**Supplementary Information** 

#### A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection

Zhou et al.



**Supplementary Figure 1. Representative PAGE analysis showing CRISDA cannot initiate amplification of target pTF1 without Cas9.** The representative gel analysis illustrating CRISDA fails to produce any amplicon from attomolar target pTF1 in the absence of the Cas9 protein. The arrow indicates the position of theoretic 186 bp amplicon.



**Supplementary Figure 2. Representative PAGE analysis showing that CRISDA detects attomolar pTF1 targets in combination with the PNA.** The CRISDA reactions proceed at 37 °C for 90 min and the arrows indicate that PNA-invasion is confirmed by altered migration of Cy5-positive species in 6% native PAGE. Although lanes without target pTF1 also reveal Cy5-positive species, they do not interact with Biotin-labeled PNA and thus are not pulled down and interfere with subsequent fluorescence measurements.



Supplementary Figure 3. Representative calibration curve for target pTF1 detection with CRISDA. Cy5 fluorescence intensities from CRISDA combined with PNA invasion-mediated fluorescence measurements are plotted against log of concentration of target pTF1, showing significant correlation between the target concentration and detected fluorescence intensity. The red line is the linear regression fit ( $R^2 = 0.993$ ).



**Supplementary Figure 4. Representative PAGE analysis showing the great temperature tolerance of CRISDA.** CRISDA reactions amplifying 250 aM of target pTF1 are conducted at temperature ranging from 25 to 46 °C. Successful amplifications are obtained when CRISDA reactions take place between 28 and 43 °C, indicating large temperature tolerance of CRISDA.



**Supplementary Figure 5. Representative PAGE analysis showing the critical function of the 3' overhang in IP primers.** The melting temperature of 3' overhangs must be over 50 °C for successful CRISDA reactions (\*: Sequencing verification confirms that it is a product from the primer dimer rather than the targeted amplicon.) CRISDA reactions are carried out at 37 °C for 90 min with 250 aM pTF1 as the target.



Supplementary Figure 6. Schematic of CRISDA-based DNA amplification and detection towards an 877 bp DNA fragment hTF1. DNA fragment hTF1 is derived from Chromosome 9 in the human genome. Two pairs of sgRNAs ( $sg_{hTF1-UPS1/DNS1}$ , and  $sg_{hTF1-UPS2/DNS2}$ ) and IP primers (IP<sub>hTF1-UPS1/DNS1</sub>, and IP<sub>hTF1-UPS2/DNS2</sub>) are designed to specifically target and amplify a 169 bp (T1) and 203 bp (T2) region in hTF1, respectively. In genomic CRISDA, the same sgRNAs and IP primer pairs are used to amplify the corresponding T1 and T2 regions in the human genomic DNA extracted from HEK293 cells.



Supplementary Figure 7. PAGE analyses showing Cas9 protein is critical in genomic CRISDA amplification reactions. (a) CRISDA reactions containing Cas9 successfully amplify T1 (the left graph) and T2 (the right graph) from 67 aM human genomic DNA extracted from HEK293 cells. The arrows indicate successful amplification of the targeted amplicons. (b) CRISDA reactions fail to produce any amplicon from human genomic DNA in the absence of Cas9 protein. The arrows indicate the position of theoretic amplicon which is absent from the CRISDA reactions without Cas9.



Supplementary Figure 8. PAGE analysis showing CRISDA is capable of highly sensitive amplification of GMO fragments gTF1. gTF1 is PCR amplified from the genome of a genetically-modified soybean, MON87705. The arrow indicates successful amplification of the targeted amplicon.



Supplementary Figure 9. PAGE analyses and PNA invasion-mediated endpoint measurements towards products amplified by traditional PCR. PAGE analyses reveal that PCR successfully amplifies (a) 1 ng (25 pM) to 0.1pg (2.5 fM) of target gTF1 and (b) 50 ng (3.66 fM) GMO genomic DNA diluted without background. In the presence of interfering DNA and BSA as background, PCR fails to produce detectable amplicons (c) below 25 fM gTF1 and (d) 3.66 fM GMO genomic DNA as templates. (e) Weak fluorescent signals are observed by the PNA invasion-mediated method from the PCR products containing 25 and 2.5 fM GMO fragment gTF1 as templates. (f) No fluorescence variations are observed from the PCR products using GMO genomic DNA as templates. (Fluorescence signals of CRISDA products are adopted from Fig. 4b and 4c) n = 4 technical replicates, two-tailed Student's *t* test, bars represent mean  $\pm$  s.d.



Supplementary Figure 10. CRISDA cannot discriminate single-nucleotide mutations at the  $+3 \sim +5$  sites in the seed sequence. (a) Schematic of wild type pTF1 fragment and various mutants bearing single-nucleotide mutations at the  $+3 \sim +5$  sites in the seed sequences. WT: wild type, M3: +3 mutant, M4: +4 mutant and M5: +5 mutant. (b) PAGE analyses showing that CRISDA cannot discriminate pTF1 fragments with single-nucleotide mutations at the  $+3 \sim +5$  sites in the seed sequence.



Supplementary Figure 11. PAGE analyses showing that CRISDA discriminates hTF2 fragments with single-nucleotide mutations at the rs3803662 site.



**Supplementary Figure 12. Site-specific biotin labeling of S3C-dCas9.** (a) To construct a dCas9 protein with single cysteine at the N-terminus, the 3<sup>rd</sup> Serine in Cas9 from pET-28a/Cas9-Cys plasmid (Addgene: Plasmid #53261) is mutated to Cysteine (S3C) and other Cysteines are mutated to Serine (C43S, C125S, C619S, and C1435S). S3C mutation provides a single reaction site for the EZ-link® Maleimide-PEG2-biotin. dCas9 mutations are also indicated in the domain schematic. (b) Agarose gel electrophoresis revealing successful biotinylation of active S3C-dCas9.



