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1 Proof of Lemma 2.1

We first work on the posterior mean of αi. For any ε > 0, the mean of the full conditional

posterior distribution of αi is

E[αi|θij, βi,yi] =

∫ ε/4

0

αif(αi|θij, βi,yi)dαi +

∫ ε/2

ε/4

αif(αi|θij, βi,yi)dαi +

∫ ∞
ε/2

αif(αi|θij, βi,yi)dαi

≤ ε/4 + (I1) + (I2).

It is easy to see that (I1) ≤ ε/2. To evaluate (I2), we rewrite f(αi|θij, βi,yi) = g(αi)e
−b1αi ,

where g(αi) is an integrable function. Let m = minαi∈[ε/4,ε/2] g(αi) and M = maxαi∈[ε/2,∞) g(αi),
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which are known to take finite values. Then

I2

I1

≤ M

m

∫∞
ε/2
e−b1αidαi∫ ε/2

ε/4
e−b1αidαi

=
M

m

1

eb1ε/4 − 1
→ 0,

as b1 →∞. Therefore, E[αi|θij, βi,yi]→ 0 if b1 →∞.

Since βi|αi, θij,yi follows Gamma(nαi + a2,
∑n

j=1 θij + b2), we have E[βi|αi, θij,yi]→ 0 as

b2 →∞. With the same argument, we have

E[θij|αi, βi,yi] = (yij + αi)/(βi + 1)→ yij,

as b1 → ∞ and b2 → ∞. By the law of iterated expectations, we have E[θij|yi] → yij as

b1 →∞ and b2 →∞.

2 Proof of Lemma 2.2

2.1 Existing theory of adaptive MCMC

Since the prior hyperparameters are changing with iterations, the resulting posterior distribu-

tion is also changing with iterations. Hence, the proposed sampling algorithm falls into the

class of adaptive MCMC algorithms. For this type of adaptive MCMC algorithms for which

the target distribution changes with iterations, the ergodicity theory has been developed in

Fort et al. (2011) and Liang et al. (2016). Here we adopted the theory developed by Liang et

al. (2016).

To facilitate our study, we first define some notations for adaptive Markov chains. Consider

a state space (X,F), where F = B(X) denotes the Borel set defined on X. Let Xt ∈ X

denote the state of the Markov chain at iteration t, and let Pγt denote the transition kernel

at iteration t, where γt is a realization of a Y-valued random variable Γt. In simulations, γt

is updated according to a specified rule. Let Gt = σ(X0, . . . , Xt,Γ0, . . . ,Γt) be the filtration
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generated by {(Xi,Γi)}ti=0. Thus,

P (Xt+1 ∈ B|Xt = x,Γt = γ,Gt−1) = Pγ(x,B), x ∈ X, γ ∈ Y, B ∈ F .

Let P t
γ(x,B) = Pγ(Xt ∈ B|X0 = x) denote the t-step transition probability for the Markov

chain with the fixed transition kernel Pγ and the initial condition X0 = x. Let P t((x, γ), B) =

P (Xt ∈ B|X0 = x,Γ0 = γ), B ∈ F , denote the t-step transition probability for the adaptive

Markov chain with the initial conditions X0 = x and Γ0 = γ. Let

T (x, γ, t) = ‖P t((x, γ), ·)− π(·)‖ = sup
B∈F
|P t((x, γ), B)− π(B)|

denote the total variation distance between the distribution of the adaptive Markov chain

at time t and the target distribution π(·). It is said the adaptive Markov chain ergodic if

limt→∞ T (x, γ, t) = 0 for all x ∈ X and γ ∈ Y.

For the proposed algorithm, since Γt = (b
(t)
1 , b

(t)
2 ) takes values in a deterministic sequence,

the ergodicity theory developed in Liang et al. (2016) can be re-stated as follows:

Theorem 2.1 (Ergodicity; Liang et al., 2016) Consider an adaptive Markov chain defined on

the state space (X,F) with the adaption index Γt ∈ Y. The adaptive Markov chain is ergodic

if the following conditions are satisfied:

(a) (Stationarity) There exists a stationary distribution πγt(·) for each transition kernel Pγt,

where γt denotes a realization of the random variable Γt.

(b) (Asymptotic Simultaneous Uniform Ergodicity) For any ε > 0, there exist constants

K(ε) > 0 and N(ε) > 0 such that

sup
x∈X
‖P n

Γt
(x, ·)− π(·)‖ 6 ε,

for all t > K(ε) and n > N(ε).
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(c) (Diminishing Adaptation) limt→0Dt = 0 in probability, where

Dt = sup
x∈X
‖PΓt+1(x, ·)− PΓt(x, ·)‖.

