### **Supplementary Information**

Pd(OAc)<sub>2</sub>-Catalyzed Asymmetric Hydrogenation of Sterically Hindered *N*-Tosylimines

Chen et al

#### **Supplementary Methods**

All reactions were performed in flame-dried glassware or in a glove box under an atmosphere of dry nitrogen, and the workup was carried out in air, unless otherwise noted. Solvents were dried and distilled before use by standard procedures. Commercially available reagents were used without further purification. (*R*)-DTBM-SegPhos, (*R*)-Seg SegPhos, (*R*)-BINAP and (*R*,*R*)-QuinozP\* were purchased from Strem Chemicals Inc. and used without further purification.

<sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra were recorded on a Varian MERCURY plus-400 spectrometer with TMS as an internal standard. HRMS was performed at the Analysis Center of Shanghai Jiao Tong University. Column chromatography was performed using 100-200 mesh silica gel. Melting points were measured with SGW X-4 micro melting point apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. IR was measured with PerkinElmer Spectrum 100 FT-IR Spectrometer. Enantioselectivity was measured by high performance liquid chromatography (HPLC) using Daicel Chiralcel OD-H, AD-H, OJ-H, and IC-3 columns with hexane / 2-propanol as eluent.

#### **Supplementary Note 1**

Syntheses of N-tosylimines substrates



**Procedure A**: To a cooled (-78 °C) solution of pivaloyl chloride (3 mL) in THF (20 mL) was added a solution of freshly prepared arylmagnesium bromide (1.2 mmol in THF, 20 mL) under N<sub>2</sub> atmosphere. The solution was stirred for 24 h at the same temperature, then was allowed to warm to room temperature. The mixture was was diluted with saturated aqueous NH<sub>4</sub>Cl solution (30 mL) and extracted with DCM (30 mL  $\times$  3). The combined organic phases were dried and concentrated. The residual oil was subjected to column chromatography to give colorless oil (yields, 97-88%).



#### 2,2-Dimethyl-1-phenylpropan-1-one (3a-e)<sup>[1]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 (d, J = 8.0 Hz, 2H), 7.45–7.39 (m, 3H), 1.35 (s, 9H).



#### 2,2-Dimethyl-1-phenylbutan-1-one (3f)<sup>[2]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (d, J = 8.0 Hz, 2H), 7.43–7.35 (m, 3H), 1.78 (q, J = 8.0, 2H), 1.28 (s, 6H), 0.83 (t, J = 8.0, 3H).



#### Adamantan-1-yl(phenyl)methanone (3g)<sup>[3]</sup>

White solid. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, J = 8.0 Hz, 2H), 7.41–7.34 (m, 3H), 2.06 (s, 3H), 1.99 (s, 6H), 1.73 (s, 6H).



#### 2,2-Dimethyl-1-(m-tolyl)propan-1-one (3h)<sup>[4]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.47–7.46 (m, 2H), 7.25–7.23 (m, 2H), 2.36 (s, 3H), 1.32 (s, 9H).



#### 2,2-Dimethyl-1-(p-tolyl)propan-1-one (3i)<sup>[4]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): *δ* 7.66 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H), 1.35 (s, 9H).



1-(3-Methoxyphenyl)-2,2-dimethylpropan-1-one (3j)<sup>[5]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): *δ* 7.40–6.81 (m, 4H), 3.81 (s, 3H), 1.34 (s, 9H).



#### 1-(4-Methoxyphenyl)-2,2-dimethylpropan-1-one (3k)<sup>[2]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.86 (d, J = 12.0 Hz, 2H), 6.89 (d, J = 12.0 Hz, 2H), 3.85 (s, 3H), 1.35 (s, 9H).



#### 2,2-Dimethyl-1-(4-phenoxyphenyl)propan-1-one (3l)<sup>[6]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.81 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 1.37 (s, 9H).



**1-(3-Chlorophenyl)-2,2-dimethylpropan-1-one** (**3m**)<sup>[4]</sup> Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.63 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 1.34 (s, 9H).



#### 1-(4-Chlorophenyl)-2,2-dimethylpropan-1-one (3n)<sup>[2]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.65 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 1.32 (s, 9H).



1-(3-Fluorophenyl)-2,2-dimethylpropan-1-one (30)<sup>[4]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.46–7.36 (m, 3H), 7.14–7.11 (m, 1H), 1.35 (s, 9H).



#### 1-(4-Fluorophenyl)-2,2-dimethylpropan-1-one (3p)<sup>[4]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.77 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 1.33 (s, 9H).



#### 1-(3,5-Dimethylphenyl)-2,2-dimethylpropan-1-one (3q)<sup>[7]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.23 (s, 2H), 7.07 (s, 1H), 2.32 (s, 6H), 1.31 (s, 9H).



#### 1-(3,5-Di-tert-butylphenyl)-2,2-dimethylpropan-1-one (3r)<sup>[8]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.44 (s, 1H), 7.23 (s, 2H), 1.37 (s, 9H), 1.33 (s, 18H).



#### 1-(Benzo[d][1,3]dioxol-5-yl)-2,2-dimethylpropan-1-one (3s)

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 7.41 (d, J = 8.0 Hz, 2H), 7.29 (s, 1H), 6.79 (d, J = 8.0 Hz, 2H), 1.33 (s, 9H).



#### 2,2-Dimethyl-1-(3-methyl-5-(trifluoromethyl)phenyl)propan-1-one (3t)

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 (s, 1H), 7.61 (s, 1H), 7.51 (s, 1H), 2.45 (s, 3H), 1.34 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl3):  $\delta$  207.8, 139.2, 138.9, 131.5, 130.3 (q, J = 32 Hz), 127.6 (q, J = 4 Hz), 123.8 (d, J = 136 Hz), 121.5 (q, J = 4 Hz), 44.1, 27.5, 21.0; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): -62.7; IR (KBr) (v/cm<sup>-1</sup>): 2973, 1695, 1368, 1347, 1156, 1127, 877, 698; HRMS (ESI-MS) Calcd. For C<sub>13</sub>H<sub>15</sub>F<sub>3</sub>NaO [M+Na]<sup>+</sup> 267.0973, found: 267.0965.



#### 2,2-Dimethyl-1-(naphthalen-2-yl)propan-1-one (3u)<sup>[9]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 8.26 (s, 1H), 7.95–7.75 (m, 4H), 7.60–7.50 (m, 2H), 1.43 (s, 9H).

#### 3,3-Dimethylbutan-2-one (3v)<sup>[10]</sup>

Yellow oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>): δ 2.14 (s, 3H), 1.15 (s, 9H).

#### 2,2-Dimethylhexan-3-one (3w)<sup>[11]</sup>

Colorless oil. <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  2.46 (t, J = 7.2 Hz, 2H), 1.63–1.58 (m, 2H), 1.14 (s, 9H), 0.89 (t, J = 7.2, 3H).



**Procedure B**: To a stirred solution of anhydride (20 mmol) and CuI (2.0 mmol) in THF (80 mL) was added *tert*-butylmagnesium chloride (18 mmol) at -50 °C under N<sub>2</sub> atmosphere. The resulting mixture was allowed to lowly warm up to room temperature overnight and then quenched with HCl (50 mL, 0.1 M). The layers were separated and the aqueous layer was extracted with EtOAc (40 mL × 3). The combined organic layers were washed with brine, dried over anhydrous MgSO<sub>4</sub>, and concentrated in vacuo to yield the crude product as light-yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  2.80 (t, J = 6.4 Hz, 2H), 2.60 (t, J = 6.4 Hz, 2H), 1.15 (s, 9H).

**Procedure C**: To a solution of ketonic acids (20 mmol) in MTBE (150 mL) at room temperature was added DBU (24 mmol) and benzyl bromide (24 mmol). The reaction mixture was stirred for 24 h. Then the resulting mixture was washed with 1 N HCl and 10 wt % aq NaCl, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo to afford corresponding crude product as light-yellow oil (63% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.33–7.24 (m, 5H), 5.10 (s, 2H), 2.83–2.78 (m, 2H), 2.62–2.57 (m, 2H), 1.13 (s, 9H).



**Procedure B**: To a stirred solution of acyl chlorides (20 mmol) and CuI (2.0 mmol) in THF (80 mL) was added tertiary butyl magnesium chloride (18 mmol) at -50 °C under N<sub>2</sub> atmosphere. The resulting mixture was allowed to slowly warm up to room temperature overnight and then quenched with saturated NH<sub>4</sub>Cl (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (40 mL × 3). The combined organic layers were washed with brine, dried over anhydrous MgSO<sub>4</sub>, and concentrated in vacuo to yield the desired ketoesters as a crude product that was used without purification (72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.09 (q, J = 7.2 Hz, 2H), 2.52 (q, J = 7.2 Hz, 2H), 2.28 (q, J = 7.2 Hz, 2H), 1.88–1.81 (m, 2H), 1.23–1.19 (m, 2H), 1.09 (s, 9H).

HO 
$$HO$$
  $OH$   $1. Ac_2O, Reflux OH$   $t-Bu$   $OBn$   $t-Bu$   $OBn$   $0$   $3z$   $3z$ 

**Procedure D**: Under argon atmosphere, a solution of hexanedioic acid (10 mmol) in acetic anhydride (2.5 mL/mmol) was stirred at reflux during 6 h to yield the corresponding anhydride. The solvent was evaporated under reduced pressure and the

resulting solid used in the next step 2 without further purification.



**Procedure E**: To a solution of ketonic acids (20 mmol) in DCM (50 mL) at room temperature was added DMF (0.1 mL) and SOCl<sub>2</sub> (30 mmol). The reaction mixture was stirred for 8 h. Then the resulting mixture was concentrated in vacuo. 100 mL of DCM, Et<sub>3</sub>N (30 mmol) and NHBn<sub>2</sub> (30 mmol) were added and stirred overnight at room teperature. The reaction mixture was washed with 1 N HCl and saturated brines, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo to afford the corresponding crude product as light-yellow oil (68% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.66–7.49 (m, 10H), 4.88 (s, 2H), 4.80 (s, 2H), 3.26–3.20 (m, 2H), 3.00–2.93 (m, 2H), 1.48 (s, 9H).