Supplementary Figure 13. Cas9-mediated enrichment of target DNA enhances sensitivity and reliability of CRISDA. The arrow indicates successful amplification of the targeted amplicon. (reactions performed at the hTF1 concentration of 2.5 aM).



**Supplementary Figure 14. Uncropped figures of PAGE gels.** Cropped regions are indicated with rectangles as appropriate.

#### Supplementary Table 1. Sequences of Cas9(H840A)-Cys in plasmid pET28a/Cas9(H840A)-Cys

#### >Cas9(H840A)-Cys

Labels: Cas9(H840A); 6xHis-Tag; Thrombin Cleavage Site; T7-Tag; H885A mutation of Cas9 HNH catalytic residue; SV40 Nuclear Localization Signal; HA Epitope; stop codon (italic) ATGGGCAGCAGC<mark>CATCATCATCATCATCAC</mark>AGCAGCGGC<mark>CTGGTGCCGCGGCAGC</mark>CAT<mark>ATGGCTAGCATGA</mark> CTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTTGCGGCCGC<u>ATGGACAAGAA</u> GTACAGCATCGGCCTGGACATCGGTACCAACAGCGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCC AGCAAGAAGTTCAAGGTGCTGGGCAACACCGACCGCCACAGCATCAAGAAGAACCTGATCGGCGCCCTGCTGT <u>TCGACAGCGGCGAGACCGCCGAGGCCACCCGCCTGAAGCGCACCGCCGCCGCCGCTACACCCGCCGCAAGA</u> <u>ACCGCATCTGCTACCTGCAGGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACCGCCT</u> GGAGGAGAGCTTCCTGGTGGAGGAGGAGGACAAGAAGCACGAGCGCCACCCCATCTTCGGCAACATCGTGGACGA <u>GGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGCGCAAGAAGCTGGTGGACAGCACCGACAAGGCC</u> GACCTGCGCCTGATCTACCTGGCCCTGGCCCACATGATCAAGTTCCGCGGCCACTTCCTGATCGAGGGCGACCT <u>GAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAG</u> AGAACCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAACGGCCTGTTCGGCAACCTGATCGCCCTGAGCCTGGG <u>CCTGACCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGACGCCAAGCTGCAGCTGAGCAAGGACACCTAC</u> GACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTCCTGGCCGCCAAGAACC TGAGCGACGCCATCCTGCTGAGCGACATCCTGCGCGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCAG <u>CATGATCAAGCGCTACGACGAGCACCACCAGGACCTGACCCTGCTGAAGGCCCTGGTGCGCCAGCAGCTGCCC</u> GAGAAGTACAAGGAGATCTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATCGACGGCGGCGCCAGC CAGGAGGAGTTCTACAAGTTCATCAAGCCCATCCTGGAGAAGATGGACGGCACCGAGGAGCTGCTGGTGAAGC TGAACCGCGAGGACCTGCTGCGCAAGCAGCGCACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGG <u>CGAGCTGCACGCCATCCTGCGCCGCCAGGAGGACTTCTACCCCTTCCTGAAGGACAACCGCGAGAAGATCGAG</u> AAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCCCTGGCCCGCGGCAACAGCCGCTTCGCCTGGATGAC CCGCAAGAGCGAGGAGACCATCACCCCCTGGAACTTCGAGGAGGTGGTGGACAAGGGCGCCAGCGCCCAGAG <u>CTTCATCGAGCGCATGACCAACTTCGACAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTG</u> TACGAGTACTTCACCGTGTACAACGAGCTGACCAAGGTGAAGTACGTGACCGAGGGCATGCGCAAGCCCGCCT TCCTGAGCGGCGAGCAGAAGAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGCAAGGTGACCGTGAAGC AGCTGAAGGAGGACTACTTCAAGAAGATCGAGTGCTTCGACAGCGTGGAGATCAGCGGCGTGGAGGACCGCTT CAACGCCAGCCTGGGCACCTACCACGACCTGCTGAAGATCATCAAGGACAAGGACTTCCTGGACAACGAGGAG AACGAGGACATCCTGGAGGACATCGTGCTGACCCTGACCCTGTTCGAGGACCGCGAGATGATCGAGGAGCGCC TGAAGACCTACGCCCACCTGTTCGACGACAAGGTGATGAAGCAGCTGAAGCGCCGCCGCTACACCGGCTGGGG CCGCCTGAGCCGCAAGCTTATCAACGGCATCCGCGACAAGCAGAGCGGCAAGACCATCCTGGACTTCCTGAAG <u>AGCGACGGCTTCGCCAACCGCAACTTCATGCAGCTGATCCACGACGACGGCCTGACCTTCAAGGAGGACATCC</u> <u>AGAAGGCCCAGGTGAGCGGCCAGGGCGACAGCCTGCACGAGCACATCGCCAACCTGGCCGGCAGCCCCGCCA</u> TCAAGAAGGGCATCCTGCAGACCGTGAAGGTGGTGGACGAGCTGGTGAAGGTGATGGGCCGCCACAAGCCCG AGAACATCGTGATCGAGATGGCCCGCGAGAACCAGACCAGCAGAAGGGCCAGAAGAACAGCCGCGAGCGCA TGAAGCGCATCGAGGAGGGCATCAAGGAGCTGGGCAGCCAGATCCTGAAGGAGCACCCCGTGGAGAACACCC <u>AGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAACGGCCGCGACATGTACGTGGACCAGGAGCTGGA</u> <u>CATCAACCGCCTGAGCGACTACGACGTGGACGCCATCGTGCCCCAGAGCTTCCTGAAGGACGACAGCATCGAC</u> AACAAGGTGCTGACCCGCAGCGACAAGAACCGCGGCAAGAGCGACAACGTGCCCAGCGAGGAGGTGGTGAAG <u>AAGATGAAGAACTACTGGCGCCAGCTGCTGAACGCCAAGCTGATCACCCAGCGCAAGTTCGACAACCTGACCA</u> AGGCCGAGCGGCGGCCTGAGCGAGCTGGACAAGGCCGGCTTCATCAAGCGCCAGCTGGTGGAGACCCGCC <u>AGATCACCAAGCACGTGGCCCAGATCCTGGACAGCCGCATGAACACCAAGTACGACGAGAACGACAAGCTGA</u> <u>TCCGCGAGGTGAAGGTGATCACCCTGAAGAGCAAGCTGGTGAGCGACTTCCGCAAGGACTTCCAGTTCTACAA</u> <u>GGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTGGTGGGCACCGCCCTGATC</u> AAGAAGTACCCCAAGCTGGAGAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGCAAGATGATCG <u>CCAAGAGCGAGCAGGAGATCGGCAAGGCCACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTCTTCAA</u> GACCGAGATCACCCTGGCCAACGGCGAGATCCGCAAGCGCCCCCTGATCGAGACCAACGGCGAGACCGGCGA GATCGTGTGGGACAAGGGCCGCGACTTCGCCACCGTGCGCAAGGTGCTGAGCATGCCCCAGGTGAACATCGTG AAGAAGACCGAGGTGCAGACCGGCGGCTTCAGCAAGGAGAGCATCCTGCCCAAGCGCAACAGCGACAAGCTG ATCGCCCGCAAGAAGGACTGGGACCCCAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTACAGCGTGC TGGTGGTGGCCAAGGTGGAGAAGGGCAAGAGCAAGAAGCTGAAGAGCGTGAAGGAGCTGCTGGGCATCACCA TCATGGAGCGCAGCAGCTTCGAGAAGAACCCCATCGACTTCCTGGAGGCCAAGGGCTACAAGGAGGTGAAGA AGGACCTGATCATCAAGCTGCCCAAGTACAGCCTGTTCGAGCTGGAGAACGGCCGCAAGCGCATGCTGGCCAG CGCCGGCGAGCTGCAGAAGGGCAACGAGCTGGCCCTGCCCAGCAAGTACGTGAACTTCCTGTACCTGGCCAGC <u>CACTACGAGAAGCTGAAGGGCAGCCCCGAGGACAACGAGCAGAAGCAGCTGTTCGTGGAGCAGCACAAGCAC</u> TACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCAGCAAGCGCGTGATCCTGGCCGACGCCAACCTGGACA AGGTGCTGAGCGCCTACAACAAGCACCGCGACAAGCCCATCCGCGAGCAGGCCGAGAACATCATCCACCTGTT <u>CACCCTGACCAACCTGGGCGCCCCGCCGCCTTCAAGTACTTCGACACCACCATCGACCGCAAGCGCTACACC</u> AGCACCAAGGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGTCTGTACGAGACCCGCATCGACC <u>TGAGCCAGCTGGGCGGCGAC</u>GGCGGCTCCGGACCTCCAAAGAAAAAGAGAAAAGTA<mark>TACCCCTACGACGTG</mark> CCGACTACGCCTGTTAA