Theorem 2.2 (Weak Law of Large Numbers; Liang et al., 2016) Consider an adaptive Markov

chain defined on the state space (X,F). Suppose that conditions (a), (b) and (c) of Theorem

?? hold. Let λ(·) be a bounded measurable function. Then

1

n

n∑
t=1

λ(Xt)→ π(λ), in probability,

as n→∞, where π(λ) =
∫
X λ(x)π(dx).

2.2 Proof of Lemma 2.2

Since the law of β
(t)
i and the law of θ

(t)
ij are completely determined by the law of α

(t)
i , where the

supscript t indicates the iteration number, our analysis concentrates on the convergence of α
(t)
i .

For notational simplicity, we rewrite b
(t)
1 as γt and rewrite f(αi|θij, βi, yij) as fγt(x) in what

follows. For the proposed algorithm, γt takes values in a deterministic and monotone sequence

as specified in Equation (5) of the main text.

Since the MH algorithm was used for simulating from fγt(x), the condition (a) holds. As

shown below, for the proposed algorithm, the posterior distribution π(·) converges to a Dirac

delta measure. Hence, following from Theorem ??, the posterior mean can be obtained by

setting λ(x) to a truncated function: λ(x) = x if |x| < M and M otherwise, provided that M

is large enough such that the interval [−M,M ] covers all yij’s. In summary, to prove Lemma

2, it suffices to verify the conditions (b) and (c).

Verification of condition (c) Write the target density function as

fγt(x) = g(x)e−γtx,
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where γt is the adaptive parameter taking the form

γt = γt−1 +
c

tζ
, t = 1, 2, . . . , (∗)

for some constants γ0 > 0, c > 0 and ζ ∈ (0, 1]. Let q(x, y) = q(|y − x|) denote a random-walk

proposal distribution. Define

sγ(x, y) = q(x, y) min

{
1,
g(y)e−γy

g(x)e−γx
q(y, x)

q(x, y)

}
,

and rγ(x, y) = sγ(x, y)/q(x, y). Then, for any Borel set B, the transition kernel

Pγ(x,B) =

∫
B

sγ(x, y)dy + I(x ∈ B)

[
1−

∫
X
sγ(x, z)dz

]
.

For the derivative dsγ(x, y)/dγ, we have

|dsγ(x, y)/dγ| = |q(x, y)I(rγ(x, y) < 1)rγ(x, y)(y − x)| ≤ q(x, y)|y − x|.

By the mean-value theorem, there exists a constant c1 such that

|sγ(x, y)− sγ′(x, y)| ≤ c1q(x, y)|y − x||γ′ − γ|,

which implies that there exists a constant c2 such that
∫
X |sγ(x, y) − sγ′(x, y)|dy ≤ c2|γ′ − γ|,

as the proposal is a random walk proposal. Therefore,

|Pγ(x,B)− Pγ′(x,B)| ≤ 2c2|γ − γ′|,

and,

Dt = sup
x∈X
|Pγt+1(x, ·)− Pγt(x, ·)| ≤ 2

c2c0

(t+ 1)ζ
→ 0,

as t→∞.

Verification of condition (b) Let P (x,B) denote a degenerated MH transition kernel for

the Dirac delta measure π(x) = δ(x = 0), i.e.,

P (x,B) =


1, if 0 ∈ B,

0, otherwise,
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Then it is easy to see that supx ‖Pγt(x,B)− P (x,B)‖ → 0 as t→∞.

For any k ≥ 1 and any ψ : X → [−1, 1], we have

P k
γtψ(x0)− π(ψ) = S1(k) + S2(k),

where π(ψ) =
∫
ψ(x)π(x)dx, and

S1(k) = P kψ(x0)− π(ψ), S2(k) = P k
γtψ(x0)− P kψ(x0).

Since P (x,B) is degenerated, we have S1(k) = 0 for all k ≥ 1. For the term S2(k), we can

further decompose it as follows: For any k0 (1 ≤ k0 < k),

|S2(k)| ≤ |P k
γtψ(x0)− P k0

γt ψ(x0)|+ |P k0
γt ψ(x0)− P k0ψ(x0)|+ |P k0ψ(x0)− P kψ(x0)|

=

∣∣∣∣∣
k0−1∑
m=0

[PmP k0−m
γt ψ(x0)− Pm+1P k0−(m+1)

γt ψ(x0)]

∣∣∣∣∣+ |P k
γtψ(x0)− P k0

γt ψ(x0)|+ |P kψ(x0)− P k0ψ(x0)|

=

∣∣∣∣∣
k0−1∑
m=0

Pm(Pγt − P )P k0−(m+1)
γt ψ(x0)

∣∣∣∣∣+ |P k
γtψ(x0)− P k0

γt ψ(x0)|+ |P kψ(x0)− P k0ψ(x0)|.