**Procedure F**: To a solution of (1-hydroxycyclohexyl)(phenyl)methanone (10 mmol) in THF (60 mL) at 0 °C was added methyl iodide (11 mmol) and NaH (11 mmol). The resulting mixture was allowed to slowly warm up to RT and stirred for 8 h, then quenched with saturated NH<sub>4</sub>Cl (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (40 mL  $\times$  3). The combined organic layers were washed with brine, dried over anhydrous MgSO<sub>4</sub>, and concentrated in vacuo to yield the crude product that was used after purification by flash chromatography (93% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (q, J = 8.0 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.41–7.37 (m, 2H), 3.12 (s, 3H), 2.04–2.00 (m, 2H), 1.79–1.51 (m, 8H).



**Procedure E and B**, 43% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 2.45 (s, 4H), 1.28 (m, 4H), 1.09 (s, 18H).



Those above compounds were purchased from reagent companies.



**Procedure G**: To a cooled solution of **3** (5.0 mmol), TsNH<sub>2</sub> (6.0 mmol), and Et<sub>3</sub>N (25.0 mmol) in DCM (50 mL) was added TiCl<sub>4</sub> (5.0 mmol). After 12-24 h of stirring at room temperature, saturated aqueous NaHCO<sub>3</sub> (20 mL) was added. The mixture was filtered and the filtrate was extracted with DCM (20 mL  $\times$  2). The combined organic phases were dried, and concentrated. The residue was purified by flash chromatography and recrystallization to give **1** (yields, 71-35 %).



(Z)-N-(2,2-Dimethyl-1-phenylpropylidene)-4-methylbenzenesulfonamide (1a)<sup>[12]</sup> White solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 (d, J = 8.0 Hz, 2H), 7.39–7.35 (m,

3H), 7.22 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H), 1.20 (s, 9H).



#### (Z)-N-(2, 2-Dimethyl-1-phenylpropylidene)-4-methoxybenzenesulfonamide (1b)

White solid, mp: 110–112 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 8.0 Hz, 2H), 7.38–7.34 (m, 3H), 7.10-7.08 (m, 2H), 6.88 (d, J = 8.0 Hz, 2H), 3.85 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.7, 162.7, 135.3, 132.8, 129.3, 128.8, 127.4, 126.2, 113.8, 55.6, 43.0, 27.8; IR (KBr) (v/cm<sup>-1</sup>): 2974, 2934, 1595, 1499, 1326, 1153, 838, 807; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>21</sub>NNaO<sub>3</sub>S [M+Na]<sup>+</sup> 342.0940, found: 342.0947.



#### (Z)-N-(2, 2-Dimethyl-1-phenylpropylidene)-4-fluorobenzenesulfonamide (1c)

White solid, mp: 109–111 °C; <sup>1</sup>H NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  7.82–7.79 (m, 2H), 7.41–7.36 (m, 3H), 7.12–7.08 (m, 4H), 1.19 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.9, 166.2, 163.7, 137.2, 135.3, 130.0 (d, J = 36.0 Hz), 129.0, 127.5, 126.2, 116.0, 115.7, 43.1, 27.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): -27.9; IR (KBr) (v/cm<sup>-1</sup>): 3109, 2976, 2933, 1598, 1591, 1163, 1095, 841, 817, 737; HRMS (ESI-MS) Calcd. For C<sub>17</sub>H<sub>18</sub>FNNaO<sub>2</sub>S [M+Na]<sup>+</sup> 354.1140, found: 354.1138.



#### (Z)-N-(2,2-Dimethyl-1-phenylpropylidene)benzenesulfonamide (1d)

White solid, mp: 102–104 °C; <sup>1</sup>H NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.0 Hz, 2H), 7.54–7.51 (m, 1H), 7.45–7.33 (m, 5H), 7.45–7.33 (m, 2H), 1.20 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.8, 141.1, 135.3, 132.5, 128.9, 127.5, 127.1, 126.2, 43.1, 27.8; IR (KBr) (v/cm<sup>-1</sup>): 3032, 2988, 2935, 1623, 1608, 1322, 1168, 839, 786, 732; HRMS (ESI-MS) Calcd. For C<sub>17</sub>H<sub>20</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 302.1215, found: 302.1214.



#### N-(2,2-Dimethyl-1-phenylpropylidene)methanesulfonamide (1e)

White solid, mp: 85–87 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (s, 3H), 7.16 (s, 2H), 3.11 (s, 3H), 1.20 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.9, 135.2, 129.0, 127.5, 126.3, 42.8, 42.7, 27.8; IR (KBr) (v/cm<sup>-1</sup>): 3289, 2961, 2871, 1457,1319, 1155, 1089, 1062, 1023, 979, 793, 735,705,517; HRMS (ESI-MS) Calcd. For C<sub>12</sub>H<sub>18</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>240.1058, found: 240.1057.



#### (Z)-N-(2,2-Dimethyl-1-phenylbutylidene)-4-methylbenzenesulfonamide (1f)

White solid, mp: 117–119 °C; <sup>1</sup>H NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  7.67 (d, J = 8.0 Hz, 2H), 7.39–7.33 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 1.59 (q, J = 8.0 Hz, 2H), 1.11 (s, 6H), 0.90 (t, J = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.8, 143.2, 138.4, 135.6, 129.2, 128.8, 127.4, 127.1, 126.0, 46.3, 32.9, 25.4, 21.6, 9.1; IR (KBr) (v/cm<sup>-1</sup>): 2975, 1604, 1586, 1325, 1152, 1091, 981; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 330.1528, found: 330.1532.



#### (Z)-N-(Adamantan-1-yl(phenyl)methylene)-4-methylbenzenesulfonamide (1g)

White solid, mp: 171–174 °C; <sup>1</sup>H NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 8.0 Hz, 2H), 7.41–7.33 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 2.01 (s, 3H), 1.79 (s, 6H), 1.65 (dd, J = 12.0, 36.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  1.92.7, 143.1, 138.4, 134.8, 129.2, 128.7, 127.3, 127.2, 126.3, 44.7, 39.1, 36.2, 28.0, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2926, 2900, 1603, 1583, 1326, 1301, 847, 818; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>28</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 394.1841, found: 394.1847.



#### (Z)-N-(2, 2-Dimethyl-1-(m-tolyl)propylidene)-4-methylbenzenesulfonamide (1h)

White solid, mp: 106–108 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (d, J = 8.4 Hz, 2H), 7.20–7.12 (m, 4H), 6.88 (d, J = 7.6 Hz, 1H), 6.76 (s, 1H), 2.35 (s, 3H), 2.28 (s, 3H), 1.16 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  190.9, 140.6, 135.6, 134.4, 132.6, 127.0, 126.6, 124.7, 124.6, 124.0, 120.9, 40.4, 25.3, 19.0, 18.9; IR (KBr) (v/cm<sup>-1</sup>): 2975, 2930, 2869, 1613, 1596, 813, 802, 736; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>330.1520, found: 330.1528.



(Z)-N-(2, 2-Dimethyl-1-(p-tolyl) propylidene)-4-methylbenzenesulfonamide(1i)

White solid, mp: 132–134 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.21–7.15 (m, 2H), 7.02 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.6, 143.1, 138.8, 138.5, 132.6, 129.2, 128.1, 127.2, 126.2, 43.0, 27.9, 21.5, 21.4; IR (KBr) (v/cm<sup>-1</sup>): 2978, 2934, 2872, 1613, 1589, 842, 819,760; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 330.1523, found: 330.1528.



(Z)-*N*-(1-(3-Methoxyphenyl)-2, 2-dimethylpropylidene)-4-methylbenzenesulfonamide (1j) White solid, mp: 118–120 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (d, J = 8.0 Hz, 2H), 7.28–7.24 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.55 (s, 1H), 3.78 (s, 3H), 2.40 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.7, 158.5, 143.2, 138.2, 136.5, 129.2, 128.6, 127.3, 118.8, 114.2, 112.3, 55.2, 43.0, 28.0, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 3356, 3261, 1607, 1540, 831, 812, 773; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>23</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 368.1293, found:368.1296.



(Z)-*N*-(1-(4-Methoxyphenyl)-2, 2-dimethylpropylidene)-4-methylbenzenesulfonamide (1k) White solid, mp: 115–117 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 (d, J = 8.0 Hz, 2H), 7.26–7.22 (m, 2H), 7.07 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.40 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.6, 159.9, 143.1, 138.5, 129.2, 127.9, 127.8, 127.2, 112.9, 55.2, 43.2, 28.0, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 3356, 3261, 1607, 1540, 831, 812, 773; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>24</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 346.1477, found:346.1477.



(Z)-*N*-(2, 2-Dimethyl-1-(4-phenoxyphenyl)propylidene)-4-methylbenzenesulfonamide (11) White solid, mp: 118–120 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 8.4 Hz, 2H), 7.40–7.36 (m, 3H), 7.24 (s, 1H), 7.18–7.15 (m, 1H), 7.09–7.06 (m, 4H), 6.94(d, J = 8.8 Hz, 2H), 2.41 (s, 3H), 1.19 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.2, 158.1, 156.0, 143.3, 138.4, 130.0, 129.9, 129.3, 128.1, 127.2, 124.1, 119.9, 116.9, 43.2, 27.9, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2971, 1588, 1501, 878, 838, 813; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>26</sub>NO<sub>3</sub>S [M+H]<sup>+</sup>408.1633, found: 408.1634.



(Z)-*N*-(1-(3-Chlorophenyl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonamide (1m) White solid, mp: 119–121 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (d, J = 8.0 Hz, 2H), 7.35–7.28 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.94(s, 1H), 2.41 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.0, 143.6, 137.7, 136.6, 133.7, 129.3, 129.0, 128.9, 127.2, 126.0, 124.8, 43.0, 27.8, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2975, 2932, 1609, 1590, 1477, 1328, 880, 849, 768; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>20</sub>ClNNaO<sub>2</sub>S [M+Na]<sup>+</sup> 372.0801, found: 372.0798.

# t-Bu

(Z)-N-(1-(4-Chlorophenyl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonamide (1n)

White solid, mp: 176–178 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 2.38 (s, 3H), 1.15 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.9, 143.5, 138.0, 135.1, 133.7, 129.3, 127.8, 127.7, 127.2, 43.0, 27.7, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2977, 1603, 1587, 1150, 1091, 983, 839, 669; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>21</sub>ClNO<sub>2</sub>S [M+H]<sup>+</sup> 350.0982, found: 350.0990.



