Immunity, Volume 49

Supplemental Information

An Interleukin-23-Interleukin-22 Axis

Regulates Intestinal Microbial Homeostasis

to Protect from Diet-Induced Atherosclerosis

Aliia R. Fatkhullina, Iuliia O. Peshkova, Amiran Dzutsev, Turan Aghayev, John A. McCulloch, Vishal Thovarai, Jonathan H. Badger, Ravi Vats, Prithu Sundd, Hsin-Yao Tang, Andrew V. Kossenkov, Stanley L. Hazen, Giorgio Trinchieri, Sergei I. Grivennikov, and Ekaterina K. Koltsova

Figure S1. IL-23 and IL-22 pathway inactivation promotes atherosclerosis but does not affect body weight, blood cell count and serum lipid profile. Related to Figure 1.

A. Body weight of WT \rightarrow Ldlr^{-/-}, II23r^{-/-} \rightarrow Ldlr^{-/-} II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice after 16 weeks on Western diet (WD) (n=5-10 mice per group) in all conditions: mIL-22-Ig, antibiotic, anti-OPN treatments. **B.** Blood cell count in WT \rightarrow Ldlr^{-/-}, II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice after 16 weeks on WD (n=5-10 mice per group). **C.** Serum triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol levels in WT \rightarrow Ldlr^{-/-} (n=5), II23^{-/-} \rightarrow Ldlr^{-/-} (n=5), II23^{-/-} \rightarrow Ldlr^{-/-} (n=5) or II22^{-/-} \rightarrow Ldlr^{-/-} (n=7) mice. **D**. Representative images of aortic root sections and quantitative comparison of atherosclerotic lesion size of WT \rightarrow Ldlr^{-/-} (n=13) or II23r^{-/-} \rightarrow Ldlr^{-/-} (n=11) mice fed with WD for 16 weeks. **E.** Representative images of aortic root sections and quantitative comparison of atherosclerotic lesion size of Ldlr^{-/-} (n=8) or Ldlr^{-/-} x II23^{-/-} (n=9) mice fed with WD for 16 weeks. **F.** Representative images of aortic root sections and quantitative comparison of atherosclerotic lesion size of Apoe^{-/-} x II23^{+/-} (n=6) or Apoe^{-/-} x II23^{-/-} (n=7) mice fed with WD for 14 weeks. Scale bar represents 100µm. Data are mean ± SEM from 3 independent experiments. **p<0.001, ***p<0.0001.

Figure S2.

Figure S2. Changes in immune cells accumulation and cytokine expression in *II23^{-/-}* \rightarrow Ldlr^{-/-}, *II22^{-/-}* \rightarrow Ldlr^{-/-} and WT \rightarrow Ldlr^{-/-} mice. Related to Figure 1 and 2.

A. Immunofluorescent analysis of aortic root sections. Localization of CD3⁺ T cells and CD11b⁺, CD11b⁺CD11c⁺, CD11c⁺ mveloid cells in aortic roots of WT \rightarrow Ldlr^{/-} or Il23^{-/-} \rightarrow Ldlr^{/-} mice. Arrows show the localization of CD3⁺ T cells. Representative images from 3 independent experiments. **B.** Quantification of immune cells in a rtic roots of WT \rightarrow Ldlr^{-/-} or II23^{-/-} \rightarrow Ldlr^{-/-} mice. **C.** Intracellular IFN- γ and IL-17A staining (gated on TCR β) of T cells isolated from aortas of WT \rightarrow Ldlr^{-/-} or II23^{-/-} \rightarrow Ldlr^{-/-} mice (left panel); cell number and percentage of IFN- γ and IL-17A producing T cells (right panel). D Intracellular IL-22 staining in T cells (gated on TCRβ) and innate lymphoid cells (gated on CD90.2) isolated from aorta and lamina propria (LPL) of $WT \rightarrow Ldlr^{-}$ and $ll23^{-} \rightarrow Ldlr^{-}$ mice. **E.** Immunofluorescent analysis of aortic root sections. Localization of CD3⁺ T cells and CD11b⁺, CD11b⁺CD11c⁺, CD11c⁺ myeloid cells in aortic roots of WT \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice. Arrows show the localization of CD3⁺ T cells. Representative images from 3 independent experiments. F. Quantification of immune cells in aortic roots of WT \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice. G. Relative II22 gene expression normalized to RpL32 gene expression in the intestines of WT \rightarrow Ldlr^{-/-} (n=6) and II22^{-/-} \rightarrow Ldlr^{-/-} (n=6). **H.** Reconstitution efficiency of ILC and T cells in intestine of mice after bone marrow transplantation. Data are mean \pm SEM *p<0.05. Scale bar represents 50 μ m. A-adventitia, M-media, P-plaque.

