHz, CDCl₃): δ 8.48 (s, 1H), 8.41 (d, J = 4.8 Hz, 1H), 7.55 (dt, J = 7.8, 1.9 Hz, 1H), 7.20 (dd, J = 7.8, 4.8 Hz, 1H), 2.75 (t, J = 8.0 Hz, 2H), 1.21 (s, 12H), 1.14 (t, J = 8.0 Hz, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ 149.6, 146.9, 139.8, 135.9, 123.4, 83.4, 27.3, 25.0 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. Spectroscopic data are in accordance with that reported in the literature.⁶

Compound 18

Me Me 🖓

tert-butyl (2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)carbamate

Following General Procedure B on 0.2 mmol scale with redox-active ester **S28** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 15:1 hexanes: EtOAc) afforded 42.1 mg (70%) of the title compound **18**.

Physical State: colorless oil.

 $R_f = 0.4$ (10:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 4.75 (s, 1H), 1.41 (s, 9H), 1.34 (s, 6H), 1.23 (s, 2H), 1.22 (s, 12H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 154.8, 83.2, 78.4, 51.6, 29.3, 28.6, 26.3 (br, C–B), 24.9 ppm. HRMS (ESI-TOF): calc'd for C₁₅H₃₀BNO₄Na [M+Na]⁺ 322.2160; found 322.2172.

Compound 19

1-(4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl)ethan-1-one

Following General Procedure B on 0.2 mmol scale with redox-active ester **S29** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 15:1 hexanes: EtOAc) afforded 35.1 mg (64%) of the title compound **19**.

Physical State: colorless oil.

 $R_f = 0.3$ (10:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 2.83 – 2.77 (m, 2H), 2.57 (s, 3H), 1.22 (s, 12H), 1.18 – 1.12 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 198.1, 150.5, 135.0, 128.6, 128.4, 83.4, 30.2, 26.7 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. HRMS (ESI-TOF): calc'd for $C_{16}H_{24}BO_3$ [M+H]⁺ 275.1813; found 275.1828.

Compound 20

4,4,5,5-tetramethyl-2-(3,4,5-trimethoxyphenethyl)-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S30** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 15:1 hexanes:Et₂O) afforded 41.9 mg (65%) of the title compound **20**.

Physical State: white solid.

m.p.: 45 – 47 °C.

 $R_f = 0.50$ (silica gel, 6:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 6.45 (s, 2H), 3.84 (s, 6H), 3.81 (s, 3H), 2.70 – 2.67 (m, 2H), 1.22 (s, 12H), 1.16 – 1.12 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ153.1, 140.4, 136.0, 105.0, 83.3, 61.0, 56.1, 30.5, 25.0, 13.2 (br, C–B) ppm.

HRMS (ESI-TOF): calc'd for C₁₇H₂₇BNaO₅ [M+Na]⁺ 345.1844; found 345.1854.

Compound 21

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-tosylpiperidine

Following General Procedure B on 0.2 mmol scale with redox-active ester **S6** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 5:1 hexanes: EtOAc) afforded 48.2 mg (66%) of the title compound **21**.

Physical State: white solid.

m.p.: 102 – 104 °C.

 $R_f = 0.2$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.36 (dt, *J* = 10.3, 4.3 Hz, 2H), 2.51 (td, *J* = 9.9, 3.1 Hz, 2H), 2.41 (s, 3H), 1.76 – 1.70 (m, 2H), 1.67 – 1.59 (m, 2H), 1.15 (s, 12H), 0.89 (tt, *J* = 10.2, 4.0 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 143.3, 133.2, 129.6, 127.9, 83.4, 47.2, 26.6, 24.8, 21.6, 18.9 (br, C–B) ppm.

HRMS (ESI-TOF): calc'd for $C_{18}H_{29}BN_4S[M+H]^+$ 366.1905; found 366.1919.

Compound 22

Boo

tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)piperidine-1-carboxylate

Following General Procedure B on 0.2 mmol scale with redox-active ester **S7** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 5:2:1 hexanes: CH_2Cl_2 :EtOAc) afforded 42.5 mg (68%) of the title compound **22**.

Physical State: colorless oil.

 $R_f = 0.46$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 3.89 – 3.65 (m, 2H), 3.01 – 2.84 (m, 2H), 1.66 – 1.57 (m, 2H), 1.51 – 1.44 (m, 2H), 1.44 (s, 9H), 1.22 (s, 12H), 1.09 (tt, *J* = 10.5, 3.6 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 155.0, 83.3, 79.1, 45.5 (br), 44.5 (br), 28.6, 27.1, 24.9, 20.0 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁶

Compound 23

2-(4,4-difluorocyclohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.1 mmol scale with redox-active ester **S8** in dioxane/DMF (6:1). Purification by flash column chromatography (silica, 20:1 hexanes: EtOAc) afforded 18.5 mg (75%) of the title compound **23**.

Physical state: colorless oil.

 $R_f = 0.45$ (silica gel, 9:1 hexanes:EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 2.02 – 1.91 (m, 2H), 1.83 – 1.75 (m, 2H), 1.75 – 1.55 (m, 4H), 1.22 (s, 12H), 1.02 – 0.92 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 123.9 (t, *J* = 240.5 Hz), 83.4, 34.5 (t, *J* = 23.3 Hz), 24.9, 24.4 (t, *J* = 4.9 Hz) 19.9 (br, C–B) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -91.8 (d, J = 235.5 Hz), -99.0 (d, J = 235.4 Hz).

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 24

4,4,5,5-tetramethyl-2-(tetrahydro-2H-pyran-4-yl)-1,3,2-dioxaborolane

Following General Procedure B on 0.1 mmol scale with redox-active ester **S9** in dioxane/DMF (6:1). Purification by flash column chromatography (silica, 15:1 hexanes: EtOAc) afforded 13.9 mg (66%) of the title compound **24**.

Physical state: colorless oil.

 $\mathbf{R}_f = 0.4$ (silica gel, 10:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 3.83 (dt, J = 11.2, 4.0 Hz, 2H), 3.49 – 3.44 (m, 2H), 1.64 – 1.59 (m,

4H), 1.24 (s, 12H), 1.22 – 1.18 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 83.3, 69.0, 27.8, 24.9 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁶

Compound 25

tert-butyl (R)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)piperidine-1-carboxylate

Following General Procedure B on 0.2 mmol scale with redox-active ester **S31** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 5:2:1 hexanes:CH₂Cl₂:EtOAc) afforded 38.6 mg (62%) of the title compound **25**.

Physical State: colorless oil.

 $R_f = 0.46$ (4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 3.96 – 3.77 (m, 2H), 3.01 – 2.82 (m, 2H), 1.84 – 1.73 (m, 1H), 1.45 (s, 9H), 1.44 – 1.39 (m, 2H), 1.22 (s, 12H), 1.16 – 1.10 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 155.0, 83.3, 79.2, 45.8 (br), 44.7 (br), 28.7, 26.21, 26.17, 24.93, 24.86, 22.0 (br, C–B) ppm.

HRMS (ESI-TOF): calc'd for $C_{16}H_{30}BNNaO_4 [M+Na]^+$ 334.2160; found 334.2167.