#### (Z)-N-(1-(3-Fluorophenyl)-2, 2-dimethylpropylidene)-4-methylbenzenesulfonamide (10)

White solid, mp: 162–165 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 (d, J = 8.0 Hz, 2H), 7.37–7.32 (m, 1H), 7.26–7.22 (m, 2H), 7.11–7.06 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 2.40 (s, 3H), 1.17 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 191.1, 162.9, 160.5, 137.9, 137.1, 137.0 (d, J =7.0 Hz), 129.3 (t, J = 3.8 Hz), 127.3, 122.4 (d, J = 3.6 Hz), 116.0 (d, J = 3.6 Hz), 113.8 (d, J = 23.4 Hz), 43.0, 27.8, 21.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): -112.4; IR (KBr) (v/cm<sup>-1</sup>):2972, 1615, 1596, 815, 802, 786; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>22</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>334.1266, found: 334.1270.



(Z)-*N*-(1-(4-Fluorophenyl)-2, 2-dimethylpropylidene)-4-methylbenzenesulfonamide (1p) White solid, mp: 133–135 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.10–7.02 (m, 4H), 2.39 (s, 3H), 1.16(s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.4, 164.0, 161.5, 143.4, 138.1, 129.3, 128.4 (d, J = 8.2 Hz), 127.1, 114.8 (d, J = 21.7 Hz), 43.1, 27.8, 21.6; <sup>19</sup>F NMR(376 MHz, CDCl<sub>3</sub>): -111.5; IR (KBr) (v/cm<sup>-1</sup>): 2977, 2874, 1606, 1592, 847, 836, 818; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>21</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 334.1287, found: 334.1290.



(Z)-*N*-(1-(3, 5-Dimethylphenyl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonamide (1q) White solid, mp: 134–136 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.94(s, 1H), 6.58 (s, 2H), 2.37 (s, 3H), 2.26 (s, 6H), 1.17 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.7, 143.0, 138.1, 136.8, 135.0, 130.3, 129.1, 127.3, 123.9, 43.0, 28.0, 21.5, 21.3; IR (KBr) (v/cm<sup>-1</sup>): 3034, 2965, 2918, 1596, 1492, 848, 810; HRMS (ESI-MS) Calcd. For C<sub>20</sub>H<sub>25</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 366.1489, found: 366.1504.



(Z)-N-(1-(3,5-Di-tert-butylphenyl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonamide (1r)

White solid, mp: 112–114 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.51 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 3.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 2.0 Hz, 2H), 2.35 (s, 3H), 1.28 (s, 18H), 1.17 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 149.5, 142.8, 138.2, 134.2, 129.1, 127.3, 122.3, 120.9, 43.1, 34.8, 31.3, 28.0, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2964, 2869, 1610, 1591, 884, 857; HRMS (ESI-MS) Calcd. For C<sub>26</sub>H<sub>38</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>428.2616, found: 428.2623.



(Z)-N-(1-(Benzo[d][1,3]dioxol-5-yl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonamide (1s)

White solid, mp: 145–147 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 8.0 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 6.53 (s, 1H), 5.98 (s, 2H), 2.40 (s, 3H), 1.18 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  192.6, 148.0, 146.8, 143.2, 138.3, 129.2, 128.8, 127.2, 120.5, 107.6, 107.1, 101.3, 43.1, 28.0, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 2967, 1611, 1489, 1314, 1149, 1091, 900, 831, 773; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>22</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 360.1270, found: 360.1270.



(Z)-N-(2,2-Dimethyl-1-(3-methyl-5-(trifluoromethyl)phenyl)propylidene)-4-methylbenzenesu Ifonamide (1t)

White solid, mp: 124–126 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.65 (d, J = 8.4 Hz, 2H),

7.22 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 9.6 Hz, 1H), 6.64 (d, J = 9.6 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 1.17 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.5 (d, J = 1.6 Hz), 162.9, 160.4, 143.5, 139.9 (d, J = 8.0 Hz), 138.0, 136.6 (d, J = 7.9 Hz), 129.3, 127.3, 122.8 (d, J = 2.9 Hz), 116.5 (d, J = 20.6 Hz), 110.8 (d, J = 23.6 Hz), 42.3, 27.9, 21.5;, 21.4 (d, J = 1.6 Hz) <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): -113.7 (d, J = 0.75 Hz); IR (KBr) (v/cm<sup>-1</sup>): 2971, 1617, 1603, 814, 797, 761; HRMS (ESI-MS) Calcd. For C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 420.1799, found: 420.1796.



(Z)-*N*-(2, 2-Dimethyl-1-(naphthalen-2-yl)propylidene)-4-methylbenzenesulfonamide (1u) White solid, mp: 136–138 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.86–7.78 (m, 3H), 7.60 (d, J = 8.0 Hz, 2H), 7.53–7.50 (m, 3H), 7.22 (d, J = 9.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 2.29 (s, 3H), 1.26 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  193.1, 143.3, 138.0, 132.9, 132.7, 131.9, 129.2, 128.4, 127.8, 127.3, 127.1, 127.0, 126.7, 125.7, 123.9, 43.3, 28.0, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 3057, 2973, 2931, 1607, 1594, 857, 810; HRMS (ESI-MS) Calcd. For C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 366.1525, found: 366.1528.

#### (E)-N-(3, 3-Dimethylbutan-2-ylidene)-4-methylbenzenesulfonamide (1v)<sup>[13]</sup>

White solid, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.83 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.52 (s, 3H), 2.41 (s, 3H), 1.13(s, 9H).

#### (E)-4-Methyl-N-(pentan-2-ylidene)benzenesulfonamide (1w)

White solid, mp: 74–75 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.88–2.84 (m, 2H), 2.42 (s, 3H), 1.83–1.75 (m, 2H), 1.16 (s, 9H), 1.07 (q, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.8, 143.1, 138.9, 129.3, 126.9, 43.5, 35.4, 27.5, 22.5, 21.6, 15.1; IR (KBr) (v/cm<sup>-1</sup>): 2969, 2932, 2873, 1602, 1478, 1317, 1155, 1093, 815, 754, 583; HRMS (ESI-MS) Calcd. For C<sub>15</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 282.1528, found: 282.1539.

#### (E)-Benzyl 5,5-dimethyl-4-(tosylimino)hexanoate (1x)

White solid, mp: 90–91 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.0 Hz, 2H), 7.35–7.31 (m, 5H), 7.29 (d, J = 8.4 Hz, 2H), 5.14 (s, 3H), 3.23 (t, J = 8.4 Hz, 2H), 2.86 (t, J = 8.4 Hz, 2H), 2.41 (s, 3H), 1.15 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 195.3, 171.5, 143.4, 138.5, 135.7, 129.3, 128.5, 128.3, 128.2, 127.0, 66.7, 43.8, 32.1, 27.6, 27.3, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 2922, 2359, 1737, 1608, 1315, 1303, 1153, 748, 661; HRMS (ESI-MS) Calcd. For C<sub>22</sub>H<sub>28</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 402.1739, found: 402.1744.



#### (E)-Ethyl 6,6-dimethyl-5-(tosylimino)heptanoate (1y)

White solid, mp: 41–42 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H), 2.93 (t, J = 8.0 Hz, 2H), 2.47 (t, J = 6.8 Hz, 2H), 2.41 (s, 3H), 2.11–2.03 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.16 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  196.9, 172.9, 143.2, 138.7, 129.3, 126.9, 60.5, 43.6, 34.4, 32.5, 27.5, 23.8, 21.6, 14.2; IR (KBr) (v/cm<sup>-1</sup>): 2973, 2359, 1732, 1608, 1315, 1154, 1092, 814, 749, 582; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>28</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 354.1739, found: 354.1744.

#### (E)-Benzyl 7,7-dimethyl-6-(tosylimino)octanoate (1z)

Light yellow liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.0 Hz, 2H), 7.33–7.30 (m, 5H), 7.28 (d, J = 8.0 Hz, 2H), 5.10 (s, 2H), 2.87 (t, J = 7.6 Hz, 2H), 2.44–2.37 (m, 5H), 1.82–1.76 (m, 4H) 1.11 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 197.2, 173.1, 143.1, 138.9, 136.0, 129.3, 128.5, 128.2, 128.1, 126.9, 66.2, 43.5, 33.6, 32.9, 28.0, 27.5, 25.5, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 2969, 1735, 1607, 1314, 1153, 1092, 750, 582, 553; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>32</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 430.2052, found: 430.2049.



#### (E)-N,N-Dibenzyl-5,5-dimethyl-4-(tosylimino)hexanamide (1aa)

White solid, mp: 112–113 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.79 (d, J = 8.0 Hz, 2H), 7.36–7.21 (m, 10H), 7.17 (d, J = 8.4 Hz, 2H), 4.61 (s, 2H), 4.51 (s, 2H), 3.33 (t, J = 8.0 Hz, 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.13 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  196.7, 171.3, 143.3, 138.5, 137.1, 136.4, 129.3, 128.9, 128.6, 128.2, 127.6, 127.4, 126.9, 126.6, 49.9, 48.6, 43.9, 31.5, 28.5, 27.3, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 2922, 2852, 2360, 1651, 1607, 1452, 1384, 1152, 750, 698, 582; HRMS (ESI-MS) Calcd. For C<sub>29</sub>H<sub>35</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> 491.2368, found: 491.2371.



#### $(E) \text{-} N \text{-} (2, 2 \text{-} \text{Dimethylcyclopentylidene}) \text{-} 4 \text{-} \text{methylbenzenesulfonamide} \ (1 \text{ ab})$

White solid, mp: 68–69 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.91–1.83 (m, 2H), 1.67 (t, J = 6.8 Hz, 2H), 1.07 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  204.3, 143.5, 137.9, 129.4, 127.1, 47.3, 38.4, 34.1, 25.5, 21.6, 21.1; IR (KBr) (v/cm<sup>-1</sup>): 2963, 2868, 1629, 1316, 1304, 1178, 1093, 854, 771, 666, 577; HRMS (ESI-MS) Calcd. For C<sub>14</sub>H<sub>20</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 266.1215, found: 266.1213.