Figure S3.

Figure S3. Macrophage related gene expression, apoptosis and smooth muscle cell proliferation in aortas of WT $\rightarrow Ldlr^{-}$, $ll23^{-}\rightarrow Ldlr^{-}$ and $ll22^{-}\rightarrow Ldlr^{-}$ mice. Related to Figure 1 and 2.

A-C. IL-23 and IL-22 deficiency results in increased number of apoptotic cells and smooth muscle actin (α -SMA) in the aortic roots. **A.** TUNEL and Immunofluorescence analyzes, localization and quantification of apoptotic cells and CD11b⁺ macrophages in the aortic roots of WT \rightarrow Ldlr^{/-}, II23^{-/-} \rightarrow Ldlr^{/-} or II22^{-/-} \rightarrow Ldlr^{/-} mice. **B.** Immunofluorescence analysis and quantification of α -SMA in the aortic roots of WT \rightarrow Ldlr^{/-}, II23^{-/-} \rightarrow Ldlr^{/-} mice. **Representative images from 3 independent experiments.** Scale bar represents 50µm. **C, D.** The expression of macrophage genes in the aorta of WT \rightarrow Ldlr^{/-}, II23^{-/-} \rightarrow Ldlr^{/-} or II22^{-/-} \rightarrow Ldlr^{/-} mice. **E.** Relative gene expression of cholesterol reverse transporters in the aorta of WT \rightarrow Ldlr^{/-}, II23^{-/-} \rightarrow Ldlr^{/-} or II22^{-/-} \rightarrow Ldlr^{/-} mice. Gene expression was normalized to *RpL32* gene expression. Data are mean ± SEM *p<0.05, **p<0.001, ***p<0.0001.

Figure S4.

Figure S4. Cytokine alterations modulate microbiota localization and inflammatory gene expression. Related to Figure 3 and 4.

A. Representative images of whole mount intestine tissue from WT \rightarrow Ldlr^{-/-}, II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice stained with YoYo dye of bacterial and host DNA (**top panel**) and scanning electron microscopy (SEM) of terminal ileum (**bottom panel**). Representative images from 2 independent experiments. **B.** Relative gene expression of *Prevotellaceae* and *Bacteroides* in the intestinal tissue of WT \rightarrow Ldlr^{-/-}, II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice maintained on antibiotic-containing (Abx) or regular water (Reg); n=5-6. Gene expression was normalized to *RpL32* gene expression. **C.** Relative gene expression in the intestines of II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} atherosclerotic mice. **E.** Relative gene expression in the intestines of WT \rightarrow Ldlr^{-/-} mice received microbiota from WT \rightarrow Ldlr^{-/-} or II23^{-/-} \rightarrow Ldlr^{-/-} atherosclerotic mice. **C.F.** Gene expression was normalized to *RpL32* gene expression and then normalized to average gene expression in the control group. Data are mean ± SEM from 3 independent experiments, *p<0.05.

D

PC#1 28%

PC #3 10.2%

Figure S5. Microbiome alterations are dependent of IL-23 and IL-22 cytokines. Related to Figure 4.

A. Principal component analysis of the cecum luminal microbiota of WT \rightarrow Ldlr^{-/-} mice (recipients of microbiota from WT \rightarrow Ldlr^{-/-} (blue) or $II23^{-/-}\rightarrow$ Ldlr^{-/-} (red) donors) before microbiome transplantation. Principal component analysis (**B**) and heat map (**C**) of the cecum luminal microbiota of WT \rightarrow Ldlr^{-/-} mice after microbiome transfer from atherosclerotic WT \rightarrow Ldlr^{-/-} or $II23^{-/-}\rightarrow$ Ldlr^{-/-} followed by WD feeding for 16 weeks. Red – upregulated bacteria, blue – downregulated bacteria. **D**. Global microbiome comparison in WT \rightarrow Ldlr^{-/-} and $II23^{-/-}\rightarrow$ Ldlr^{-/-} mice administered with mIL-22-Ig or control. *p<0.05.