#### Supplementary Table 2. Sequences of S3C-dCas9 in plasmid pET28a/S3C-dCas9

#### >S3C-dCas9

Labels: Serine to Cysteine Mutation (S3C); Cas9(H840); 6xHis-Tag; Thrombin Cleavage Site; T7-Tag; D55A (D10A) mutation and H885A (H840A) mutation of Cas9 RuvC and HNH catalytic residue; SV40 Nuclear Localization Signal; HA Epitope; Cysteine to Serine mutation (bold); stop codon (italic) ATGGGC<mark>TGC</mark>AGC<mark>CATCATCATCATCACC</mark>AGCAGCGGC<mark>CTGGTGCCGCGGCAGC</mark>CAT<mark>ATGGCTAGCAT</mark> GACTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCGAGCTCCGTCGACAAGCTAGCGGCCGC<u>ATGGAC</u> AAGAAGTACAGCATCGGCCTG<mark>GCC</mark>ATCGGTACCAACAGCGTGGGCTGGGCCGTGATCACCGACGAGTACAA CCCTGCTGTTCGACAGCGGCGAGACCGCCGAGGCCACCCGCCTGAAGCGCACCGCCGCCGCCGCCGCCACAC CCGCCGCAAGAACCGCATCAGCTACCTGCAGGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCT TCTTCCACCGCCTGGAGGAGAGCTTCCTGGTGGAGGAGGACAAGAAGCACGAGCGCCACCCCATCTTCGGC AACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGCGCAAGAAGCTGGTGGA <u>CAGCACCGACAAGGCCGACCTGCGCCTGATCTACCTGGCCCTGGCCCACATGATCAAGTTCCGCGGCCACT</u> TCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACC TACAACCAGCTGTTCGAGGAGAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGAGCGCCC <u>GCCTGAGCAAGAGCCGCCGCCTGGAGAACCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAACGGCCTGTT</u> <u>CGGCAACCTGATCGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGACG</u> CCAAGCTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCA <u>GTACGCCGACCTGTTCCTGGCCGCCAAGAACCTGAGCGACGCCATCCTGCGCGACATCCTGCGCGTGA</u> <u>ACACCGAGATCACCAAGGCCCCCCTGAGCGCCAGCATGATCAAGCGCTACGACGAGCACCACCAGGACCTG</u> ACCCTGCTGAAGGCCCTGGTGCGCCAGCAGCTGCCCGAGAAGTACAAGGAGATCTTCTTCGACCAGAGCAA TGGAGAAGATGGACGGCACCGAGGAGCTGCTGGTGAAGCTGAACCGCGAGGACCTGCTGCGCAAGCAGCG CACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGCGAGCTGCACGCCATCCTGCGCCGCCAG <u>GAGGACTTCTACCCCTTCCTGAAGGACAACCGCGAGAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTAC</u> TACGTGGGCCCCCTGGCCGCGGCAACAGCCGCTTCGCCTGGATGACCCGCAAGAGCGAGGAGACCATCA CCCCCTGGAACTTCGAGGAGGTGGTGGACAAGGGCGCCAGCGCCCAGAGCTTCATCGAGCGCATGACCAA <u>CTTCGACAAGAACCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTA</u> CAACGAGCTGACCAAGGTGAAGTACGTGACCGAGGGCATGCGCAAGCCCGCCTTCCTGAGCGGCGAGCAG AAGAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGCAAGGTGACCGTGAAGCAGCTGAAGGAGGACTA CTTCAAGAAGATCGAGAGCTTCGACAGCGTGGAGATCAGCGGCGTGGAGGACCGCTTCAACGCCAGCCTG <u>GGCACCTACCACGACCTGCTGAAGATCATCAAGGACAAGGACTTCCTGGACAACGAGGAGAACGAGGACAT</u> <u>CCTGGAGGACATCGTGCTGACCCTGACCCTGTTCGAGGACCGCGAGATGATCGAGGAGCGCCTGAAGACCT</u> ACGCCCACCTGTTCGACGACAAGGTGATGAAGCAGCTGAAGCGCCGCCGCTACACCGGCTGGGGCCGCCT GAGCCGCAAGCTTATCAACGGCATCCGCGACAAGCAGAGCGGCAAGACCATCCTGGACTTCCTGAAGAGCG <u>ACGGCTTCGCCAACCGCAACTTCATGCAGCTGATCCACGACGACGACCTGACCTTCAAGGAGGACATCCAG</u> AAGGCCCAGGTGAGCGGCCAGGGCGACAGCCTGCACGAGCACATCGCCAACCTGGCCGGCAGCCCGGC <u>ATCAAGAAGGGCATCCTGCAGACCGTGAAGGTGGTGGACGAGCTGGTGAAGGTGATGGGCCGCCACAAGC</u> <u>CCGAGAACATCGTGATCGAGATGGCCCGCGAGAACCAGACCACCCAGAAGGGCCAGAAGAACAGCCGCGA</u> <u>GCGCATGAAGCGCATCGAGGAGGGCATCAAGGAGCTGGGCAGCCAGATCCTGAAGGAGCACCCCGTGGAG</u> AACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAACGGCCGCGACATGTACGTGGACCA <u>GGAGCTGGACATCAACCGCCTGAGCGACTACGACGTGGAC<mark>BCC</mark>ATCGTGCCCCAGAGCTTCCTGAAGGAC</u> GACAGCATCGACAACAAGGTGCTGACCCGCAGCGACAAGAACCGCGGCAAGAGCGACAACGTGCCCAGCG AGGAGGTGGTGAAGAAGATGAAGAACTACTGGCGCCAGCTGCTGAACGCCAAGCTGATCACCCAGCGCAAG <u>AGCTGGTGGAGACCCGCCAGATCACCAAGCACGTGGCCCAGATCCTGGACAGCCGCATGAACACCAAGTAC</u> GACGAGAACGACAAGCTGATCCGCGAGGTGAAGGTGATCACCCTGAAGAGCAAGCTGGTGAGCGACTTCCG CAAGGACTTCCAGTTCTACAAGGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACG CCGTGGTGGGCACCGCCCTGATCAAGAAGTACCCCAAGCTGGAGAGCGAGTTCGTGTACGGCGACTACAAG <u>GTGTACGACGTGCGCAAGATGATCGCCAAGAGCGAGCAGGAGATCGGCAAGGCCACCGCCAAGTACTTCTT</u> CTACAGCAACATCATGAACTTCTTCAAGACCGAGATCACCCTGGCCAACGGCGAGATCCGCAAGCGCCCCCT GATCGAGACCAACGGCGAGACCGGCGAGATCGTGTGGGACAAGGGCCGCGACTTCGCCACCGTGCGCAAG <u>GTGCTGAGCATGCCCCAGGTGAACATCGTGAAGAAGACCGAGGTGCAGACCGGCGGCTTCAGCAAGGAGA</u> <u>GCATCCTGCCCAAGCGCAACAGCGACAAGCTGATCGCCCGCAAGAAGGACTGGGACCCCAAGAAGTACGG</u> CGGCTTCGACAGCCCCACCGTGGCCTACAGCGTGCTGGTGGTGGCCAAGGTGGAGAAGGGCAAGAGCAAG AAGCTGAAGAGCGTGAAGGAGCTGCTGGGCATCACCATCATGGAGCGCAGCAGCTTCGAGAAGAACCCCCAT <u>CGACTTCCTGGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTGATCATCAAGCTGCCCAAGTACAGCC</u> <u>TGTTCGAGCTGGAGAACGGCCGCAAGCGCATGCTGGCCAGCGGCGAGCTGCAGAAGGGCAACGAGCT</u> <u>AGGACAACGAGCAGAAGCAGCTGTTCGTGGAGCAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATC</u> <u>AGCGAGTTCAGCAAGCGCGTGATCCTGGCCGACGCCAACCTGGACAAGGTGCTGAGCGCCTACAACAAGCA</u> CCGCGACAAGCCCATCCGCGAGCAGGCCGAGAACATCATCCACCTGTTCACCCTGACCAACCTGGGCGCCC CCGCCGCCTTCAAGTACTTCGACACCACCATCGACCGCAAGCGCTACACCAGCACCAAGGAGGTGCTGGAC <u>GCCACCCTGATCCACCAGAGCATCACCGGTCTGTACGAGACCCGCATCGACCTGAGCCAGCTGGGCGGCG</u> <u>AC</u>GGCGGCTCCGGACCTCCAAAGAAAAAGAGAAAAGTA<mark>TACCCCTACGACGTGCCCGACTACGCC</mark>AGT*TAA* 