Compound 26

BocHN

tert-butyl (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)carbamate

Following General Procedure B on 0.1 mmol scale with redox-active ester **S32** in dioxane/DMF (6:1). Purification by flash column chromatography (silica, 10:1 hexanes: EtOAc) afforded 16.0 mg (56%) of the title compound **26**.

Physical State: colorless oil.

 $R_f = 0.4$ (10:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 4.78 (br s, 1H), 3.21 – 3.04 (m, 2H), 1.42 (s, 9H), 1.24 – 1.19 (m, 1H), 1.22 (s, 12H), 0.96 (d, *J* = 7.6 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 156.2, 83.4, 78.9, 43.6, 28.6, 24.9, 24.8, 18.4 (br, C–B), 13.2 ppm. HRMS (ESI-TOF): calc'd for C₁₄H₂₈BNO₄Na [M+Na]⁺ 308.2004; found 308.2016.

Compound 27

2-(bicyclo[2.2.1]heptan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.1 mmol scale with redox-active ester **S10** in dioxane/DMF (6:1). Purification by flash column chromatography (silica, 25:1 hexanes:EtOAc) afforded 13.1 mg (59%) of the title compound **27** with 10:1 *dr* as determined by crude ¹H NMR.

Physical state: colorless oil.

 $R_f = 0.38$ (silica gel, 19:1 hexanes:EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 2.38 – 2.17 (m, 2H), 1.57 – 1.42 (m, 3H), 1.38 – 1.31 (m, 1H), 1.26 – 1.12 (m, 18H), 0.91 – 0.81 (m, 1H) ppm. (mixture of exo and endo isomers)

¹³C NMR (151 MHz, CDCl₃): δ 82.9, 38.9, 38.3, 36.8, 32.4, 32.3, 29.4, 24.9 ppm (exo); 83.0, 41.1, 39.1, 37.2, 32.0, 30.0, 28.0, 25.1, 25.0 ppm (endo). The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁵

(R) - 2 - (4 - (4 - methoxyphenyl) butan - 2 - yl) - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **\$33** in dioxane/DMF (2:1). Purification by flash column chromatography (silica, 15:1 hexanes:Et₂O) afforded 37.8 mg (65%) of the title compound **28**.

Physical State: colorless oil.

 $R_f = 0.47$ (12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.17 – 7.04 (m, 2H), 6.88 – 6.74 (m, 2H), 3.78 (s, 3H), 2.56 (ddd, *J* = 9.6, 6.5, 2.9 Hz, 2H), 1.82 – 1.68 (m, 1H), 1.63 – 1.48 (m, 1H), 1.25 (s, 12H), 1.10 – 1.04 (m, 1H), 1.01 (d, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 157.7, 135.3, 129.4, 113.8, 83.0, 55.4, 35.7, 34.5, 24.94, 24.90, 15.6 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. GCMS (EI): m/z (%) 290 (21), 121 (100).

Compound 29

4,4,5,5-tetramethyl-2-(2-phenylcyclopropyl)-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S11** in MTBE/DMF (6:1). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded 20.5 mg (42%) of the title compound **29** with >20:1 *dr* as determined by ¹H NMR.

Physical State: colorless oil.

 $R_f = 0.48$ (silica gel, 9:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.26 – 7.22 (m, 2H), 7.15 – 7.11 (m, 1H), 7.10 – 7.06 (m, 2H), 2.11 (dt, J = 8.1, 5.4 Hz, 1H), 1.25 (s, 6H), 1.24 (s, 6H), 1.16 (ddd, J = 8.1, 6.8, 3.7 Hz, 1H), 1.01 (ddd, J = 9.9, 5.3, 3.7 Hz, 1H), 0.31 (ddd, J = 9.8, 6.8, 5.5 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 143.5, 128.4, 125.8, 125.7, 83.3, 24.9, 24.8, 22.0, 15.2 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 30

(R)-2-(heptan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S12** in dioxane/DMF (1:2). Purification by flash column chromatography (silica, 20:1 hexanes: Et_2O) afforded 31.0 mg (69%) of the title compound **30**.

Physical state: colorless oil.

 $R_f = 0.52$ (silica gel, 12:1 EtOAc:hexanes).

¹H NMR (600 MHz, CDCl₃): δ 1.46 – 1.20 (m, 8H), 1.24 (s, 12H), 0.90 – 0.86 (m, 7H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 82.9, 31.7, 31.0, 25.0, 24.96, 24.94, 24.4, 23.1, 14.3, 13.9 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 31

4,4,5,5-tetramethyl-2-(1-phenylcyclopropyl)-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S13** in dioxane/DMF (2:1). Purification by flash column chromatography (silica, 20:1 hexanes: Et_2O) afforded 41.7 mg (85%) of the title compound **31**.

Physical State: white solid.

m.p.: 46 – 47 °C.

 $R_f = 0.54$ (8:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.31 – 7.28 (m, 2H), 7.28 – 7.24 (m, 2H), 7.17 – 7.13 (m, 1H), 1.24 (s, 12H), 1.15 – 1.12 (m, 2H), 0.97 – 0.91 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 144.9, 129.0, 128.1, 125.3, 83.4, 24.7, 13.5 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁶

2-(1-(4-chlorophenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S14** in dioxane/DMF (2:1). Purification by flash column chromatography (silica, 50:1 hexanes:Et₂O) afforded 43.8 mg (76%) of the title compound **32**.

Physical State: white solid.

m.p.: 83 – 85 °C.

 $R_f = 0.50$ (silica gel, 12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.19 (s, 4H), 1.21 (s, 12H), 1.11 (dd, *J* = 6.0, 3.6 Hz, 2H), 0.87 (dd, *J* = 6.0 Hz, 3.6 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 143.5, 131.0, 130.5, 128.2, 83.6, 24.7, 13.6 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 33

2-(1-(4-iodophenyl)cyclopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S15** in MTBE/DMF (6:1). Purification by flash column chromatography (silica, 100:1 hexanes: Et_2O) afforded 28.0 mg (38%) of the title compound **33**.

Physical State: white solid.

m.p.: 90 – 91 °C.

 $R_f = 0.50 \ (8:1 \text{ hexanes:Et}_2\text{O}).$

¹**H NMR (600 MHz, CDCl₃):** δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 1.23 (s, 12H), 1.15 – 1.12 (m, 2H), 0.90 – 0.87 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 144.2, 136.5, 130.7, 89.9, 83.0, 24.1, 13.0 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.
 GCMS (EI): m/z (%) 370 (40), 143 (61), 101 (100).

N,N-bis(2-chloroethyl)-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)aniline Following General Procedure B on 0.225 mmol scale with redox-active ester **S16** in dioxane/DMF

(4:1). Purification by flash column chromatography (silica, 20:1 hexanes:EtOAc) afforded 49 mg (57%) of the title compound **34**.

Physical State: colorless oil.