А

С

	Fold vs average												
5 ≤	-1.5	-1.2	÷	Ħ	5	1.2	1.5	22					

FC PV	PVWT <i>→Ldlr</i> -′							123	3-/-·	→L	dl	r⁄-	Metabolite
5.0 0.016													Stearic acid
3.7 0.002													(2R)-2,3-Dihydroxypropanoic acid
3.3 0.005													L-Glyceric acid
2.9 0.016													Dodecyl sulfate
2.9 0.036													2-IsopropyImalic acid
2.8 0.034													Methyl picolinate
1.7 0.013													N-acetyl-glutamine
1.5 0.024													Gluconic acid
1.5 0.003													O-Acetylserine
1.4 0.019													Glutamine
1.3 0.031													AMP
-1.5 0.030													9-Oxo-10(E),12(E)-octadecadienoic acid
-1.6 0.027													Indole-3-lactic acid
-1.6 0.020													Guanidinosuccinic acid
-1.7 0.007													2-Oxindole
-2.3 0.008													Hexadecanedioic acid

В

FC PV	WT <i>→Ldlr</i> ⁄-	ll22 ^{-/-} →Ldlr-/-
-		

Metabolite

7.1	0.045							Xanthosine	
5.3	0.007							Kynurenic acid	
4.6	0.033							4-Acetamidobenzoic acid	
3.4	0.042							2-Hydroxy-4-methylthiobutanoic acid	
3.1	0.021							Methyl picolinate	
3.1	0.003							Methionine sulfoxide	
3.0	0.001							Acetylglutamic acid	
3.0	0.007							(2R)-2,3-Dihydroxypropanoic acid	
2.8	0.012							L-Glyceric acid	
2.6	0.049							2-Methylglutaric acid	
2.4	0.001							Glycolic acid	
2.4	0.001							4-Acetamidobutanoic acid	
2.3	0.012							Acetylglutamic acid	
2.2	0.012							Sarcosine	_
2.1	0.027							3-Isopropylmalic acid	D
1.8	0.006							N-Alpha-acetyllysine	_
1.8	0.025							UMP	
1.8	0.042							α,α-Trehalose	
1.7	0.009							Acetylarginine	
1.6	0.009							Methionine	
1.6	0.023							N-acetyl-glutamine	
1.5	0.016							Tvrosine	
1.5	0.039							N-Acetylornithine	
1.4	0.045							GMP	
1.4	0.024							Proline	
1.3	0.049							Glutamine	
1.3	0.026							Coumarin	
1.3	0.034							Carnitine	
-1.3	0.024							Symmetric dimethylarginine	
-1.4	0.043							Creatinine	
-1.4	0.013							3-Methylhistidine	
-1.4	0.046							7-Methylquanine	
-1.5	0.008							Pipecolinic acid	
-1.5	0.020							2-Oxindole	
-1.5	0.048							1-Methyl-Histidine	
-1.6	0.007							4-Hvdroxvbutvric acid (GHB)	
-1.6	0.008							3-Ureidopropionic acid	
-1.7	0.001							Palmitovlcarnitine	
-1.7	0.001	_						Carnosine	
-1.8	0.043							Docosahexaenoic acid	
-1.0	0.025							14(S)-HDHA	
-2.0	0.023							(+/-)12-HpETE	
-2.0	0.012							N-Acetylalycine	
-2.1	0.027							Nicotinamide 1-oxide	
-2.1	0.007							Cytosine	
-2.1	0.016							14/S)-HDHA	
-2.2	0.010							Guanidinosuccinic acid	
-2.3	0.000							Methylcysteine	
-3.3	0.000							Curtino	
-4.1	0.001							Cysund	