## Supplementary Table 3. Sequences of oligonucleotides used to study the mechanism of CRISDA

| Oligo name                   | Sequence, 5'-3'                                                         | Purpose                                                                                                                                                                                                       |  |
|------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IP <sub>T1-DNS</sub> -Cy3    | Cy3-CGTGCTCAGTCTGGG                                                     | IP <sub>T1-DNS</sub> -Cy3 is labeled with Cy3 at 5' end and it is used<br>to bind the exposed region of nontarget strand caused by<br>Cas9 and to initiate strand displacement for CRISDA<br>mechanism study. |  |
| RV3 <sub>Cy5</sub>           | Cy5-CTAGCAAAATAGGCTGTCCC                                                | pGL3-For/Rev is labeled with Cy5 at 5' end, and the primer pair is used to produce pTF1-Cy5 from the                                                                                                          |  |
| GL2 <sub>Cy5</sub>           | Cy5-CTTTATGTTTTTGGCGTCTTCCA                                             | $pGL3-100\mbox{-}Target_{wT}$ vector for CRISDA mechanism study.                                                                                                                                              |  |
| IP <sub>pTF1</sub> -UPS-47.5 | TAGATCGGTAAGGATAGCGCTGAGGGC<br>AAGTGCAGGTGCCAGAACATTTCTCTA<br>TCGATAGGT | $IP_{pTF1-UPS-47.5}$ and $IP_{pTF1-DNS-49.7}$ primer pair is used to<br>investigate function of the 3' overhang in IP primers                                                                                 |  |
| IP <sub>pTF1-DNS-49.7</sub>  | TAGATCGGTAAGGATAGCGCTGAGGAC<br>GTGCTCAGTCTGGGCCTCGAGCCCGGG              | where p1F1 fragment is used as the template. The melting temperatures of the 3' overhang in $IP_{pTF1-UPS-47.5}$ and $IP_{pTF1-DNS-49.7}$ are 47.5 and 49.7 °C, respectively.                                 |  |
| IP <sub>pTF1</sub> -UPS-38.7 | TAGATCGGTAAGGATAGCGCTGAGGGC<br>AAGTGCAGGTGCCAGAACATTTCTCTA<br>TCGA      | $IP_{pTF1-UPS-38.7}$ and $IP_{pTF1-DNS-38}$ primer pair is used to<br>investigate function of the 3' overhang in IP primers                                                                                   |  |
| IP <sub>pTF1-DNS-38</sub>    | TAGATCGGTAAGGATAGCGCTGAGGAC<br>GTGCTCAGTCTGGGCCTCGAGCCCG                | where pTFT fragment is used as the template. The melting temperatures of the 3' overhang in $IP_{pTF1-UPS-38.7}$ and $IP_{pTF1-DNS-38}$ are 38.7 and 38.0 °C, respectively.                                   |  |

# Supplementary Table 4. Sequences of DNA oligonucleotides for generating CRISDA templates in study

| Oligo name | Sequence, 5'-3'        | Purpose                                                                                                                  |  |
|------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| pTF1-For   | TACGGGAGGTACTTGGAGC    | pTF1-For/Rev primer pair is used to amplify the partial sequence of the pGL3-100-Target <sub>WT</sub> vector and mutated |  |
| pTF1-Rev   | TATGCAGTTGCTCTCCAGCG   | plasmids to produce the pTF1 fragment and mutated fragments for CRISDA detection.                                        |  |
| hTF1-For   | ACTGCAGGTGCAAAGGCCCG   | hTF1-For/ Rev primer pair is used to amplify the partial                                                                 |  |
| hTF1-Rev   | TGAGGCTGGCCCCTTCCAGG   | fragment for CRISDA detection.                                                                                           |  |
| hTF2-For   | TAGTCCTTGGCTGTTCTGTGAT | hTF2-For/ Rev primer pair is used to amplify the partial                                                                 |  |
| hTF2-Rev   | TTGTATGTTGTCCTGCCTGTTT | fragment for CRISDA detection.                                                                                           |  |
| gTF1-For   | AGCGAATTACAACTCAACCA   | gTF1-For/ Rev primer pair is used to amplify the partial                                                                 |  |
| gTF1-Rev   | TTTCAAAGATGCCCACTAAC   | gTF1 fragment for CRISDA detection.                                                                                      |  |