 $R_f = 0.30$ (silica gel, 20:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.07 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.7 Hz, 2H), 3.69 (t, *J* = 6.9 Hz, 4H), 3.63 – 3.60 (m, 4H), 2.54 – 2.50 (m, 2H), 1.68 (p, *J* = 7.6 Hz, 2H), 1.24 (s, 12H), 0.81 (t, *J* = 7.9 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 144.1, 132.2, 129.9, 112.2, 83.0, 53.8, 40.7, 37.5, 26.5, 25.0, 11.00 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 35

Following General Procedure B on 0.2 mmol scale with redox-active ester **S17** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 12:1 hexanes: Et_2O) afforded 30.2 mg (45%) of the title compound **35**.

Physical State: white solid.

m.p.: 92 – 94 °C.

 $R_f = 0.44$ (6:1 hexanes:EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 8.05 (d, J = 8.5 Hz, 2H), 7.70 – 7.64 (m, 2H), 7.64 – 7.60 (m, 2H), 7.50 – 7.44 (m, 2H), 7.42 – 7.37 (m, 1H), 3.19 (t, J = 7.0 Hz, 2H), 1.27 (s, 12H), 1.10 (t, J = 7.0 Hz, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ 200.3, 145.6, 140.2, 135.8, 129.1, 128.7, 128.3, 127.4, 127.3, 83.3, 33.9, 24.9 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁶

1-(2-((4R,6S)-2,2-dimethyl-6-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1,3-dioxan-4-yl) ethyl)-5-(4-fluorophenyl)-2-isopropyl-N,4-diphenyl-1H-pyrrole-3-carboxamide

Following General Procedure B on 0.025 mmol scale with redox-active ester **S20** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 6:1 hexanes:EtOAc) afforded 9.0 mg (52%) of the title compound **36**.

Physical State: white foam.

 $R_f = 0.52$ (silica gel, 4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.22 – 7.12 (m, 9H), 7.10 – 7.03 (m, 2H), 7.02 – 6.94 (m, 3H), 6.85 (br s, 1H), 4.09 – 4.02 (m, 1H), 4.01 – 3.95 (m, 1H), 3.86 – 3.79 (m, 1H), 3.70 – 3.64 (m, 1H), 3.62 – 3.53 (m, 1H), 1.69 – 1.63 (m, 2H), 1.53 (d, *J* = 7.1 Hz, 3H), 1.52 (d, *J* = 7.1 Hz, 3H), 1.36 – 1.32 (m, 1H), 1.34 (s, 3H), 1.29 (s, 3H), 1.23 (s, 12H), 1.08 – 1.00 (m, 2H), 0.96 (dd, *J* = 15.2, 7.9 Hz, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 165.0, 162.4 (d, *J* = 247.6 Hz), 141.7, 138.6, 134.8, 133.3 (d, *J* = 8.1 Hz), 130.7, 128.9, 128.8, 128.5, 128.4 (d, *J* = 3.6 Hz), 126.7, 123.6, 121.9, 119.7, 115.43 (d, *J* = 21.4 Hz), 115.37, 98.6, 83.3, 66.73, 66.68, 41.0, 38.4, 38.3, 30.3, 26.2, 24.91, 24.87, 21.9, 21.7, 20.0 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

¹⁹F NMR (376 MHz, CDCl₃): δ -114.1 ppm.

 $[\alpha]_D^{20} = +3.9$ (c 1.0, CHCl₃).

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 37

(E)-7-hydroxy-5-methoxy-4-methyl-6-(3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent -2-en-1-yl)isobenzofuran-1(3H)-one

Following General Procedure B on 0.2 mmol scale with redox-active ester **S18** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, hexanes to 7:6:1 hexanes: CH_2Cl_2 :EtOAc) afforded 54.6 mg (68%) of the title compound **37**.

Physical State: white solid.

m.p.: 122 – 124 °C.

 $R_f = 0.40$ (silica gel, 2:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.65 (s, 1H), 5.22 – 5.19 (m, 1H), 5.19 (s, 2H), 3.75 (s, 3H), 3.37 (d, *J* = 6.6 Hz, 2H), 2.14 (s, 3H), 2.09 (t, *J* = 7.8 Hz, 2H), 1.78 (s, 3H), 1.18 (s, 12H), 0.86 (t, *J* = 7.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 173.1, 163.9, 153.9, 143.9, 137.9, 122.8, 120.6, 116.8, 106.4, 83.0, 70.2, 61.1, 33.6, 24.9, 22.7, 16.3, 11.7, 9.8 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 38

(5S, 8R, 10S, 13R, 14S, 17R) - 10, 13 - dimethyl - 17 - ((R) - 4 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl)b utan - 2 - yl) dodecahydro - 3H - cyclopenta[a]phenanthrene - 3, 7, 12(2H, 4H) - trione

Following General Procedure B on 0.2 mmol scale with redox-active ester **S21** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 5:1 to 2:1 hexanes:EtOAc) afforded 66.9 mg (69%) of the title compound **38**.

Physical State: white solid.

 $R_f = 0.36$ (silica gel, 2:1 hexanes:EtOAc).

m.p.: 230 – 232 °C.

¹**H NMR (600 MHz, CDCl₃):** δ 2.94 – 2.79 (m, 3H), 2.36 – 2.16 (m, 6H), 2.16 – 2.07 (m, 2H), 2.06 – 1.92 (m, 4H), 1.83 (td, *J* = 11.4, 7.1 Hz, 1H), 1.63 – 1.54 (m, 2H), 1.39 (s, 3H), 1.34 – 1.13 (m, 16 H), 1.05 (s, 3H), 0.87 – 0.78 (m, 4H), 0.69 – 0.61 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 212.1, 209.2, 208.9, 83.0, 57.1, 51.9, 49.2, 47.0, 45.8, 45.7, 45.1, 42.9, 38.8, 38.2, 36.6, 36.1, 35.4, 29.4, 27.8, 25.4, 25.0, 24.9, 22.1, 18.6, 12.0, 8.1 (br, C–B) ppm. $[\alpha]_{D}^{20} = +11.3$ (c 1.0, CHCl₃).

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 39

tert-butyl ((1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cyclohexyl)methyl)carbamate

Following General Procedure B on 0.123 mmol scale with redox-active ester **S19** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 15:1 hexanes:EtOAc) afforded 36.0 mg (83%) of the title compound **39**.

Physical State: white solid.

m.p.: 92 – 96 °C.

 $R_f = 0.28$ (silica gel, 20:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 5.32 (br s, 1H), 3.12 – 3.00 (m, 2H), 1.52 – 1.41 (m, 4H), 1.43 (s, 9H), 1.38 – 1.34 (m, 2H), 1.33 – 1.28 (m, 4H), 1.25 (s, 12H), 0.80 (s, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 156.5, 83.4, 78.7, 50.0, 36.7, 36.3, 28.6, 26.4, 25.0, 21.9 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 40

4,4,5,5-tetramethyl-2-((4Z,7Z,10Z,13Z)-nonadeca-4,7,10,13-tetraen-1-yl)-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester **S23** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes: Et_2O) afforded 27.0 mg (35%) of the title compound **40**.

Physical State: colorless oil.