Since supx ‖Pγt(x,B)−P (x,B)‖ → 0 as t→∞, for any ε > 0, there exist some L(ε) such that

for any t > L(ε),

|S2(k)| ≤ 4k0ε+ |P k
γtψ(θ0)− P k0

γt ψ(θ0)|+ |P kψ(θ0)− P k0ψ(θ0)|

= 4k0ε+ S3(t, k, k0) + S4(k, k0).

Since P (x,B) is degenerated, we have S4(k, k0) = 0 for any k > 0 and k0 > 0. As shown in

(*), {γt} forms a monotone and deterministic sequence. With such a deterministic sequence,

Pγt converges faster and faster as t → ∞. Hence, there exists some K(ε) and L′(ε) such that

for any k > k0 ≥ K(ε), t ≥ L′(ε),

S3(t, k, k0) ≤ ε.

Let L̃(ε) = max{L(ε), L′(ε))}. Furthermore, one can choose K(ε) such that εK(ε) → 0 as

ε→ 0.
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Setting ε = ε/(4K(ε) + 1) and summarizing the results of S1(k) and S2(k), we conclude the

following: for any ε > 0 and any x0 ∈ X , there exists L̃(ε) ∈ N and K(ε) ∈ N such that for any

t > L̃(ε) and k > K(ε),

‖P k
γt(θ0, ·)− π(·)‖ ≤ ε.

Note that ε = (4K(ε) + 1)ε→ 0 as ε→ 0. Condition (b) is verified.

3 Definition of Precision and Recall

The precision and recall are defined by

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

where TP , FP and FN denote true positives, false positives and false negatives, respectively,

and they are defined via a binary decision table (Table ??).

Table 1: Outcomes of binary decision.

Aij = 1 Aij = 0

Âij = 1 True Positive(TP) False Positive(FP)

Âij = 1 False Negative(FN) True Negative(TN)

4 Some Simulation Results
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Table 2: The Posterior mean and standard deviation of αi, βi and θij for one simulated variable

as described in Section 3, where a1 = a2 = a and b
(0)
1 = b

(0)
2 = b(0).

a b(0) Yij θ̂ij α̂i β̂i AUC

104 513.37(284.47) 513.27(284.38) 3.01× 10−7(2.04× 10−6) 6.58× 10−6(6.64× 10−6) 0.940

1 106 513.37(284.47) 513.32(284.41) 8.58× 10−7(5.99× 10−6) 9.46× 10−7(9.52× 10−7) 0.941

1010 513.37(284.47) 513.37(284.47) 7.47× 10−7(5.41× 10−6) 9.87× 10−11(9.71× 10−11) 0.943

104 513.37(284.47) 513.44(284.43) 6.54× 10−7(5.03× 10−6) 1.58× 10−8(5.10× 10−7) 0.941

0.001 106 513.37(284.47) 513.51(284.45) 3.78× 10−7(2.15× 10−6) 1.15× 10−9(2.87× 10−8) 0.941

1010 513.37(284.47) 513.37(284.48) 5.75× 10−7(3.56× 10−6) 6.24× 10−14(1.72× 10−12) 0.942

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hub

recall

p
re

c
is

io
n

Cont+NPN+ψ−learning

Log+NPN+ψ−learning

log+NPN+Nodewise Regression

log+NPN+gLasso

LPGM

SPGM

TPGM

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

scale−free

recall

p
re

c
is

io
n

Cont+NPN+ψ−learning

Log+NPN+ψ−learning

log+NPN+Nodewise Regression

log+NPN+gLasso

LPGM

SPGM

TPGM

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

small world

recall

p
re

c
is

io
n

Cont+NPN+ψ−learning

Log+NPN+ψ−learning

log+NPN+Nodewise Regression

log+NPN+gLasso

LPGM

SPGM

TPGM

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

random

recall

p
re

c
is

io
n

Cont+NPN+ψ−learning

Log+NPN+ψ−learning

log+NPN+Nodewise Regression

log+NPN+gLasso

LPGM

SPGM

TPGM

Figure 1: Precision-recall curves of each method for different type of structures with (n, p) =

(500, 200). Upper left: hub; upper right: scale-free; lower left: small-world; lower right: ran-

dom. Refer to the legend of Figure 2 (of the main text) for the labels.
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5 Availability of the Code and Dataset

We have attached the code for our simulation part and also the two real example datasets.

These sources are available at the Biometrics website on Wiley Online Library.
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