### Supplementary Table 5. Sequences of DNA oligonucleotides for constructing different pDR274-sgRNA expression plasmids

| Oligo name      | Sequence, 5'-3'          | Purpose                                                                                                                        |  |
|-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| pTF1-DNS-sgFor  | TAGGGGCCCAGACTGAGCACGTGA | Annealed products of the two oligos are ligated w                                                                              |  |
| pTF1-DNS-sgRev  | AAACTCACGTGCTCAGTCTGGGCC | Bsal digested pDR274 to construct the derived plasmid for <i>in vitro</i> transcription of sgRNA $sg_{pTF1-DNS}$ .             |  |
| pTF1-UPS-sgFor  | TAGGTCTGGCACCTGCACTTGCAC | Annealed products of the two oligos are ligated with                                                                           |  |
| pTF1-UPS-sgRev  | AAACGTGCAAGTGCAGGTGCCAGA | for <i>in vitro</i> transcription of sgRNA $sg_{pTF1-UPS}$ .                                                                   |  |
| hTF1-DNS-sgFor1 | TAGGCTTGTAGCTACGCCTGTGAT | Annealed products of the two oligos are ligated with                                                                           |  |
| hTF1-DNS-sgRev1 | AAACATCACAGGCGTAGCTACAAG | for <i>in vitro</i> transcription of sgRNA sg <sub>hTF1-DNS1</sub> .                                                           |  |
| hTF1-UPS-sgFor1 | TAGGTTGCAACTGGCCTCAACCTT | Annealed products of the two oligos were ligated with                                                                          |  |
| hTF1-UPS-sgRev1 | AAACAAGGTTGAGGCCAGTTGCAA | further study of generating sg <sub>hTF1-UPS1</sub> .                                                                          |  |
| hTF1-DNS-sgFor2 | TAGGGGCCCAGACTGAGCACGTGA | Annealed products of the two oligos are ligated with                                                                           |  |
| hTF1-DNS-sgRev2 | AAACTCACGTGCTCAGTCTGGGCC | for <i>in vitro</i> transcription of sgRNA sg <sub>hTF1-DNS2</sub> .                                                           |  |
| hTF1-UPS-sgFor2 | TAGGCCCTTGCTTAAAACTCTCCA | Annealed products of the two oligos are ligated with                                                                           |  |
| hTF1-UPS-sgRev2 | AAACTGGAGAGTTTTAAGCAAGGG | for <i>in vitro</i> transcription of sgRNA sg <sub>hTF1-UPS2</sub> .                                                           |  |
| hTF2-DNS-sgFor  | TAGGAACTACCCAGTATTTGTTTC | Annealed products of the two oligos are ligated with                                                                           |  |
| hTF2-DNS-sgRev  | AAACGAAACAAATACTGGGTAGTT | Bal digested pDR2/4 to construct the derived plasmid for <i>in vitro</i> transcription of sgRNA $sg_{hTF2-DNS}$ .              |  |
| hTF2-UPS-sgFor  | TAGGCACAGTTTTATTCTTCGCTA | Annealed products of the two oligos are ligated with<br>Bsal digested pDP274 to construct the derived plasmid                  |  |
| hTF2-UPS-sgRev  | AAACTAGCGAAGAATAAAACTGTG | for <i>in vitro</i> transcription of sgRNA sghTF2-UPS.                                                                         |  |
| gTF1-DNS-sgFor  | TAGGTACGATCCGTCGTATTTATA | Annealed products of the two oligos are ligated with                                                                           |  |
| gTF1-DNS-sgRev  | AAACTATAAATACGACGGATCGTA | Bsai digested pDR2/4 to construct the derived plasmid for <i>in vitro</i> transcription of sgRNA $sg_{gTF1-DNS}$ .             |  |
| gTF1-UPS-sgFor  | TAGGTTAGTGATTTCTCCCTTTAT | Annealed products of the two oligos are ligated with                                                                           |  |
| gTF1-UPS-sgRev  | AAACATAAAGGGAGAAATCACTAA | Ball digested $pDK2/4$ to construct the derived plasmid<br>for <i>in vitro</i> transcription of sgRNA sg <sub>gTF1-UPS</sub> . |  |

### Supplementary Table 6. Sequences of initiating primer (IP) pairs to trigger exponential amplification in CRISDA reactions

| Oligo name             | Sequence, 5'-3'           | Purpose                                                                |
|------------------------|---------------------------|------------------------------------------------------------------------|
|                        | TAGATCGGTAAGGATAGCGCTGAGG |                                                                        |
| IP <sub>pTF1-UPS</sub> | GCAAGTGCAGGTGCCAGAACATTTC | ID anima ani is and for any life of in the                             |
|                        | TCTATCGATAGGTACC          | $IP_{pTF1-UPS/DNS}$ primer pair is used for amplification in the       |
|                        | TAGATCGGTAAGGATAGCGCTGAGG | frogments are used as templates                                        |
| IP <sub>pTF1-DNS</sub> | ACGTGCTCAGTCTGGGCCTCGAGCC | fragments are used as templates.                                       |
|                        | CGGGCTAG                  |                                                                        |
|                        | TAGATCGGTAAGGATAGCGCTGAGG |                                                                        |
| IPhTF1-UPS1            | GGTTGAGGCCAGTTGCAAAGACAAT |                                                                        |
|                        | TGACATGTTACATTTTG         | $IP_{hTF1-UPS1/DNS}$ primer pair is used for amplification in the      |
|                        | TAGATCGGTAAGGATAGCGCTGAGG | CRISDA reaction where h1F1 tragment is used as the                     |
| IPhTF1-DNS1            | CACAGGCGTAGCTACAAGATTAGTT | template.                                                              |
|                        | TTGAGACTCTCATTCTA         |                                                                        |
|                        | TAGATCGGTAAGGATAGCGCTGAGG |                                                                        |
| IPhTF1-UPS2            | GAGAGTTTTAAGCAAGGGCTGATGT |                                                                        |
|                        | GGGCTGCCTAGA              | $IP_{hTF1-UPS2/DNS2}$ primer pair is used for amplification in the     |
|                        | TAGATCGGTAAGGATAGCGCTGAGG | CRISDA reaction where h1F1 tragment is used as the                     |
| IPhTF1-DNS2            | ACGTGCTCAGTCTGGGCCCCAAGGA | template.                                                              |
|                        | TTGACCCAGGC               |                                                                        |
|                        | TAGATCGGTAAGGATAGCGCTGAGG |                                                                        |
| IPhTF2-UPS             | ACGAAGAATAAAACTGTGGGACTG  |                                                                        |
|                        | ACCCCCACCCAT              | $IP_{hTF2-UPS/DNS}$ primer pair is used for amplification in the       |
|                        | TAGATCGGTAAGGATAGCGCTGAGG | CRISDA reaction where h1F2 tragment is used as the                     |
| IP <sub>hTF2-DNS</sub> | AACAAATACTGGGTAGTTATTATTT | template.                                                              |
|                        | TGCTTAAGTGAAAAACA         |                                                                        |
| IPgTF1-UPS             | TAGATCGGTAAGGATAGCGCTGAGG |                                                                        |
|                        | AAAGGGAGAAATCACTAAGTTTGTG | ID anima ani is and for any life of in the                             |
|                        | GTTCAGTCCGG               | P <sub>gTF1-UPS/DNS</sub> primer pair is used for amplification in the |
|                        | TAGATCGGTAAGGATAGCGCTGAGG | templete                                                               |
| IPgTF1-DNS             | AAATACGACGGATCGTAATTTGTCG | tempiate.                                                              |
|                        | TTTTATCAAAATGTA           |                                                                        |