 $R_f = 0.52$ (12:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 5.49 – 5.26 (m, 8H), 2.88 – 2.77 (m, 6H), 2.12 – 1.99 (m, 4H), 1.48 (p, *J* = 7.7 Hz, 2H), 1.39 – 1.26 (m, 6H), 1.24 (s, 12H), 0.89 (t, *J* = 6.9 Hz, 3H), 0.80 (t, *J* = 7.9 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 130.6, 130.3, 128.7, 128.6, 128.1, 128.1, 128.0, 127.7, 83.0, 31.7, 30.0, 29.5, 27.4, 25.8, 25.0, 24.2, 22.7, 14.2, 11.0 (br, C–B) ppm.

Spectroscopic data are in accordance with that reported in the literature.⁶

Compound 41

NHEmoc

tert-butyl (R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)butanoate

Following General Procedure B on 0.2 mmol scale with redox-active ester **S22** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 8:1 hexanes:EtOAc) afforded 43.3 mg (43%) of the title compound **41**.

Physical state: white foam.

 $R_f = 0.49$ (silica gel, 4:1 hexanes:EtOAc).

¹**H NMR (600 MHz, CDCl₃):** δ 7.76 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H) 2H), 7.31 (t, J = 7.4 Hz, 2H), 5.54 (d, J = 8.2 Hz, 0.87H), 5.23 (br s, 0.13H), 4.44 - 4.30 (m, 2H), 4.26 -4.07 (m, 2H), 2.00 – 1.86 (m, 1H), 1.86 – 1.72 (m, 1H), 1.47 (s, 9H), 1.23 (s, 12H), 0.91 – 0.72 (m, 2H). ¹³C NMR (151 MHz, CDCl₃): δ 171.9, 156.2, 144.2, 144.1, 141.41, 141.42, 127.8, 127.2, 125.3, 120.1, 83.5, 81.9, 67.0, 56.0, 47.4, 28.2, 27.0, 25.0, 24.9, 6.9 (br, C-B) ppm; $[\alpha]_{D}^{20} = +0.75$ (c 0.66, CHCl₃).

Spectroscopic data are in accordance with that reported in the literature.⁵

Compound 42

2-hexadecyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester S34 in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded 54.2 mg (77%) of the title compound 42.

Physical State: colorless oil.

 $R_f = 0.47$ (10:1 hexanes:Et₂O).

¹**H NMR (500 MHz, CDCl₃):** δ 1.43 – 1.34 (m, 2H), 1.34 – 1.17 (m, 38H), 0.88 (t, J = 7.0 Hz, 3H),

0.76 (t, J = 7.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 82.9, 32.6, 32.1, 29.9, 29.82, 29.81, 29.75, 29.6, 29.5, 24.9, 24.2, 22.8, 14.3, 11.4 (br, C–B) ppm.

GCMS (EI): m/z (%) 352 (0.2), 337 (39), 129 (100).

Compound 48

2-(but-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Following General Procedure B on 0.2 mmol scale with redox-active ester S24 in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 pentane:Et₂O) afforded 17.1 mg (47%) of the title compound 48.

Physical State: colorless oil.

 $R_f = 0.47$ (19:1 pentane:Et₂O).

¹**H NMR (600 MHz, CDCl₃):** δ 5.88 (ddt, *J* = 17.2, 10.2, 6.2 Hz, 1H), 4.99 (dq, *J* = 17.1, 1.8 Hz, 1H), 4.90 (ddt, J = 10.2, 2.0, 1.3 Hz, 1H), 2.17 (tdt, J = 7.8, 6.3, 1.5 Hz, 2H), 1.24 (s, 12H), 0.88 (t, J = 7.9 Hz,

2H) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 140.8, 113.3, 83.2, 28.1, 25.0 ppm. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁶

Mixture 49

Following General Procedure B on 0.2 mmol scale with redox-active ester **S25** in dioxane/DMF (4:1). Purification by flash column chromatography (silica, 20:1 hexanes:Et₂O) afforded an inseparable mixture **49** (23.5 mg, 56%) containing cyclized and noncyclized products in 3.6:1 ratio.

Physical State: colorless oil.

 $R_f = 0.52$ (12:1 hexanes:EtOAc).

¹H NMR (600 MHz, CDCl₃): δ 5.80 (ddt, J = 16.9, 10.2, 6.6 Hz, 0.22H), 4.98 (dq, J = 17.1, 1.7 Hz, 0.22H), 4.91 (ddt, J = 10.2, 2.4, 1.2 Hz, 0.22H), 2.04 (tdd, J = 6.7, 5.3, 1.4 Hz, 0.44H), 1.95 (tt, J = 8.9, 7.3 Hz, 0.78H), 1.83 – 1.72 (m, 1.56H), 1.65 – 1.55 (m, 1.56H), 1.54 – 1.45 (m, 1.56H), 1.44 – 1.35 (m, 0.88H), 1.24 (s, 12H), 1.11 – 0.99 (m, 1.56H), 0.83 (d, J = 7.5 Hz, 1.56H), 0.77 (t, J = 7.5 Hz, 0.44H) ppm. (Data in red color belong to cyclized product)

¹³C NMR (151 MHz, CDCl₃): δ 139.3, 114.2, 83.01, 82.95, 36.3, 35.2, 33.7, 31.8, 25.3, 25.0, 23.7 ppm. (Data in red color belong to cyclized product). The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Spectroscopic data are in accordance with that reported in the literature.⁶

X-Ray Crystallographic Data for Compound 35

Figure S3. X-Ray Crystallographic Data for Compound 35

X-ray information for compound **35** can be obtained free of charge from The Cambridge Crystallographic Data center with number CCDC 1862648.

Table 1. Crystal data and structure refinement for	or Baran676.
Report date	2018-07-30
Identification code	jie4-065-3
Empirical formula	C21 H25 B O3
Molecular formula	C21 H25 B O3
Formula weight	336.22
Temperature	100.0 K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
	857

Unit cell dimensions	a = 5.9378(3) Å	$\alpha = 72.769(2)^{\circ}.$	
	b = 14.5346(7) Å	β= 89.933(3)°.	
	c = 21.5395(11) Å	$\gamma = 89.866(3)^{\circ}.$	
Volume	1775.50(15) Å ³		
Ζ	4		
Density (calculated)	1.258 Mg/m ³		
Absorption coefficient	0.644 mm ⁻¹		
F(000)	720		
Crystal size	0.276 x 0.043 x 0.038 mm ³		
Crystal color, habit	Colorless Needle		
Theta range for data collection	2.147 to 68.490°.		
Index ranges	-6<=h<=7, -17<=k<=17, -25<	=l<=25	
Reflections collected	eflections collected 54888		
Independent reflections	6407 [R(int) = 0.0352, R(sigma) = 0.0168]		
Completeness to theta = 68.000°	98.5 %		
Absorption correction	Semi-empirical from equivale	nts	
Max. and min. transmission	0.3201 and 0.2347		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	6407 / 0 / 459		
Goodness-of-fit on F ²	1.041		
Final R indices [I>2sigma(I)]	R1 = 0.0370, wR2 = 0.0892		
R indices (all data) $R1 = 0.0421, wR2 = 0.0920$			
Extinction coefficient n/a			
Largest diff. peak and hole 0.315 and -0.215 e.Å ⁻³			