(*E*)-4-Methyl-N-(2,2,5,5-tetramethyldihydrofuran-3(2H)-ylidene)benzenesulfonamide (1ac) White solid, mp: 134–135 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.81 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.20 (s, 2H), 2.42 (s, 3H), 1.33 (t, J = 7.2 Hz, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  198.2, 144.1, 137.0, 129.6, 127.3, 83.7, 79.3, 45.4, 29.9, 28.4, 21.6; IR (KBr) (v/cm<sup>-1</sup>): 2927, 2359, 1640, 1318, 1159, 1091, 996, 913, 828, 669, 512; HRMS (ESI-MS) Calcd. For C<sub>15</sub>H<sub>22</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 296.1320, found: 296.1332.



#### (E)-N-((1-Methoxycyclohexyl)(phenyl)methylene)-4-methylbenzenesulfonamide (1ad)

White solid, mp: 96–98 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 (d, J = 8.0 Hz, 2H), 7.42–7.28 (m, 5H), 7.21 (d, J = 8.0 Hz, 2H), 3.16 (s, 3H), 2.38 (s, 3H), 1.78–1.23 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  186.3, 143.4, 138.2, 134.7, 129.7, 129.3, 127.5, 127.2, 127.0, 81.4, 50.6, 32.2, 25.1, 21.7, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 2929, 2855, 2359, 1595, 1443, 1327, 1158, 1090, 814, 784, 709, 674, 572, 557; HRMS (ESI-MS) Calcd. For C<sub>21</sub>H<sub>26</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 372.1633, found: 372.1645.



#### (E)-Methyl 2,2-dimethyl-3-(tosylimino)butanoate (1ae)

White solid, mp: 58–59 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.67 (s, 3H), 2.48 (s, 3H), 2.41 (s, 3H), 1.34 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  187.7, 173.9, 143.6, 138.1, 129.4, 127.0, 54.6, 52.7, 22.9, 21.6, 20.9; IR (KBr) (v/cm<sup>-1</sup>): 2986, 2952, 1741, 1622, 1318, 1091, 815, 718, 694, 553; HRMS (ESI-MS) Calcd. For C<sub>14</sub>H<sub>20</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 298.1113, found: 298.1118.

(*E*)-*N*,*N*'-(2,2,9,9-Tetramethyldecane-3,8-diylidene)bis(4-methylbenzenesulfonamide) (1af) White solid, mp: 192–193 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.83 (d, J = 8.0 Hz, 4H), 7.28 (d, J = 8.0 Hz, 4H), 3.00–2.91 (m, 4H), 2.40 (s, 6H), 1.95–1.87 (m, 4H), 1.15 (s, 18H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  197.5, 143.1, 138.9, 129.3, 126.9, 43.56, 32.6, 29.2, 27.5, 21.5; IR (KBr) (v/cm<sup>-1</sup>): 3033, 2969, 2872, 1735, 1608, 1478, 1456, 1315, 1154, 1092, 668, 814, 752, 671, 583, 553; HRMS (ESI-MS) Calcd. For C<sub>28</sub>H<sub>41</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup> 533.2508, found: 533.2519.



#### (Z)-N-(2,2-Dimethyl-1-phenylpropylidene)-2-methylpropane-2-sulfonamide (1ag)

White solid, mp: 118–120 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41–7.34 (m, 3H), 7.20–7.14 (m, 2H), 1.43 (s, 9H), 1.22 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.5, 135.7, 128.9, 127.3, 126.3, 59.0, 43.2, 27.9, 23.9; IR (KBr) (v/cm<sup>-1</sup>): 3055, 2982, 2933, 2871, 1614, 1479, 1440, 1363, 1305, 1197, 1124, 983, 911, 841, 810, 791, 706, 694,519; HRMS (ESI-MS) Calcd. For C<sub>15</sub>H<sub>24</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 282.1528, found: 282.1526.

#### Asymmetric hydrogenation of N-tosylimines



**Procedure H** :(*R*, *R*)-QuinoxP\* (1.4 mg, 2.1 mol%) and Pd(OAc)<sub>2</sub> (0.89 mg, 2.0 mol%) were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone (1.0 mL) was added. The mixture was stirred at room temperature for 5 min, then the solvent was removed under vacuum to give the dry catalyst. In a glovebox, substrate **1** (0.2 mmol) was stirred in a solvent (0.5 mL) at room temperature for 10 min. Subsequently, the above catalyst together with a mixed solvent (1.5 mL) was added to the reaction mixture. The hydrogenation was performed at room temperature under H<sub>2</sub> (1 bar) in a stainless steel autoclave for 24 h. After carefully releasing the hydrogen, the conversion of the product **2** was determined by <sup>1</sup>H NMR spectroscopic analysis of the crude reaction mixture. The enantiomeric excesses of the products were determined by HPLC with chiral columns (OD-H, OJ-H, AD-H or IC-3).



#### $(S) \text{-} N \text{-} (2, 2 \text{-} Dimethyl \text{-} 1 \text{-} phenyl propyl) \text{-} 4 \text{-} methyl benzenesul fon a mide} (2a)^{[14]}$

White solid, 99% yield, 99.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (d, J = 8.4 Hz, 2H), 7.06–7.04 (m, 3H), 6.96 (d, J = 8.0 Hz, 2H), 6.88–6.86 (m, 2H), 5.69 (d, J = 8.0 Hz, 1H), 4.02 (d, J = 8.0 Hz, 1H), 2.27 (s, 3H), 0.89 (s, 9H), HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 70/30, 220 nm, 0.7 mL/min, t<sub>major</sub> = 7.8 min, t<sub>minor</sub> = 15.2 min.



#### (S)-N-(2, 2-Dimethyl-1-phenylpropyl)-4-methoxybenzenesulfonamide (2b)

White solid, 96% yield, 99.0% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 (d, J = 7.2 Hz, 2H), 7.07–7.05(m, 3H), 6.89–6.87 (m, 2H), 6.63 (d, J = 8.8 Hz, 2H), 5.16 (d, J = 8.4 Hz, 1H), 4.01 (d, J = 8.8 Hz, 1H), 3.75 (s, 3H), 0.89 (s, 9H); HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 70/30, 230 nm, 1.0 mL/min, t<sub>major</sub> = 6.7 min, t<sub>minor</sub>= 15.0 min.



#### (S)-N-(2, 2-Dimethyl-1-phenylpropyl)-4-fluorobenzenesulfonamide (2c)

White solid, 96.0% yield, 96% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52–7.49 (m, 2H), 7.07–7.05 (m, 3H), 6.87–6.79 (m, 4H), 5.41(d, J = 8.4 Hz, 1H), 4.06 (d, J = 8.4 Hz, 1H), 0.92 (s, 9H); HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 70/30, 230 nm, 1.0 mL/min, t<sub>major</sub>= 5.0 min, t<sub>minor</sub>= 13.0 min.



#### (S)-N-(2,2-Dimethyl-1-phenylpropyl)benzenesulfonamide (2d)

White solid, 99% yield, 99.9% ee, mp: 153–155 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 8.0 Hz, 2H), 7.04–7.01 (m, 3H), 6.89–6.87 (m, 2H), 5.64(d, J = 9.6 Hz, 1H), 3.06 (d, J = 9.6 Hz, 1H), 0.91 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  140.1, 138.0, 131.9, 128.4, 128.0, 127.5, 126.9, 126.8, 67.0, 35.3, 26.6; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min, t<sub>major</sub>=19.5 min, t<sub>minor</sub>=44.1 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> =

-43.7 (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3327, 2970, 1327, 1313, 1158, 756, 717, 591; HRMS (ESI-MS) Calcd. For C<sub>17</sub>H<sub>22</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 304.1371, found: 304.1373.



#### (S)-N-(2,2-Dimethyl-1-phenylpropyl)methanesulfonamide (2e)

White solid, mp: 133–135 °C; 98% yield, 99.1% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.34–7.22 (m, 5H), 5.72–5.65 (m, 1H), 4.17 (d, J = 9.6 Hz, 1H), 2.46 (s, 3H), 0.94 (m, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  139.1, 128.2, 128.1, 127.6, 66.8, 41.4, 35.2, 26.7; HPLC conditions: DAICEL Chiralpak IC-3 column, Hexane/*i*-PrOH = 80/20, 210 nm, 0.6 mL/min, t<sub>minor</sub>= 16.8 min, t<sub>major</sub> = 28.4 min;  $[\alpha]_D^{20} = -24.9$  (*c* 0.28, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2971, 2933, 2870, 1616, 1597, 1319, 1200, 1147, 984, 967, 843, 803, 703, 546, 521; HRMS (ESI-MS) Calcd. For C<sub>12</sub>H<sub>19</sub>NNaO<sub>2</sub>S [M+Na]<sup>+</sup> 264.1034, found: 264.1047.



#### (S)-N-(2,2-Dimethyl-1-phenylbutyl)-4-methylbenzenesulfonamide (2f)

White solid, 96% yield, 99.9% ee, mp: 123–125 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 (d, J = 8.0 Hz, 2H), 7.04–6.99 (m, 3H), 6.94–6.88 (m, 4H), 5.76(d, J = 9.6 Hz, 1H), 4.11 (d, J = 9.6 Hz, 1H), 2.26 (s, 3H), 1.34–1.31 (m, 2H) 0.89 (s, 3H), 0.85 (t, J = 7.2 Hz, 3H), 0.77 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.5, 138.1, 137.2, 128.9, 128.3, 127.4, 127.0, 126.5, 65.5, 37.9, 31.6, 23.0, 22.8, 21.4, 8.1; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.5 mL/min, t<sub>major</sub>= 16.1 min, t<sub>minor</sub>= 29.6 min;  $[\alpha]_D^{20} = -27.3$  (*c* 0.14, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3284, 2967, 1472, 1319, 1161, 1088, 810, 705, 670; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>26</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 332.1684, found: 332.1689.



#### (S)-N-(Adamantan-1-yl(phenyl)methyl)-4-methylbenzenesulfonamide (2g)

White solid, 96% yield, 99.9% ee, mp: 206–208 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (d, J = 8.0 Hz, 2H), 7.08–7.02 (m, 3H), 6.95 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 5.24 (d, J = 9.2 Hz, 1H), 3.85 (d, J = 9.6 Hz, 1H), 2.27 (s, 3H), 1.95 (s, 3H), 1.66–1.61 (m, 6H), 1.54–1.50 (m, 3H), 1.34 (d, J = 12.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.5, 137.3, 137.2, 128.9, 128.2, 127.4, 126.9, 126.7, 67.6, 38.7, 36.6, 36.5, 28.2, 21.4; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.8 mL/min, t<sub>minor</sub>=7.1 min, t<sub>major</sub>=9.8 min;  $[\alpha]_D^{20} = -15.70$  (*c* 0.53, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3276, 2903, 2848, 1455, 1320, 1159, 811, 703, 673; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>30</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> 396.1997, found: 396.2000.