			7		χ^{\prime}				
	~	4	111	114	ŚŚ	JII			
FC	PV		<u> </u>		1°,	Metabolite			
56.3	0.036					GMP			
40.9	0.007					Phosphorylcholine			
35.0	0.015					4-aminobutyrate			
12.7	0.020					Taurodeoxycholic acid			
11.9	0.022					riboflavin			
9.8	0.042					glucosamine-1			
7.9	0.004					N-acetyl-glucosamine			
7.0	0.016					Adenylosuccinate			
5.8	0.024					Carbamoyl phosphate			
4.2	0.013					L-Kynurenine			
3.8	0.002					Leucic Acid			
3.3	0.001					Cellobiose			
3.3	0.046					glutamate			
2.8	0.013					ethanolamine			
2.7	0.012					Carnitine			
2.5	0.006					Taurine			
2.5	0.031					orotate			
2.2	0.035					Trimethylamine (TMA)			
2.1	0.043					N-acetyl-glutamine			
2.0	0.037					Alanine			
2.0	0.011					Glucoronate			
1.8	0.048					Pantothenate-1			
1.6	0.001					Malate			
1.4	0.002					6-phospho-D-glucono-1-5-lactone			
-1.3	0.010					Hydroxyphenylacetic acid			
-23.6	0.032					tran- trans-farnesyl diphosphate			
-24.2	0.010					thymidine			

Microbiota transfer

FC	PV	V	٧T	\rightarrow	W	Γ	_ <i>ll</i> 23 ^{.,} -→WT					Metabolite
4.7	0.00003											Acetyl-β-methylcholine
2.2	0.038											3-methylphenylacetic acid
1.8	0.048											Pyruvic acid
1.7	0.047											Pyruvic acid
1.7	0.027											Prolylglycine
1.4	0.009											Orotidine
1.3	0.034											Citric acid
1.3	0.036											2-Furoic acid
-1.7	0.028											Hypotaurine
-1.8	0.013											Tris(2-butoxyethyl) phosphate
-2.1	0.024											Fructose
-2.3	0.007											Sarcosine
-2.3	0.036											Lauric acid
-2.9	0.035											Cholic acid
-3.0	0.015											Cholic acid
-3.2	0.026											Cholic acid

Figure S6. Alteration of serum metabolites in IL-23 and IL-22 deficient atherosclerotic mice. Related to Figure 5.

Heat map of serum metabolites of WT $\rightarrow Ldlr^{-}$ and $ll23^{-/-} \rightarrow Ldlr^{-/-}$ (A) or WT $\rightarrow Ldlr^{-/-}$ and $ll22^{-/-} \rightarrow Ldlr^{-/-}$ mice (B) fed with WD for 16 weeks. C. Heat map of serum metabolites of WT $\rightarrow Ldlr^{-/-}$ and $ll22^{-/-} \rightarrow Ldlr^{-/-}$ mice fed with WD+1% choline for 16 weeks. D. Heat map of serum metabolites of WT $\rightarrow Ldlr^{-/-}$ mice that received the microbiota from WT $\rightarrow Ldlr^{-/-}$ or $ll23^{-/-} \rightarrow Ldlr^{-/-}$ atherosclerotic donors. Red – upregulated metabolites, blue – downregulated metabolites, FC-fold change. Representative data from 2 independent metabolomics analyses.

Figure S7. OPN regulates immune cells accumulation in aortas of $ll23^{-/-} \rightarrow Ldlr^{/-}$ and $ll22^{-/-} \rightarrow Ldlr^{/-}$ mice. Related to Figure 6 and 7.

A. Quantification of CD11b⁺, CD11b⁺CD11c⁺ and CD11c⁺ cells in the aortic roots of WT \rightarrow Ldlr^{-/-}, II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice treated with anti-OPN-antibody or control. **B**, **C**. Immunofluorescent analysis of aortic root sections. Representative images from 3 independent experiments. Localization of CD3⁺ T cells (**B**) and quantification of CD3⁺ T-cells (**C**) in aortic roots of WT \rightarrow Ldlr^{-/-}, II23^{-/-} \rightarrow Ldlr^{-/-} or II22^{-/-} \rightarrow Ldlr^{-/-} mice treated with anti-OPN-antibody or control. Scale bar represents 50µm. A-adventitia, M-media, P-plaque. **D**. Relative gene expression in the explanted aortas of C57BL/6 mice treated with LPS and TMAO ex *vivo*. Gene expression was normalized to *RpL32* and then to gene expression in control group. Data are mean ±SEM from 2 independent experiments, *p<0.05, ***p<0.0001.