	x	у	Z	U(eq)
O(1)	6747(2)	3260(1)	2323(1)	28(1)
O(2)	9735(2)	5206(1)	1642(1)	25(1)
O(3)	7806(2)	4692(1)	889(1)	25(1)
C(1)	10682(2)	3494(1)	1611(1)	24(1)
C(2)	10733(2)	3062(1)	2351(1)	23(1)
C(3)	8410(2)	2946(1)	2650(1)	22(1)
C(4)	8177(2)	2432(1)	3359(1)	21(1)
C(5)	6151(2)	1974(1)	3597(1)	23(1)
C(6)	5890(2)	1490(1)	4250(1)	22(1)
C(7)	7639(2)	1463(1)	4690(1)	21(1)
C(8)	9656(2)	1923(1)	4448(1)	22(1)
C(9)	9936(2)	2393(1)	3793(1)	22(1)
C(10)	7398(2)	954(1)	5394(1)	21(1)
C(11)	5420(2)	1015(1)	5731(1)	24(1)
C(12)	5235(3)	553(1)	6392(1)	26(1)
C(13)	7020(3)	14(1)	6731(1)	27(1)
C(14)	8987(2)	-56(1)	6400(1)	26(1)
C(15)	9177(2)	408(1)	5740(1)	23(1)
C(16)	8048(2)	5948(1)	1376(1)	25(1)
C(17)	7283(2)	5716(1)	744(1)	24(1)
C(18)	6190(3)	5797(1)	1886(1)	30(1)
C(19)	9150(3)	6927(1)	1264(1)	33(1)
C(20)	4790(2)	5858(1)	599(1)	31(1)
C(21)	8635(3)	6231(1)	143(1)	32(1)
B(1)	9340(3)	4466(1)	1383(1)	23(1)
O(1')	2152(2)	1721(1)	7630(1)	31(1)
O(2')	5095(2)	-151(1)	8297(1)	26(1)
O(3')	3091(2)	363(1)	9041(1)	27(1)
C(1')	6014(3)	1560(1)	8344(1)	26(1)
C(2')	6067(2)	2045(1)	7608(1)	25(1)
C(3')	3756(2)	2126(1)	7309(1)	24(1)
C(4')	3456(2)	2667(1)	6606(1)	22(1)
C(5')	1404(2)	2589(1) S59	6307(1)	23(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for Baran676. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(6')	1078(2)	3038(1)	5654(1)	23(1)
C(7')	2801(2)	3579(1)	5269(1)	21(1)
C(8')	4833(2)	3666(1)	5571(1)	23(1)
C(9')	5162(2)	3220(1)	6229(1)	23(1)
C(10')	2503(2)	4040(1)	4561(1)	22(1)
C(11')	510(2)	4514(1)	4311(1)	24(1)
C(12')	250(2)	4946(1)	3649(1)	26(1)
C(13')	1966(2)	4903(1)	3221(1)	26(1)
C(14')	3954(2)	4423(1)	3463(1)	25(1)
C(15')	4224(2)	4001(1)	4126(1)	23(1)
C(16')	3417(2)	-899(1)	8561(1)	26(1)
C(17')	2582(2)	-658(1)	9186(1)	26(1)
C(18')	1614(3)	-773(1)	8041(1)	32(1)
C(19')	4567(3)	-1871(1)	8684(1)	34(1)
C(20')	88(3)	-807(1)	9321(1)	35(1)
C(21')	3902(3)	-1170(1)	9797(1)	34(1)
B(1')	4652(3)	592(1)	8553(1)	24(1)

Table 3. Bond lengths [Å] and angles $[\circ]$ for Baran676.

1.2201(16)
1.4585(16)
1.3701(19)
1.4608(16)
1.3651(18)
1.5316(18)
1.568(2)
1.510(2)
1.4943(18)
1.398(2)
1.3918(19)
1.3825(19)
1.3989(19)
1.396(2)
1.4839(18)
1.3831(19)
1.397(2)
1.3961(19)
1.387(2)
1.388(2)
1.387(2)
1.3859(19)
1.565(2)
1.525(2)
1.520(2)
1.514(2)
1.5179(19)
1.2215(17)
1.4619(17)
1.3743(19)
1.4554(17)
1.3672(19)
1.5334(18)
1.571(2)
1.506(2)
1.4959(18)

C(4')-C(5')	1.399(2)
C(4')-C(9')	1.395(2)
C(5')-C(6')	1.3789(19)
C(6')-C(7')	1.4022(19)
C(7')-C(8')	1.3953(19)
C(7')-C(10')	1.4842(18)
C(8')-C(9')	1.3854(19)
C(10')-C(11')	1.3944(19)
C(10')-C(15')	1.398(2)
C(11')-C(12')	1.3855(19)
C(12')-C(13')	1.387(2)
C(13')-C(14')	1.391(2)
C(14')-C(15')	1.3850(19)
C(16')-C(17')	1.568(2)
C(16')-C(18')	1.5207(19)
C(16')-C(19')	1.518(2)
C(17')-C(20')	1.513(2)
C(17')-C(21')	1.524(2)
B(1)-O(2)-C(16)	107.44(11)
B(1)-O(3)-C(17)	107.51(11)
C(2)-C(1)-B(1)	112.89(11)
C(3)-C(2)-C(1)	112.70(11)
O(1)-C(3)-C(2)	121.10(12)
O(1)-C(3)-C(4)	120.25(13)
C(4)-C(3)-C(2)	118.65(11)
C(5)-C(4)-C(3)	119.62(12)
C(9)-C(4)-C(3)	121.64(12)
C(9)-C(4)-C(5)	118.74(12)
C(6)-C(5)-C(4)	120.85(13)
C(5)-C(6)-C(7)	120.65(13)
C(6)-C(7)-C(10)	121.72(12)
C(8)-C(7)-C(6)	118.05(12)
C(8)-C(7)-C(10)	120.22(12)
C(9)-C(8)-C(7)	121.44(12)
C(8)-C(9)-C(4)	120.24(13)
C(11)-C(10)-C(7)	121.57(12)
C(15)-C(10)-C(7)	120.31(12)

C(15)-C(10)-C(11)	118.12(12)
C(12)-C(11)-C(10)	120.94(13)
C(11)-C(12)-C(13)	120.32(13)
C(14)-C(13)-C(12)	119.23(13)
C(15)-C(14)-C(13)	120.50(13)
C(14)-C(15)-C(10)	120.88(13)
O(2)-C(16)-C(17)	102.48(10)
O(2)-C(16)-C(18)	106.32(11)
O(2)-C(16)-C(19)	108.36(12)
C(18)-C(16)-C(17)	113.14(12)
C(19)-C(16)-C(17)	114.87(12)
C(19)-C(16)-C(18)	110.86(12)
O(3)-C(17)-C(16)	102.79(10)
O(3)-C(17)-C(20)	108.51(12)
O(3)-C(17)-C(21)	106.57(11)
C(20)-C(17)-C(16)	114.43(12)
C(20)-C(17)-C(21)	109.77(12)
C(21)-C(17)-C(16)	114.11(12)
O(2)-B(1)-C(1)	121.86(13)
O(3)-B(1)-O(2)	113.43(12)
O(3)-B(1)-C(1)	124.57(13)
B(1')-O(2')-C(16')	107.28(11)
B(1')-O(3')-C(17')	107.88(11)
C(2')-C(1')-B(1')	113.91(12)
C(3')-C(2')-C(1')	112.17(12)
O(1')-C(3')-C(2')	120.40(12)
O(1')-C(3')-C(4')	120.04(13)
C(4')-C(3')-C(2')	119.49(12)
C(5')-C(4')-C(3')	118.61(12)
C(9')-C(4')-C(3')	122.83(12)
C(9')-C(4')-C(5')	118.52(12)
C(6')-C(5')-C(4')	120.87(13)
C(5')-C(6')-C(7')	120.89(13)
C(6')-C(7')-C(10')	121.56(12)
C(8')-C(7')-C(6')	117.99(12)
C(8')-C(7')-C(10')	120.45(12)
C(9')-C(8')-C(7')	121.26(13)
C(8')-C(9')-C(4')	120.46(13)