#### (S)-N-(2, 2-Dimethyl-1-(m-tolyl)propyl)-4-methylbenzenesulfonamide (2h)

White solid, 96% yield, 99.9% ee, mp: 131–133 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (d, J = 8.4 Hz, 2H), 6.98–6.95 (m, 3H), 6.85 (d, J = 7.2 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.56 (s, 1H), 5.33(d, J = 9.6 Hz, 1H), 3.97 (d, J = 9.6 Hz, 1H), 2.27 (s, 3H), 2.12 (s, 3H), 0.89 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.4, 138.1, 137.3, 136.8, 128.9, 128.8, 127.4, 127.3, 127.0, 125.3, 67.1, 35.2, 26.7, 21.3, 21.2; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>major</sub> =7.2 min, t<sub>minor</sub> = 8.2 min;  $[\alpha]_D^{20} = -21.5$  (*c* 0.37, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3279, 2971, 1791, 1717, 1749, 810, 699, 690; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 354.1504, found: 354.1504.



#### (S)-N-(2, 2-Dimethyl-1-(p-tolyl) propyl)-4-methylbenzenesulfonamide (2i)

White solid, 96% yield, 99.9% ee, mp: 172–174 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (d, J = 6.8 Hz, 2H), 6.97 (d, J = 7.2 Hz, 2H), 6.85 (d, J = 7.6 Hz, 2H), 6.74 (d, J = 7.8 Hz, 2H), 4.94 (d, J = 9.2 Hz, 1H), 3.97 (d, J = 9.2 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 0.87 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.5, 137.3, 136.4, 135.3, 128.9, 128.1, 128.0, 127.1, 66.8, 35.2, 26.7, 21.4, 20.9; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>major</sub>=8.0 min, t<sub>minor</sub> = 8.7 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -34.0 (*c* 0.36, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3272, 2965, 2920, 1520, 1470, 1456, 808, 778, 718; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 354.1504, found: 354.1504.



(*S*)-*N*-(1-(3-Methoxyphenyl)-2, 2-dimethylpropylidene)-4-methylbenzenesulfonamide (2g) White solid, 98% yield, 99.9% ee, mp: 133–135 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.42 (d, J = 7.6 Hz, 2H), 7.01–7.05 (m, 3H), 6.59 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 7.6 Hz, 1H), 6.35 (s, 1H), 5.50 (d, J = 9.2 Hz, 1H), 3.97 (d, J = 9.2 Hz, 1H), 3.65 (s, 3H), 2.28 (s, 3H), 0.91 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  158.7, 142.6, 139.9, 137.2, 128.9, 128.5, 127.1, 120.7, 113.9, 112.1, 67.0, 55.0, 35.3, 26.8, 21.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>major</sub>=11.5 min, t<sub>minor</sub> = 16.2 min;  $[\alpha]_D^{20} = -46.1$  (*c* 0.42, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2965, 1558, 1515, 840, 809; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 370.1287, found: 370.1289.

t-Bu OMe

(S)-N-(1-(4-Methoxyphenyl)-2, 2-dimethylpropyl)-4-methylbenzenesulfonamide(2k)
White solid, 97% yield, 99.9% ee, mp: 117–119 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ

7.42 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 5.31 (d, J = 9.2 Hz, 1H), 3.97 (d, J = 9.2 Hz, 1H), 3.72 (s, 3H), 2.29 (s, 3H), 0.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.3, 142.5, 137.2, 130.5, 129.0, 128.9, 127.0, 112.8, 66.4, 55.2, 35.3, 26.6, 21.4; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>major</sub> =10.2 min, t<sub>minor</sub> = 12.6 min;  $[\alpha]_D^{20} = -43.5$  (*c* 0.42, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2964, 1868, 1844, 1791, 813, 668; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 370.1442, found: 370.1453.

t-Bu

#### (S)-N-(2, 2-Dimethyl-1-(4-phenoxyphenyl)propyl)-4-methylbenzenesulfonamide (2l)

White solid, 99% yield, 99.9% ee, mp: 121–123 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.47(d, J = 8.4 Hz, 2H), 7.34–7.31 (m, 2H), 7.12–7.08(m, 1H), 7.04 (d, J = 8.0 Hz, 2H), 6.91 (dd, J = 1.2 Hz, 8.8 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 5.38 (d, J = 8.8 Hz, 1H), 4.0 (d, J = 9.2 Hz, 1H), 2.33 (s, 3H), 0.90 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  157.1, 155.9, 142.6, 137.5, 133.4, 129.7, 129.5, 129.0, 127.2, 123.3, 118.7, 117.8, 114.3 (d, J = 2.1Hz), 66.5, 35.4, 26.7, 21.5; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 96/4, 220 nm, 1.0 mL/min, t<sub>major</sub> =21.9 min, t<sub>minor</sub> = 26.4 min;  $[\alpha]_D^{20} = -25.6$  (*c* 0.34, CH<sub>2</sub>Cl<sub>2</sub>), IR (KBr) (v/cm<sup>-1</sup>): 3281, 2964, 2871, 1791, 1749, 1683, 848, 812,749; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>28</sub>NO<sub>3</sub>S [M+H]<sup>+</sup>410.1796, found: 410.1790.



#### $(S) \text{-} N \text{-} (1 \text{-} (3 \text{-} Chlorophenyl) \text{-} 2, 2 \text{-} dimethyl propyl) \text{-} 4 \text{-} methyl benzenesulfonamide} (2m)$

White solid, 96% yield, 99.8% ee, mp: 120–122 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 (d, J = 8.8 Hz, 2H), 7.03–6.97 (m, 4H), 6.89 (d, J = 6.8 Hz, 1H), 6.75 (s, 1H), 5.96 (d, J = 9.2 Hz, 1H), 3.98 (d, J = 9.2 Hz, 1H), 2.30 (s, 3H), 0.90 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.0, 140.4, 136.8, 133.3, 129.1, 128.8, 128.4, 127.0, 126.8,

126.3, 66.6, 35.2, 26.6, 21.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 97/3, 220 nm, 0.5 mL/min,  $t_{major}$ =25.9 min,  $t_{minor}$ =35.0 min;  $[\alpha]_D^{20}$  = -47.8 (*c* 0.20, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3289, 2966, 1597, 1438, 1331, 1160, 794, 698, 668; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>22</sub>ClNNaO<sub>2</sub>S [M+Na]<sup>+</sup> 374.0958, found: 374.0952.

(S)-N-(1-(4-Chlorophenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2n)

White solid, 97% yield, 99.9% ee, mp: 206–208 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (d, J = 6.8 Hz, 2H), 7.01–6.97 (m, 4H), 6.84 (d, J = 7.2 Hz, 2H), 6.15 (d, J = 9.6 Hz, 1H), 4.00 (d, J = 9.2 Hz, 1H), 2.32 (s, 3H), 0.87 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.0, 137.0, 136.8, 132.5, 129.5, 129.1, 127.5, 127.0, 66.5, 35.2, 26.5, 21.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min, t<sub>major</sub>= 16.1 min, t<sub>minor</sub>= 22.5 min; [ $\alpha$ ] $_{D}^{20}$  = -54.4 (*c* 0.09, CH<sub>2</sub>Cl<sub>2</sub>);IR (KBr) (v/cm<sup>-1</sup>): 3272, 2987, 1507, 1334, 1163, 802, 704; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>22</sub>ClNNaO<sub>2</sub>S [M+Na]<sup>+</sup> 374.0958, found: 374.0966.



(S)-N-(1-(3-Fluorophenyl)-2, 2-dimethylpropyl)-4-methylbenzenesulfonamide (20)

White solid, 99% yield, 99.9% ee, mp: 164–166 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, J = 8.4 Hz, 2H), 7.04–6.70 (m, 3H), 6.77–6.72 (m, 2H), 6.57–6.54 (m, 1H), 5.50 (d, J = 8.8 Hz, 1H), 4.0 (d, J = 9.2 Hz, 1H), 2.30 (s, 3H), 0.89 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.2, 160.8, 143.0, 141.0 (d, J = 6.6 Hz), 137.1, 129.0 (t, J = 2.9 Hz), 127.0, 123.9 (d, J = 2.8 Hz), 115.2 (d, J = 21.7 Hz), 113.6 (d, J = 21.0 Hz), 66.5, 35.2, 26.6, 21.4; <sup>19</sup>F NMR(376 MHz, CDCl<sub>3</sub>): -114.1; HPLC conditions: DAICEL ChiralpakOJ column, Hexane/*i*-PrOH = 70/30, 220 nm, 1.0 mL/min, t<sub>major</sub> = 4.7 min, t<sub>minor</sub> = 5.5 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -21.5 (*c* 0.37, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3273, 2971, 1791, 1771, 1749, 810, 699, 680; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>22</sub>NO<sub>2</sub>SNa

[M+Na]<sup>+</sup> 358.1262, found: 358.1263.



#### (S)-N-(2, 2-Dimethyl-1-(p-tolyl)propyl)-4-methylbenzenesulfonamide (2p)

White solid, 96% yield, 99.9% ee, mp: 204–206 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.89–6.86 (m, 2H), 6.74 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 9.2 Hz, 1H), 4.01 (d, J =8.8 Hz, 1H), 2.31 (s, 3H), 0.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.9, 160.5, 142.9, 137.2, 134.1(d, J = 3.3 Hz), 129.6 (d, J = 8.1 Hz), 129.1, 127.0, 66.3, 35.2, 26.6, 21.4; <sup>19</sup>F NMR(376 MHz, CDCl<sub>3</sub>): -115.9; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 70/30, 220 nm, 1.0 mL/min, t<sub>major</sub> =5.1 min, t<sub>minor</sub> = 6.2 min;  $[\alpha]_D^{20} = -28.8$  (*c* 0.36, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3272, 2971, 1558, 1515, 1540, 840, 809, 699; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>22</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 358.1265, found: 358.1267.