## Supplementary Table 7. Sequences of PCR primer pair to compare the performance between CRISDA and PCR

| Oligo name | Sequence, 5'-3'         | Purpose                                                                                               |
|------------|-------------------------|-------------------------------------------------------------------------------------------------------|
| GMO-For    | CCAATAAAGGGAGAAATCACTAA | GMO-For/Rev primer pair is used in PCR reactions to amplify fragments from gTF1 fragment and MON87705 |
| GMO-Rev    | CCTATAAATACGACGGATCGTAA | genome, in order to compare the performance between CRISDA and PCR.                                   |

#### Supplementary Table 8. Sequences of oligonucleotides for generating pGL3-100-Targewt vector and its mutants

| Oligo name              | Sequence, 5'-3'             | Purpose                                                                                                                                                          |  |
|-------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| pGL3-100-For            | GTCTGCCTAAAGGTGTCGCT        | A Luciferase coding region is amplified from pC                                                                                                                  |  |
| pGL3-100-Rev            | CGCAGTATCCGGAATGATTTGA      | plasmid by the two oligos and inserted in Sacl and Nhel digested pGL-3 Vector to generate the pGL3-100 vector.                                                   |  |
| pTF1wr-For              | TCGAGGCCCAGACTGAGCACGTGATGG | Annealed products of the two oligos are ligated with pGL3-100 vector digested by XhoI and HindIII construct mutated plasmid at PAM sequence (pG                  |  |
| pTF1 <sub>WT</sub> -For | AGCTCCATCACGTGCTCAGTCTGGGCC | 100-Target <sub>WT</sub> ), used to produce templates for testing specificity of CRISDA.                                                                         |  |
| pTF1 <sub>MP</sub> -For | TCGAGGCCCAGACTGAGCACGTGATTG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to construct mutated plasmid at PAM sequence (nGL3-        |  |
| pTF1 <sub>MP</sub> -Rev | AGCTCAATCACGTGCTCAGTCTGGGCC | 100-Target <sub>MP</sub> ), used to produce templates for testing specificity of CRISDA.                                                                         |  |
| pTF1 <sub>M1</sub> -For | TCGAGGCCCAGACTGAGCACGTGCTGG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to                                                         |  |
| pTF1 <sub>M1</sub> -Rev | AGCTCCAGCACGTGCTCAGTCTGGGCC | PAM end (pGL3-100-Target <sub>M1</sub> ), used to produce templates for testing specificity of CRISDA.                                                           |  |
| pTF1 <sub>M2</sub> -For | TCGAGGCCCAGACTGAGCACGTAATGG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to                                                         |  |
| pTF1 <sub>M2</sub> -Rev | AGCTCCATTACGTGCTCAGTCTGGGCC | to PAM end (pGL3-100-Target <sub>M2</sub> ), used to produce templates for testing specificity of CRISDA.                                                        |  |
| pTF1 <sub>M3</sub> -For | TCGAGGCCCAGACTGAGCACGCGATGG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to                                                         |  |
| pTF1 <sub>M3</sub> -Rev | AGCTCCATCGCGTGCTCAGTCTGGGCC | to PAM end (pGL3-100-Target <sub>M3</sub> ), used to produce templates for testing specificity of CRISDA.                                                        |  |
| pTF1 <sub>M4</sub> -For | TCGAGGCCCAGACTGAGCACATGATGG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to                                                         |  |
| pTF1 <sub>M4</sub> -Rev | AGCTCCATCATGTGCTCAGTCTGGGCC | to PAM end (pGL3-100-Target <sub>M4</sub> ), used to produce templates for testing specificity of CRISDA.                                                        |  |
| pTF1 <sub>M5</sub> -For | TCGAGGCCCAGACTGAGCAGGTGATGG | Annealed products of the two oligos are ligated with the pGL3-100 vector digested by XhoI and HindIII to                                                         |  |
| pTF1 <sub>M5</sub> -Rev | AGCTCCATCACCTGCTCAGTCTGGGCC | construct mutated plasmid at the fifth nucleotide close to PAM end (pGL3-100-Target <sub>M5</sub> ), used for producing templates testing specificity of CRISDA. |  |