C(11')-C(10')-C(7')	121.26(12)
C(11')-C(10')-C(15')	118.26(12)
C(15')-C(10')-C(7')	120.48(12)
C(12')-C(11')-C(10')	120.90(13)
C(11')-C(12')-C(13')	120.42(13)
C(12')-C(13')-C(14')	119.26(13)
C(15')-C(14')-C(13')	120.30(13)
C(14')-C(15')-C(10')	120.85(13)
O(2')-C(16')-C(17')	102.65(11)
O(2')-C(16')-C(18')	106.34(11)
O(2')-C(16')-C(19')	107.97(12)
C(18')-C(16')-C(17')	113.66(12)
C(19')-C(16')-C(17')	115.04(12)
C(19')-C(16')-C(18')	110.36(12)
O(3')-C(17')-C(16')	102.91(11)
O(3')-C(17')-C(20')	108.95(12)
O(3')-C(17')-C(21')	106.46(11)
C(20')-C(17')-C(16')	114.67(12)
C(20')-C(17')-C(21')	109.38(12)
C(21')-C(17')-C(16')	113.87(12)
O(2')-B(1')-C(1')	122.05(13)
O(3')-B(1')-O(2')	113.32(13)
O(3')-B(1')-C(1')	124.34(13)

	T ⊥11	I 122	I 133	I 123	T 113	T 115
	U	0	0	0	0	0
O(1)	25(1)	31(1)	24(1)	-4(1)	-4(1)	4(1)
O(2)	26(1)	23(1)	25(1)	-6(1)	-2(1)	3(1)
O(3)	28(1)	24(1)	22(1)	-6(1)	-2(1)	5(1)
C(1)	25(1)	24(1)	22(1)	-6(1)	1(1)	2(1)
C(2)	24(1)	23(1)	22(1)	-6(1)	-2(1)	3(1)
C(3)	26(1)	18(1)	23(1)	-8(1)	-3(1)	2(1)
C(4)	23(1)	18(1)	23(1)	-8(1)	-1(1)	3(1)
C(5)	22(1)	22(1)	26(1)	-8(1)	-4(1)	3(1)
C(6)	20(1)	21(1)	26(1)	-7(1)	0(1)	1(1)
C(7)	23(1)	18(1)	23(1)	-7(1)	-1(1)	4(1)
C(8)	22(1)	22(1)	23(1)	-8(1)	-4(1)	3(1)
C(9)	21(1)	20(1)	25(1)	-7(1)	0(1)	0(1)
C(10)	23(1)	17(1)	24(1)	-8(1)	0(1)	-1(1)
C(11)	25(1)	20(1)	27(1)	-7(1)	-1(1)	2(1)
C(12)	29(1)	23(1)	27(1)	-9(1)	5(1)	-1(1)
C(13)	37(1)	22(1)	22(1)	-6(1)	0(1)	-2(1)
C(14)	29(1)	23(1)	26(1)	-6(1)	-6(1)	3(1)
C(15)	23(1)	22(1)	25(1)	-8(1)	0(1)	1(1)
C(16)	26(1)	22(1)	26(1)	-4(1)	2(1)	4(1)
C(17)	24(1)	22(1)	24(1)	-3(1)	2(1)	4(1)
C(18)	36(1)	26(1)	27(1)	-6(1)	6(1)	3(1)
C(19)	35(1)	25(1)	38(1)	-9(1)	6(1)	-1(1)
C(20)	26(1)	32(1)	33(1)	-5(1)	-1(1)	4(1)
C(21)	30(1)	35(1)	25(1)	-1(1)	3(1)	5(1)
B(1)	21(1)	26(1)	20(1)	-4(1)	4(1)	-1(1)
O(1')	29(1)	33(1)	25(1)	-2(1)	2(1)	-3(1)
O(2')	29(1)	24(1)	26(1)	-7(1)	0(1)	-2(1)
O(3')	32(1)	23(1)	25(1)	-6(1)	0(1)	-2(1)
C(1')	30(1)	26(1)	24(1)	-7(1)	-3(1)	-1(1)
C(2')	28(1)	24(1)	23(1)	-5(1)	0(1)	-1(1)
C(3')	30(1)	18(1)	23(1)	-7(1)	2(1)	1(1)
C(4')	25(1)	19(1)	23(1)	-8(1)	1(1)	2(1)
C(5')	22(1)	22(1)	26(1)	-7(1)	4(1)	0(1)
. /	. /		. /	S65		× /

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Baran676.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(6')	21(1)	23(1)	26(1)	-9(1)	0(1)	2(1)
C(7')	24(1)	18(1)	23(1)	-7(1)	1(1)	2(1)
C(8')	24(1)	20(1)	24(1)	-6(1)	3(1)	-2(1)
C(9')	23(1)	21(1)	24(1)	-8(1)	-1(1)	0(1)
C(10')	23(1)	18(1)	24(1)	-8(1)	-1(1)	-2(1)
C(11')	23(1)	22(1)	27(1)	-10(1)	1(1)	-1(1)
C(12')	27(1)	21(1)	29(1)	-7(1)	-6(1)	1(1)
C(13')	34(1)	21(1)	22(1)	-5(1)	-2(1)	-4(1)
C(14')	28(1)	24(1)	24(1)	-9(1)	4(1)	-4(1)
C(15')	22(1)	21(1)	25(1)	-8(1)	-1(1)	-1(1)
C(16')	27(1)	23(1)	27(1)	-5(1)	-3(1)	-3(1)
C(17')	29(1)	22(1)	26(1)	-4(1)	-2(1)	-3(1)
C(18')	37(1)	28(1)	30(1)	-6(1)	-9(1)	-1(1)
C(19')	36(1)	27(1)	39(1)	-10(1)	-8(1)	2(1)
C(20')	30(1)	35(1)	37(1)	-8(1)	-1(1)	-3(1)
C(21')	36(1)	35(1)	26(1)	-3(1)	-5(1)	-3(1)
B(1')	26(1)	26(1)	21(1)	-5(1)	-6(1)	4(1)

	x	у	Z	U(eq)
H(1A)	9986	3024	1417	28
H(1B)	12247	3606	1447	28
H(2A)	11480	2424	2462	28
H(2B)	11639	3483	2540	28
H(5)	4937	1995	3306	27
H(6)	4510	1173	4402	27
H(8)	10863	1913	4739	27
H(9)	11335	2690	3638	26
H(11)	4183	1379	5505	29
H(12)	3879	604	6615	31
H(13)	6896	-302	7184	32
H(14)	10214	-426	6627	32
H(15)	10536	354	5520	28
H(18A)	5529	5156	1958	45
H(18B)	5021	6289	1733	45
H(18C)	6825	5848	2294	45
H(19A)	9556	7016	1683	49
H(19B)	8094	7434	1037	49
H(19C)	10509	6962	1000	49
H(20A)	4454	5715	191	47
H(20B)	4375	6527	557	47
H(20C)	3927	5424	954	47
H(21A)	10247	6140	241	47
H(21B)	8275	6920	13	47
H(21C)	8256	5964	-211	47
H(1'A)	5341	2013	8557	32
H(1'B)	7581	1429	8503	32
H(2'A)	6722	2697	7519	30
H(2'B)	7051	1668	7402	30
H(5')	219	2221	6558	28
H(6')	-333	2980	5461	27
H(8')	6013	4039	5322	27

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Baran676.