(S)-N-(1-(3, 5-Dimethylphenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2q)

White solid, 98% yield, 99.9% ee, mp: 167–169 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.38 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.66 (s, 1H), 6.41 (s, 2H), 5.15 (d, J = 9.6 Hz, 1H), 3.93 (d, J = 9.6 Hz, 1H), 2.28 (s, 3H), 2.10 (s, 6H), 0.89 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.3, 138.0, 137.3, 136.7, 128.1, 127.0, 126.1, 67.1, 35.1, 26.8, 21.3, 21.1; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>major</sub> = 5.6 min, t<sub>minor</sub> = 6.1 min;  $[\alpha]_D^{20}$  = -28.8 (*c* 0.36, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2952, 2871, 1558, 1521, 1540, 848, 808; HRMS (ESI-MS) Calcd. For C<sub>20</sub>H<sub>27</sub>NO<sub>2</sub>S [M+Na]<sup>+</sup> 368.1660, found: 368.1660.



(*S*)-*N*-(1-(3, 5-Di-tert-butylphenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2r) White solid, 99% yield, 99.9% ee, mp: 199–201 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.34 (d, J = 8.0 Hz, 2H), 7.05 (t, J = 1.2 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 6.64 (d, J = 1.2 Hz, 2H), 5.37 (d, J = 10.0 Hz, 1H), 4.07 (d, J = 10.0 Hz, 1H), 2.19 (s, 3H), 1.17 (s, 18H), 0.93 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  149.5, 142.1, 137.4, 136.9, 128.8, 127.0, 122.2, 120.4, 67.4, 35.3, 34.5, 31.3, 26.7, 21.3; HPLC conditions: DAICEL Chiralpak IC column, Hexane/*i*-PrOH = 95/5, 220 nm, 0.8 mL/min, t<sub>major</sub>=15.4 min, t<sub>minor</sub> =16.0 min; [ $\alpha$ ] $p^{20}$  = -7.21 (*c* 0.36, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2961, 1791, 1698, 1683, 808, 719; HRMS (ESI-MS) Calcd. For C<sub>26</sub>H<sub>39</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 452.2603, found: 452.2599.



## (S)-*N*-(1-(Benzo[d][1,3]dioxol-5-yl)-2,2-dimethylpropyl)-4-methylbenzenesulfona mide (2s)

White solid, 98% yield, 99.9% ee, mp: 161–163 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.52 (d, J = 8.0 Hz, 1H), 6.41 (dd, J = 1.6, 8.0 Hz, 1H), 6.33 (d, J = 1.6 Hz, 1H), 5.84 (dd, J = 1.2, 7.2 Hz, 2H), 5.44 (d, J = 9.2 Hz, 1H), 3.94 (d, J = 8.8 Hz, 1H), 2.32 (s, 3H), 0.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  146.7, 146.2, 142.6, 137.3, 132.4, 128.9, 127.1, 121.7, 108.4, 107.3, 100.8, 66.8, 35.3, 26.7, 21.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min, t<sub>major</sub>=28.1 min, t<sub>minor</sub> =38.2 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -65.9 (*c* 0.20, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3289, 2965, 1456, 1326, 1159, 929, 810, 669, 561; HRMS (ESI-MS) Calcd. For C<sub>19</sub>H<sub>24</sub>NO<sub>4</sub>S [M+Na]<sup>+</sup> 362.1426, found: 362.1434.



(S)-N-(2,2-Dimethyl-1-(3-methyl-5-(trifluoromethyl)phenyl)propyl)-4-methylbenzenesulfona mide (2t)

White solid, 99% yield, 99.9% ee, mp: 154–156 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 9.2 Hz, 1H), 6.38 (d, J = 14.0 Hz, 2H), 4.96 (d, J = 16.8 Hz, 1H), 3.96 (d, J = 9.6 Hz, 1H), 2.30 (s, 3H), 2.15 (s, 3H), 0.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.2, 160.8, 142.8, 140.5(d, J = 7.1 Hz), 139.2 (d, J = 8.0 Hz), 137.1, 128.9, 127.0, 124.7, 114.1 (d, J = 20.9 Hz), 112.3,(d, J = 21.9 Hz), 66.6, 35.2, 26.6, 21.3, 21.1; <sup>19</sup>F NMR(376 MHz, CDCl<sub>3</sub>): -115.2; HPLC conditions: DAICEL Chiralpak IC column, Hexane/*i*-PrOH = 95/5, 220 nm, 0.8 mL/min, t<sub>major</sub>=28.1 min, t<sub>minor</sub> =30.8 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -19.9 (*c* 0.4, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2969, 2872, 1595, 1540, 1521, 808, 719; HRMS (ESI-MS) Calcd. For C<sub>20</sub>H<sub>24</sub>F<sub>3</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 422.1875, found: 422.1875.



(S)-N-(2, 2-Dimethyl-1-(naphthalen-2-yl)propyl)-4-methylbenzenesulfonamide (2u)

White solid, 99% yield, 99.4% ee, mp: 174–176 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.71–7.69 (m, 1H), 7.57–7.55 (m, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.41–7.35 (m, 4H), 7.21 (s, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 7.6 Hz, 2H), 5.58 (d, J = 9.2 Hz, 1H), 4.20 (d, J = 9.2 Hz, 1H), 1.95 (s, 3H), 0.97 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.7, 137.0, 135.5, 132.5, 132.2, 128.8, 127.7, 127.5, 127.3, 127.2, 126.9, 126.0, 125.9, 125.7, 67.2, 35.5, 26.8, 21.0; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 96/4, 220 nm, 1.0 mL/min, t<sub>major</sub>=16.9 min, t<sub>minor</sub> =22.1 min;  $[\alpha]_D^{20} = -23.1$  (*c* 0.48, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3272, 2966, 1558, 1540, 1507, 848, 810, 741; HRMS (ESI-MS) Calcd. For C<sub>22</sub>H<sub>25</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 390.1526, found: 390.1504.

#### (R)-N-(3, 3-Dimethylbutan-2-yl)-4-methylbenzenesulfonamide (2v)<sup>[13]</sup>

White solid, 99% yield, 99.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.76 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 4.20 (d, J = 9.2 Hz, 1H), 3.07–3.02 (m, 1H), 2.42 (s, 3H), 0.87(d, J = 7.6 Hz, 3H), 0.82 (s, 9H); HPLC conditions: DAICEL Chiralpak OJ

column, Hexane/*i*-PrOH = 99/1, 220 nm, 1.0 mL/min,  $t_{minor}$ = 13.0 min  $t_{major}$ = 13.9 min.

#### (R)-N-(2, 2-Dimethylhexan-3-yl)-4-methylbenzenesulfonamide (2w)<sup>[15]</sup>

White solid, 97% yield, 99.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.76 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 4.4 Hz, 2H), 4.20 (d, J = 9.2 Hz, 1H), 3.09–3.06 (m, 1H), 2.43 (s, 3H), 1.56–1.49 (m, 1H), 1.29–1.02 (m, 3H), 0.82–0.79 (m, 12H); HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min, t<sub>minor</sub> = 6.5 min, t<sub>major</sub> = 6.8 min.

#### (R)-Benzyl 5,5-dimethyl-4-(4-methylphenylsulfonamido)hexanoate (2x)

White solid, 98% yield, 99.7% ee, mp: 92–95 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 (d, J = 8.4 Hz, 2H), 7.38–7.29 (m, 5H), 7.21 (d, J = 8.4 Hz, 2H), 5.08 (s, 2H), 4.30 (d, J = 9.6 Hz, 1H), 3.15–3.09 (m, 1H), 2.39–2.31 (m, 5H), 1.99–1.92 (m, 1H), 1.52–1.36 (m, 1H), 0.76 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.6, 143.0, 139.0, 136.0, 129.5, 128.5, 128.2, 128.1, 126.9, 66.3, 62.8, 35.1, 31.1, 26.6, 26.2, 21.4; HPLC conditions: DAICEL Chiralpak IE column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.5 mL/min, t<sub>major</sub>= 58.9 min, t<sub>minor</sub> = 64.6 min; [ $\alpha$ ]D<sup>20</sup> = –13.8 (*c* 0.50, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3293, 2963, 1735, 1324, 1156, 1079, 1025, 814, 665, 579, 550; HRMS (ESI-MS) Calcd. For C<sub>22</sub>H<sub>30</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 404.1896, found: 404.1919.

#### (R)-Ethyl 6,6-dimethyl-5-(4-methylphenylsulfonamido)heptanoate (2y)

Colourless thick liquid, 96% yield, 99.4% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 5.05 (d, J = 9.2 Hz, 1H), 4.01 (q, J = 7.2 Hz, 2H), 2.98–2.93 (m, 1H), 2.33 (s, 3H), 2.08 (t, J = 7.2 Hz, 2H), 1.52–1.26 (m, 4H), 1.16 (t, J = 7.2 Hz, 3H), 0.73 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.2, 142.9, 139.1, 129.4, 126.9, 63.1, 60.2, 35.0, 33.9, 31.0, 26.7, 22.2, 21.4, 14.2; HPLC

conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 92/8, 220 nm, 0.5 mL/min,  $t_{major}$ = 18.2 min,  $t_{minor}$  = 21.2 min;  $[\alpha]_D{}^{20}$  = 1.2 (*c* 0.44, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2963, 1734, 1322, 1156, 1090, 1024, 815, 666, 578, 549; HRMS (ESI-MS) Calcd. For C<sub>18</sub>H<sub>30</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 356.1896, found: 356.1906.

#### (R)-Benzyl 7,7-dimethyl-6-(4-methylphenylsulfonamido)octanoate (2z)

Pale yellow solid, 98% yield, 99.1% ee, mp: 93–94 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.71 (d, J = 8.0 Hz, 2H), 7.38–7.32 (m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 5.10 (s, 2H), 4.14 (d, J = 10.0 Hz, 1H), 3.02 (dt, J = 2.8, 9.6 Hz, 1H), 2.38 (s, 3H), 2.15 (t, J = 7.6 Hz, 2H), 1.55–1.39 (m, 4H), 1.13–1.06 (m, 2H), 0.80 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.5, 143.0, 139.6, 136.3, 129.6, 128.8, 128.4, 127.1, 66.3, 63.6, 35.3, 34.3, 31.5, 27.0, 26.8, 25.0, 21.6; HPLC conditions: DAICEL Chiralpak IC-3 column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.8 mL/min, t<sub>minor</sub>= 41.3 min<sub>major</sub>, t = 43.6 min; [ $\alpha$ ] $_{D}^{20}$  = 6.6 (*c* 0.22, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3278, 2927, 1726, 1598, 1434, 1328, 1161, 1092, 815, 669, 552; HRMS (ESI-MS) Calcd. For C<sub>24</sub>H<sub>34</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> 432.2209, found: 432.2216.