| PNA name                               | Sequence, N to C terminal    | Purpose                                                                                                                   |  |
|----------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| PNA <sub>pTF1</sub> -Cy5               | Cy5-GCCTAAAGGTGTCGCTCTG      | PNA <sub>pTF1</sub> -biotin/Cy5 are used to invade CRISDA<br>products generated by the IP <sub>pTF1-UPS/DNS</sub> primer  |  |
| PNA <sub>pTF1</sub> -biotin            | TGGCAATCAAATCATTCCG-biotin   | fragments for separating specific product from<br>non-specific products                                                   |  |
| PNA <sub>hTF1-UPS1/DNS1</sub> -<br>Cy5 | Cy5-CTTGACGGCTTTCTTGT        | PNA <sub>hTF1-UPS1/DNS1</sub> -biotin/Cy5 are used to invade<br>CRISDA products generated by IP <sub>hTF1-UPS1/DNS1</sub> |  |
| PNAhTF1-UPS1/DNS1-<br>biotin           | CAGTTTTGGAGGATGTA-biotin     | primer pair from hTF1 fragment for separating<br>specific product from non-specific products                              |  |
| PNA <sub>hTF1-UPS2/DNS2</sub> -<br>Cy5 | Cy5-TATTTCTGCTGCAAGTAAG      | PNA <sub>hTF1-UPS2/DNS2</sub> -biotin/Cy5 are used to invade<br>CRISDA products generated by IP <sub>hTF1-UPS2/DNS2</sub> |  |
| PNAhTF1-UPS2/DNS2-<br>biotin           | TTCTGCTTCTCCAGCCCTG-biotin   | primer pair from hTF1 fragment for separating<br>specific product from non-specific products                              |  |
| PNA <sub>hTF2</sub> -Cy5               | Cy5-ACTGGGTCTTCAGCTTTCA      | PNA <sub>hTF2</sub> -biotin/Cy5 are used to invade CRISDA<br>products generated by IP <sub>pTF2-UPS/DNS</sub> primer pair |  |
| PNA <sub>hTF2</sub> -biotin            | GTTCAGCCGGTGGTCTTT-biotin    | from hTF2 fragment for separating specific<br>product from non-specific products                                          |  |
| PNA <sub>gTF1</sub> -Cy5               | Cy5-GAGTATGATGGTCAATATGG     | PNA <sub>gTF1</sub> -biotin/Cy5 are used to invade CRISDA products generated by IP <sub>gTF1-UPS/DNS</sub> primer pair    |  |
| PNAgTF1-biotin                         | TGTAGATGTCCGCAGCGTTAT-biotin | from gTF1 fragment for separating specific<br>product from non-specific products                                          |  |

#### Supplementary Table 9. PNAs used in the study for endpoint measurements

### Supplementary Table 10. Summary of sgRNAs applied to detect regions in the human genome in this study

| sgRNA                  | Sequence in the guide region (5' ~ | Distance              | sgRNA performance analyzed by<br>CRISPR Design (V1)* |                                                          |
|------------------------|------------------------------------|-----------------------|------------------------------------------------------|----------------------------------------------------------|
| Name                   | 3')                                | and sg <sub>DNS</sub> | Score                                                | Number of potential off-target sites in the human genome |
| sghTF1-DNS1            | CUUGUAGCUACGCCUGUGAU               | 160 hr                | 85                                                   | 60                                                       |
| SghTF1-UPS1            | UUGCAACUGGCCUCAACCUU               | 109 bp                | 77                                                   | 148                                                      |
| sghTF1-DNS2            | GGCCCAGACUGAGCACGUGA               | 202 h-                | 65                                                   | 275                                                      |
| SghTF1-UPS2            | CCCUUGCUUAAAACUCUCCA               | 203 bp                | 55                                                   | 312                                                      |
| sg <sub>hTF2-DNS</sub> | AACUACCCAGUAUUUGUUUC               | 1041                  | 63                                                   | 243                                                      |
| sg <sub>hTF2-UPS</sub> | CACAGUUUUAUUCUUCGCUA               | 194 bp                | 74                                                   | 205                                                      |

\* sequences are analyzed by an online tool, CRISPR Design (V1, Zhang's Lab, MIT, 2013), at: http://crispr.mit.edu/.

Supplementary Table 11. The GC-content and melting temperature of the middle region in IP primers used in this study.

| IP Primer Name         | The middle hybridization region<br>complementary to the exposed<br>nontarget strand |         |  |
|------------------------|-------------------------------------------------------------------------------------|---------|--|
|                        | GC content                                                                          | Tm      |  |
| IP <sub>pTF1-UPS</sub> | 62.5%                                                                               | 54 °C   |  |
| IP <sub>pTF1-DNS</sub> | 68.8%                                                                               | 56.2 °C |  |
| IPhTF1-UPS1            | 56.2 %                                                                              | 52.8 °C |  |
| IPhTF1-DNS1            | 50.0 %                                                                              | 50.0 °C |  |
| IPhTF1-UPS2            | 37.5 %                                                                              | 42.6 °C |  |
| IPhTF1-DNS2            | 68.8 %                                                                              | 56.2 °C |  |
| IPhTF2-UPS             | 31.2 %                                                                              | 39.8 °С |  |
| IPhTF2-DNS             | 37.5 %                                                                              | 42.9 °C |  |
| IPgTF1-UPS             | 37.5 %                                                                              | 42.6 °C |  |
| IPgTF1-DNS             | 43.8 %                                                                              | 46.2 °C |  |