H(9')	6559	3291	6424	27
H(11')	-687	4541	4598	28
H(12')	-1112	5274	3488	31
H(13')	1786	5199	2767	31
H(14')	5133	4384	3173	30
H(15')	5595	3680	4286	27
H(18D)	938	-131	7951	48
H(18E)	446	-1263	8195	48
H(18F)	2294	-843	7643	48
H(19D)	5023	-1962	8269	51
H(19E)	3520	-2383	8907	51
H(19F)	5900	-1894	8956	51
H(20D)	-290	-644	9719	52
H(20E)	-295	-1482	9376	52
H(20F)	-767	-391	8955	52
H(21D)	5519	-1080	9709	51
H(21E)	3549	-1860	9928	51
H(21F)	3485	-901	10148	51

Unsuccessful or Challenging Substrates

Figure S4. Unsuccessful or challenging substrates.

Cost Calculations

Price and Vendor of Reagents

Reagents	CAS No.	Mw/Conc.	Vender	Price listed (\$)	Price/mol (\$)
B_2pin_2	73183-34-3	253.9	Combi-Blocks	360/1 kg	91.4
B_2cat_2	13826-27-2	237.8	Combi-Blocks	480/100 g	1141.4
$B_2(NMe_2)_4$	1630-79-1	197.9	Combi-Blocks	599/500 g	237.1
Catechol	120-80-9	110.1	Sigma-Aldrich	292/5 kg	6.4
B_2cat_2		348.9			
LiOH•H ₂ O	1310-66-3	42.0	Sigma-Aldrich	215/2 kg	4.5
Cu(acac) ₂	13395-16-9	261.8	Combi-Blocks	250/1 kg	65.5
MgCl ₂	7786-30-3	95.2	Sigma-Aldrich	164/5 kg	3.1
NiCl ₂ •H ₂ O	7791-20-0	237.7	Sigma-Aldrich	350/2 kg	41.6
<i>di</i> MeObipy	17217-57-1	216.2	Combi-Blocks	360/25 g	3113.3
MeLi	917-54-4	1.6 M in Et ₂ O	Sigma-Aldrich	1410/8 L	110.2
MgBr ₂ •Et ₂ O	29858-07-9	258.2	Sigma-Aldrich	135.3/100 g	349.3
Pinacol	76-09-5	118.2	Combi-Blocks	250/1 kg	29.6
Ir[(ppy) ₂ dtbpy]PF ₆	676525-77-2	914.0	Sigma-Aldrich	160/250 mg	584960
IrCl ₃ •xH ₂ O	14996-61-3	>316.6	Sigma-Aldrich	1250/25 g	15830
2-phenylpyridine	1008-89-5	155.2	Combi-Blocks	900/1 kg	139.7
<i>t</i> Bubipy	72914-19-3	268.4	Oakwood	210/25 g	2254.6
NH ₄ PF ₆	16941-11-0	163.0	Oakwood	395/2.5 kg	25.8
Ir[(ppy) ₂ dtbpy]PF ₆	1. 95% (2.5	24918.8			

Table S8. Price and vendor of reagents

Cost Comparison

Reagents	Price/mol (\$)	Ni	hv	РЕТ	Cu
B ₂ pin ₂	91.4	3.3 eq		4 eq	1.5 eq
B ₂ cat ₂	1141.4 ^{<i>a</i>}		1.25 eq^a		
B ₂ cat ₂	348.9 ^b		1.25 eq ^b		
LiOH•H ₂ O	4.5				15 eq
Cu(acac) ₂	65.5				0.2 eq
MgCl ₂	3.1				1.5 eq
NiCl ₂ •H ₂ O	41.6	0.1 eq			
<i>di</i> MeObipy	3113.3	0.13 eq			
MeLi	110.2	3.0 eq			
MgBr ₂ •Et ₂ O	349.3	1.5 eq			
Pinacol	29.6		4 eq		
Ir[(ppy) ₂ dtbpy]PF ₆	584960 ^a			0.01 eq^a	
Ir[(ppy) ₂ dtbpy]PF ₆	24918.8 ^b			0.01 eq^b	
Cost/mol (\$)		1565	1545^{a} 555^{b}	6215^{a} 615^{b}	222

Table S9. Cost comparison.

^{*a*}: Cost calculated based on price from commercial sources.

^b: Cost calculated based on price of self-made reagents.

Kinetic Studies

General Method for Kinetic Studies

To a dry 1 dram vial equipped with a magnetic stir bar and a screw cap with septum was added 5-phenylvaleric NHPI ester (16.2 mg, 0.05 mmol), LiOH•H₂O (31.5 mg, 0.75 mmol), MgCl₂ (anhydrous, 15.2 mg, 0.075 mmol) and B₂pin₂ (19 mg, 0.075 mmol). The screw joint of the vial was Teflon taped, the vial was closed and the atmosphere exchanged by 3 cycles of vacuum/N₂. The vial was placed in a 27 °C oil bath (stir speed 1000 rpm) and at time = 0, 0.35 mL of a mixed solution of Cu(acac)₂ (0.01 mmol) and 4,4'-di-*tert*-butylbiphenyl (0.005 mmol) was added. The mixture of Cu(acac)₂ (0.0286 M) and internal standard (0.0144 M) was prepared inert in a volumetric flask using a dry and inert solvent mixture of 1,4-dioxane and DMF (4:1). Aliquots (~20 µL) were removed from the reaction at the indicated times and directly injected into 0.4 mL MeCN in a filter vial without any further quench and subjected to analysis.

Analysis

All samples were analyzed using a Waters I-Class (SM-FTN) instrument with Waters PDA diode array detector and Waters QDa mass spectrometer, equipped with a Waters Cortecs C18 column (2.1x55 mm, 1.6 micron). The analysis was taking place at 35 °C using a gradient based on (A) 0.1% formic acid in water and (B) acetonitrile (10-99% B over 2.5 minutes, hold at 99% B for 0.2 minutes).