#### (R)-N,N-Dibenzyl-5,5-dimethyl-4-(4-methylphenylsulfonamido)hexanamide (2aa)

Pale yellow thick liquid, 97% yield, 99.4% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 (d, J = 8.0 Hz, 2H), 7.36–7.22 (m, 8H), 7.11 (d, J = 7.6 Hz, 4H), 4.81 (d, J = 9.2 Hz, 1H), 4.57 (s, 2H), 4.27 (dd, J = 17.2, 22.4 Hz, 2H), 3.14 (t, J = 10.0 Hz, 1H), 2.45–2.36 (m, 2H), 2.30 (s, 3H), 2.04–1.97 (m, 1H), 1.66–1.56 (m, 1H), 0.77 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.6, 142.8, 139.2, 137.2, 136.4, 129.4, 128.9, 128.6, 128.3, 127.6, 127.3, 126.9, 126.7, 63.0, 49.7, 48.3, 35.2, 30.1, 26.7, 26.0, 21.4; HPLC conditions: DAICEL Chiralpak IE column, Hexane/*i*-PrOH = 85/15, 230 nm, 0.8 mL/min, t<sub>major</sub>= 49.2 min, t<sub>minor</sub> = 59.9 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = –16.7 (*c* 0.64, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2962, 2360, 2342, 1629, 1452, 1327, 1155, 1077, 668, 580, 549; HRMS (ESI-MS) Calcd. For C<sub>29</sub>H<sub>37</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> 493.2525, found: 493.2532.

#### (*R*)-*N*-(2,2-Dimethylcyclopentyl)-4-methylbenzenesulfonamide (2ab)

White solid, 96% yield, 99.3% ee, mp: 76–77 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.75 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.8 Hz, 2H), 4.71 (d, J = 9.2 Hz, 1H), 3.10 (dd, J = 8.8, 18.0 Hz, 1H), 2.40 (s, 3H), 1.69–1.51 (m, 2H), 1.43–1.23 (m, 4H), 0.88 (s, 3H), 0.80 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.1, 138.2, 129.5, 127.1, 62.8, 40.7, 38.3, 30.7, 26.6, 21.5, 21.2, 19.3; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 80/20, 220 nm, 0.6 mL/min, t<sub>minor</sub>= 15.9 min, t<sub>major</sub> = 22.9 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -1.5 (*c* 0.13, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3276, 2958, 2872, 1598, 1452, 1322, 1158, 1093, 912, 814, 666, 571, 549; HRMS (ESI-MS) Calcd. For C<sub>14</sub>H<sub>21</sub>NO<sub>2</sub>SNa [M+Na]<sup>+</sup> 290.1191, found: 290.1206.

NHTs V O (

#### (*R*)-4-Methyl-*N*-(2,2,5,5-tetramethyltetrahydrofuran-3-yl)benzenesulfonamide (2ac)

Colourless thick liquid, 98% yield, 99.8% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.76 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.11 (d, J = 9.6 Hz, 1H), 3.58 (dd, J = 10.0, 18.0 Hz, 1H), 2.41 (s, 3H), 1.79 (d, J = 10.0 Hz, 1H), 1.60 (d, J = 11.6 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.07 (s, 3H), 1.04 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.6, 137.6, 129.7, 127.0, 80.6, 77.4, 61.0, 44.1, 30.5, 30.1, 28.0, 23.5, 21.5; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 80/20, 220 nm, 0.7 mL/min, t<sub>minor</sub>= 9.8 min, t<sub>major</sub> = 13.0 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -2.9 (*c* 0.36, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3271, 2972, 2928, 1458, 1325, 1162, 1093, 994, 664, 569; HRMS (ESI-MS) Calcd. For C<sub>115</sub>H<sub>23</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 320.1296, found: 320.1308.

(*R*)-*N*-((1-Methoxycyclohexyl)(phenyl)methyl)-4-methylbenzenesulfonamide (2ad)
 Colourless thick liquid, 99% yield, 99.4% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.39 (d,

J = 8.0 Hz, 2H), 7.10–7.04 (m, 5H), 7.01 (d, J = 8.0 Hz, 2H), 5.36 (d, J = 3.2 Hz, 1H), 4.38 (d, J = 3.6 Hz, 1H), 3.06 (s, 3H), 2.29 (s, 3H), 1.67–1.04 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.7, 137.2, 137.0, 129.0, 128.9, 127.5, 127.2, 127.1, 77.8, 61.2, 48.0, 29.9, 28.7, 25.2, 21.7, 21.4; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 220 nm, 0.8 mL/min, t<sub>major</sub>= 18.9 min, t<sub>minor</sub> = 32.4 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -63.8 (*c* 0.48, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2934, 2857, 2360, 2343, 1453, 1325, 1160, 1088, 812, 703, 669, 568; HRMS (ESI-MS) Calcd. For C<sub>21</sub>H<sub>27</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 396.1609, found: 396.1617.

NHTs

#### (R)-Methyl 2,2-dimethyl-3-(4-methylphenylsulfonamido)butanoate (2ae)

Colourless thick liquid, 96% yield, 96.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 5.29 (d, J = 9.6 Hz, 1H), 3.56 (s, 3H), 3.40–3.33 (m, 1H), 2.37 (s, 3H), 1.09 (d, J = 11.2 Hz, 6H), 7.25 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  176.6, 143.1, 138.4, 129.6, 127.0, 56.1, 51.9, 46.6, 23.0, 22.8, 21.5, 17.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 85/15, 220 nm, 0.6 mL/min, t<sub>major</sub>= 20.2 min, t<sub>minor</sub> = 25.4 min;  $[\alpha]_D^{20} = 5.1$  (*c* 0.62, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3274, 2981, 1733, 1457, 1436, 1327, 1161, 1092, 816, 669, 552; HRMS (ESI-MS) Calcd. For C<sub>14</sub>H<sub>21</sub>NO<sub>4</sub>SNa [M+Na]<sup>+</sup> 322.1089, found: 322.1092.



(*R*,*R*)-*N*,*N'*-((3R,8R)-2,2,9,9-tetramethyldecane-3,8-diyl)bis(4-methylbenzenesulfonamide) (2af)

White solid, mp: 208-210 °C; 98% yield, 99% de, 99.9% ee; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  7.61 (d, J = 8.0 Hz, 4H), 7.29 (d, J = 8.4 Hz, 4H), 7.15 (d, J = 8.8 Hz, 2H), 3.32 (s, 6H), 2.70 (d, J = 8.4 Hz, 2H), 2.32 (s, 6H), 0.97–0.80 (m, 4H), 0.73 (s, 18H), 0.51–0.39 (m, 10H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  142.3, 141.2, 129.8, 126.9, 63.5, 35.4, 30.8, 27.5, 27.4, 21.6; HPLC conditions: DAICEL Chiralpak IC-3 column,

Hexane/*i*-PrOH = 90/10, 220 nm, 1.0 mL/min,  $t_{minor}$ = 72.9 min,  $t_{major}$  = 76.8 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -5.6 (*c* 0.48, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3298, 2947, 1329, 1319, 1152, 1093, 1082, 1026, 805, 665, 582; HRMS (ESI-MS) Calcd. For C<sub>28</sub>H<sub>45</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup> 537.2821, found: 537.2837.



(S)-N-(2,2-Dimethyl-1-phenylpropyl)-2-methylpropane-2-sulfonamide (2ag)

White solid, mp: 169-172 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32–7.24 (m, 3H), 7.13 (d, J = 7.2 Hz, 2H), 4.67 (d, J = 9.6 Hz, 1H), 4.22 (d, J = 9.6 Hz, 1H), 1.13 (s, 9H), 0.95 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  140.0, 128.2, 127.8, 127.2, 67.1, 59.7, 35.7, 26.8, 24.1; IR (KBr) (v/cm<sup>-1</sup>): 3226, 3293, 2970, 2950, 1454, 1294, 1088, 1062, 709, 667, 556, 511; HRMS (ESI-MS) Calcd. For C<sub>15</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub>S [M+NH<sub>4</sub>]<sup>+</sup> 301.1950, found: 301.1950.

#### **Supplementary Note 2**

NHTs t-Bu t-Bu 2a 99% ee 5 Pyridine-imine ligand carb ī 88% yield, 99% ee 2-Pyridin  $NH_2$ t-Bu Dibenzo[a.d] t-Bu cyclohepten-5-one κ 92% yield, 99% ee Molecular Motors 64% yield, 15:1 de

Transformations of compound 2a to compounds 5 and 6

**Procedure I**: Sodium metal (0.46 g, 20.0 mmol) was weighed and added to a solution of naphthalene (2.82 g, 22.0 mmol) in dry DME (40 mL) under argon atmosphere. It was stirred for 4 h at RT during which the metal slowly dissolved to give a 0.5 M solution of sodium naphthalide.

To a solution of sulfamide **2a** (0.64 g, 2.0 mmol, 1.0 equiv) in DME (20 mL) at -70 °C under argon atmosphere was added dropwise Sodium naphthalide (0.5 M in DME, 40 mL, 10 equiv) for 1 minute. The resulting mixture was stirred at -70 - 0 °C for 2 h. After the material disappeared, the reaction was quenched with 2 drops of water and extracted with EtOAc (60 mL × 3). The mixture was diluted with saturated aqueous NH<sub>4</sub>Cl solution (60 mL) and saturated aqueous NaHCO<sub>3</sub> solution (60 mL) respectively, dried with MgSO<sub>4</sub>. After filtration, the solvents were evaporated and the residue was purified by column chromatography (PE/EtOAc=8/1) to give product **4** with 91% yield (296.7 mg), 99% ee (The ee was determined by HPLC after transformation of (*S*)-**4** to (*S*)-**5**). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.28–7.21 (m, 5H), 3.68 (s, 1H), 1.68 (s, 2H), 0.89 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.6, 128.2, 127.5, 126.7, 65.3, 35.0, 26.5 (*Angew. Chem. Int. Ed.* **2007**, *46*, 8484 –8487).