Retention times for relevant species: RAE (S1) 1.836 minutes (detection wavelength 298 nm), product (11) 2.143 minutes (detection wavelength 228 nm), 5-phenylvaleric acid 1.211 minutes (detection wavelength 228 nm), 4,4'-di-*tert*-butyl biphenyl 2.614 minutes (detection wavelength 228 nm). Analyte concentrations were calculated against 4,4'-di-*tert*-butyl biphenyl as internal standard, and all analytes were calibrated separately using a series of six calibration solutions of different concentration with the highest concentration of the series being 5 mM.
Results

Figure S5. Time course of the borylation reaction under standard conditions: 140 mM RAE, 1.5 equiv B₂pin₂, 20 mol% Cu(acac)₂, 1.5 equiv MgCl₂, 15 equiv LiOH•H₂O.

Figure S6. Time course of the borylation reaction with varying concentrations of reactants/reagents (cf Fig 3A in main article). Standard conditions: 140 mM RAE, 1.5 equiv B₂pin₂, 20 mol% Cu(acac)₂, 1.5 equiv MgCl₂, 15 equiv LiOH•H₂O. Low MgCl₂ = 28 mM (0.2 equiv)

Figure S7. Yield of the borylation reaction after 4 minutes when one reaction component at a time has been removed or, in the case of Cu, exchanged (20 mol% Cu(acac)₂ for 20 mol% CuI). Standard conditions: 140 mM RAE, 1.5 equiv B₂pin₂, 20 mol% Cu(acac)₂, 1.5 equiv MgCl₂, 15 equiv LiOH•H₂O. Where applicable, [LiCl] = 210 mM (1.5 equiv) and [H₂O] = 2100 mM (15 equiv).

Figure S8. Time course data for the borylation reaction when one reaction component at a time has been removed or, in the case of Cu, exchanged (20 mol% Cu(acac)₂ for 20 mol% Cu]. Standard conditions: 140 mM RAE, 1.5 equiv B₂pin₂, 20 mol% Cu(acac)₂, 1.5 equiv MgCl₂, 15 equiv LiOH•H₂O. Where applicable, [LiCl] = 210 mM (1.5 equiv) and [H₂O] = 2100 mM (15 equiv). For the no B₂pin₂ experiment, [RAE] = 70 mM.

Figure S9. Time course data for the borylation reaction when one reaction component at a time has been removed or, in the case of Cu, exchanged (20 mol% Cu(acac)₂ for 20 mol% CuI). Standard conditions: 140 mM RAE, 1.5 equiv B₂pin₂, 20 mol% Cu(acac)₂, 1.5 equiv MgCl₂, 15 equiv LiOH•H₂O. Where applicable, [LiCl] = 210 mM (1.5 equiv) and [H₂O] = 2100 mM (15 equiv). For the no B₂pin₂ experiment, [RAE] = 70 mM.

Equations derived from Eq. 3 in the main article:

$$\frac{d[product]}{d[RAE]} = \frac{1}{1 + \frac{k'}{k} \cdot TON}$$
(S1)

$$TON = \frac{[RAE]}{[Cu]}$$
(S2)

$$mol\% = \frac{1}{TON} \cdot 100$$
 (S3)

References

- Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C. M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran P. S. Practical Ni-Catalyzed Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters. J. Am. Chem. Soc. 2016, 138, 2174–2177.
- Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran P. S. A General Alkyl-Alkyl Cross-Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents. *Science* 2016, *352*, 801–805.
- 3. Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S. Redox-Active Esters in Fe-Catalyzed C–C Coupling. J. Am. Chem. Soc. 2016, 138, 11132–11135.
- Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Nickel-Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. *Angew. Chem. Int. Ed.* 2017, 56, 260–265.
- Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Decarboxylative Borylation. *Science* 2017, *356*, eaam7355.
- Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation of Carboxylic Acids. *Science* 2017, *357*, 283–286.
- Wang, J.; Lundberg, H.; Asai, S.; Martin-Acosta, P.; Chen, J. S.; Brown, S.; Farrell, W.; Dushin, R. G.; O'Donnell, C. J.; Ratnayake, A. S.; Richardson, P.; Liu, Z.; Qin, T.; Blackmond, D. G.; Baran, P. S. Kinetically Guided Radical-Based Synthesis of C(sp³)–C(sp³) Linkages on DNA. *Proc. Natl. Acad. Sci.* 2018, *115*, E6404–E6410.
- Tlahuext-Aca, A.; Candish, L.; Garza-Sanchez, R. A.; Glorius, F. Decarboxylative Olefination of Activated Aliphatic Acids Enabled by Dual Organophotoredox/Copper Catalysis. ACS Catal. 2018, 8, 1715–1719.
- Bismuto, A.; Cowley, M. J.; Thomas, S. P. Aluminum-Catalyzed Hydroboration of Alkenes. ACS Catal. 2018, 8, 2001–2005.
- Lawlor, F. J.; Norman, N. C.; Pickett, N. L.; Robins, E. G. Nguyen, P.; Lesley, G.; Marder, T. B.; Ashmore, J. A.; Green, J. C. Bis-Catecholate, Bis-Dithiocatecholate, and Tetraalkoxy Diborane(4) compounds: Aspects of Synthesis and Electronic Structure. *Inorg. Chem.* 1998, *37*, 5282–5288.
- Skórka, Ł.; Filapek, M.; Zur, L.; Małecki, J. G.; Pisarski, W.; Olejnik, M.; Danikiewicz, W.; Krompiec, S. Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine Tuning of the Emission Wavelength through Ancillary Ligands. J. Phy. Chem. C 2016, 120, 7284–7294.
- Martir, D. R.; Momblona, C.; Pertegás, A.; Cordes, D. B.; Slawin, A. M. Z.; Bolink, H. J.; Zysman-Colman, E. Chiral Iridium(III) Complexes in Light-Emitting Electrochemical Cells: Exploring the Impact of Stereochemistry on the Photophysical Properties and Device Performances. *ACS Appl. Mater. Interfaces* 2016, *8*, 33907–33915.

NMR Spectra

Compound S26¹H NMR

Compound S27 ¹³C NMR

S84

Compound S29¹H NMR

S86

Compound S30 ¹³C NMR

Compound S31 ¹³C NMR

Compound S32 ¹H NMR

Compound S33 ¹H NMR

— 2.85 — 2.71 — 2.12 — 1.87 — 1.38

Compound S33 ¹³C NMR

Compound S34 ¹H NMR

Compound 2¹H NMR

Compound 6¹H NMR

S102

Compound 12 ¹H NMR

Compound 13 ¹³C NMR

S109

S112

Compound 15¹³C NMR

Compound 19¹H NMR

Compound 19¹³C NMR

Compound 20¹H NMR

Compound 20¹³C NMR

Compound 22 ¹H NMR

Compound 22 ¹³C NMR

Compound 23 ¹³C NMR

Compound 24 ¹H NMR

Compound 26¹³C NMR

Compound 28 ¹H NMR

Compound 28¹³C NMR

Compound 29¹H NMR

Compound 31 ¹H NMR

Compound 33 ¹H NMR

Compound 33 ¹³C NMR

Compound 36¹³C NMR

— -114.07

Compound 37 ¹H NMR

Compound 37 ¹³C NMR

Compound 39¹H NMR

S164

Compound 40¹³C NMR

Compound 41 ¹H NMR

Compound 41 ¹³C NMR

S170

Mixture 49¹³C NMR