**Procedure J**: Mixtures (1:1.1) of chiral amines **4** (81.5 mg, 0.5 mmol) and 2-pyridinecarboxaldehyde (58.8 mg, 0.55 mmol) were dissolved in dry  $Et_2O$  (10 mL) and the mixture stirred at room temperature overnight until the material disappeared. The reaction mixture was quenched with saturated NaCl solution (10 mL), extracted
with EtOAc (40 mL × 3), dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were evaporated and the residue was purified by column chromatography (PE/EtOAc=20/1) to give product **5**. White solid, 110.9 mg, 88% yield, 99.3% ee, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.60 (d, J = 4.8 Hz, 1H), 8.37 (s, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 7.6 Hz, 2H), 7.31–7.22 (m, 4H), 4.05 (s, 1H), 0.95 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  160.6, 155.0, 149.2, 141.9, 136.4, 128.8, 127.5, 126.7, 124.5, 121.2, 84.8, 35.7, 26.9; HPLC conditions: DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 95/5, 230 nm, 0.5 mL/min, t<sub>minor</sub>= 8.4 min, t<sub>major</sub> = 9.6 min (*Angew. Chem. Int. Ed.* **2007**, *46*, 2082 –2085).

**Procedure K**: To a solution of the dibenzo[*a*,*d*]cyclohepten-5-one (0.5 mmol), the chiral amines **4** (81.5 mg, 0.5 mmol) and Et<sub>3</sub>N (5.0 mmol) in dry toluene was added dropwise as solution of TiCl<sub>4</sub> at room temperature. The mixture was stirred for 16 h at room temperature, quenched by addition of saturated Na<sub>2</sub>CO<sub>3</sub> solution and extracted with CH<sub>2</sub>Cl<sub>2</sub> (30 mL × 3). The combined organic phases were evaporated. The residue was purified by column chromatography (PE/EtOAc=20/1) to afford the imines **6** as solids. White solid, 126.4 mg, 69% yield, Resolution of the racemate was not been successful by HPLC. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, J = 7.2 Hz, 1H), 7.47–7.22 (m, 11H), 6.96 (d, J = 5.6 Hz, 2H), 6.81 (d, J = 7.6 Hz, 1H), 4.12 (s, 1H), 0.66 (s, 9H) (J. *Am. Chem. Soc.*, **2014**, *136*, 13114–13117).



**Procedure L**: To a solution of 2x, y (1.0 mmol in 20 mL toluene) in tube sealing was added 1.5 mL of trimethylaluminum (1.5 mmol, 1M in hexanes). The reaction mixture was stirred at different temperature and time. After cooling the reaction mixture to 0 °C, 1M aqueous hydrochloric acid (10 mL) was added cautiously over 15 min. The resulting biphasic mixture was stirred for 10 min at 0 °C and then transferred to a

separatory funnel. The mixture was extracted with ethyl acetate ( $3\times20$  mL). The combined organic layers were dried over magnesium sulfate, filtered and solvents were removed *in vacuo* to give a yellow solid. The residue was purified by flash chromatography (PE/EtOAc=10/1) and recrystallization to give **7x**, **y**.

#### (R)-5-(Tert-butyl)-1-tosylpyrrolidin-2-one (7x)

The reaction mixture was stirred at 60 °C for overnight. White solid, mp: 185-186 °C; 274.3 mg, 93% yield, 99.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.86 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.26 (d, J = 3.6 Hz, 1H), 2.57–2.47 (m, 1H), 2.40 (s, 3H), 2.24–2.02 (m, 3H), 1.01 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  175.6, 144.7, 136.2, 129.3, 128.5, 69.1, 36.7, 31.9, 26.7, 22.7, 21.6; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 220 nm, 1.0 mL/min, t<sub>major</sub>= 11.2 min, t<sub>minor</sub> = 14.6 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 76.8 (*c* 0.18, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2961, 2918, 1718, 1359, 1172, 1088, 944, 666, 603, 551; HRMS (ESI-MS) Calcd. For C<sub>15</sub>H<sub>22</sub>NO<sub>3</sub>S [M+H]<sup>+</sup>296.1320, found: 296.1335.



### (*R*)-6-(Tert-butyl)-1-tosylpiperidin-2-one (7y)

The reaction mixture was stirred at 80 °C for 24 h. White solid, mp: 134-135 °C; 278.1 mg, 90% yield, 99.9% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.78 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 4.55 (t, J = 6.0 Hz, 1H), 2.39 (s, 3H), 2.29–2.17 (m, 2H), 1.97–1.92 (m, 2H), 1.89–1.84 (m, 1H), 1.43–1.35 (m, 1H), 1.05 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  172.7, 144.3, 136.4, 129.1, 128.8, 63.1, 37.3, 33.6, 27.5, 24.6, 21.6, 18.4; HPLC conditions: DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 80/20, 210 nm, 1.0 mL/min, t<sub>major</sub>= 10.5min, t<sub>minor</sub> = 12.5 min; [ $\alpha$ ] $_D^{20}$  = 51.0 (*c* 0.73, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 2966, 2920, 2875, 2360, 1699, 1348, 1163, 598; HRMS (ESI-MS) Calcd. For C<sub>16</sub>H<sub>24</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> 310.1477, found: 310.1464.

**Procedure I**: **7x**, **y** (0.5 mmol), naphthalene (5.0 mmol), sodium (5.0 mmol), DME (30 mL) -70 °C, 1 min. The residue was purified by column chromatography (EtOAc)

to give product 8x, y.

#### (R)-5-(Tert-butyl)pyrrolidin-2-one (8x)

White solid, mp: 149-151 °C; 87% yield, 97% ee, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.42 (bs, 1H), 3.37 (t, J = 6.8 Hz, 1H), 2.29 (t, J = 8.0 Hz, 2H), 2.08–1.99 (m, 1H), 1.87–1.78 (m, 1H), 0.87 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  178.6, 63.7, 33.7, 30.5, 25.3, 22.1; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 220 nm, 1.0 mL/min, t<sub>major</sub>= 11.2 min, t<sub>minor</sub> = 14.6 min; [ $\alpha$ ]<sub>D</sub><sup>20</sup> = 11.9 (*c* 0.17, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3197, 2956, 2871, 1702, 1663, 1358, 1309, 1272; HRMS (ESI-MS) Calcd. For C<sub>8</sub>H<sub>16</sub>NO [M+H]<sup>+</sup> 142.1232, found: 142.1229.



## (R)-6-(tert-butyl)piperidin-2-one (8y)

White solid, mp: 71-73 °C; 82% yield, 98% ee, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.76 (bs, 1H), 3.04 (d, J = 11.2 Hz, 1H), 2.37–2.33 (m, 1H), 2.21–2.12 (m, 1H), 1.87 (t, J = 14.0 Hz, 2H), 1.65–1.54 (m, 1H), 1.34–1.28 (m, 1H), 0.87 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.0, 62.4, 33.6, 31.3, 25.5, 23.5, 20.3; HPLC conditions: DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 210 nm, 1.0 mL/min, t<sub>major</sub>= 18.4 min, t<sub>minor</sub> = 27.7 min; [ $\alpha$ ] $_{D}^{20}$  = 30.7 (*c* 0.68, CH<sub>2</sub>Cl<sub>2</sub>); IR (KBr) (v/cm<sup>-1</sup>): 3234, 2958, 2870, 1664, 1652, 1507, 1473, 1405, 1329, 1307; HRMS (ESI-MS) Calcd. For C<sub>9</sub>H<sub>18</sub>NO [M+H]<sup>+</sup> 156.1388, found: 156.1390.

# **Supplementary Note 3**

### Weak attractive catalyst-substrate interactions

| entry | T                        |                        | Interatomic distance, Å |            |  |  |
|-------|--------------------------|------------------------|-------------------------|------------|--|--|
|       | Type of interacti        | on                     | <b>TS</b> ( <i>S</i> )  | TS(R)      |  |  |
| 1     |                          | o-Ph-H                 | 1.90                    | 2.42       |  |  |
| 2     | Trasnferred              | <i>t</i> -Bu (imine)   | 2.21, 2.76              | 2.37, 2.44 |  |  |
| 3     | hydride                  | t-Bu1 (cat.)           | 2.65                    | 2.68       |  |  |
| 4     |                          | Me <sup>1</sup> (cat.) | 2.85                    | -          |  |  |
| 5     | t <b>D</b> ul(ast)       | o-Ph-H                 | 2.34, 2.36              | 2.97, 2.98 |  |  |
| 6     | <i>l</i> -Du (Cal.)      | S=O                    | 2.78                    | 2.63       |  |  |
| 7     |                          | <i>t</i> -Bu (imine)   | 2.11, 2.08              | 2.22, 2.54 |  |  |
| 8     | t-Bu <sup>2</sup> (cat.) | Tosyl (CH···π)         | 2.81                    | -          |  |  |
| 9     |                          | Tosyl (CH····HC)       | 2.76, 2.82              | -          |  |  |
| 10    | Me <sup>1</sup> (cat.)   | Tosyl (CH···π)         | 2.73, 2.92              | 2.42, 2.50 |  |  |
| 11    | Me <sup>2</sup> (cat.)   | o-Ph-H                 | -                       | 2.42       |  |  |
| 12    | C=N···Pd                 |                        | 2.25                    | -          |  |  |
| 13    | O=S=O…Pd                 |                        | -                       | 2.21       |  |  |

| <b>Supplementary</b> | Table 1. | Close | intramolecular | interactions | found in | TS(S) a | nd <b>TS(</b> <i>R</i> ) |
|----------------------|----------|-------|----------------|--------------|----------|---------|--------------------------|
| 11 1                 |          |       |                |              |          |         | · · ·                    |

The computed transition states, **TS**(*S*) and **TS**(*R*), for the hydrogen transfer are shown for the substrate **1a**. Both structures are stabilized by the numerous weak intermolecular interactions (Supplementary Table 1). Of interest is the extremely short interatomic distance between the migrating hydride and the *o*-hydrogen atom of the phenyl ring in **TS**(*S*) (1.90 Å vs 2.42 Å in the **TS**(*R*)). In addition, binding of the C=N group available only in **TS**(*S*) leads to the formation of a four-membered ring transition state stabilized by many CH… $\pi$  and CH…HC interactions between the Ts group and the Me or *t*-Bu substituents of the catalyst (trans to the migrating hydride), respectively. Due to the fixed geometry of the imine, in **TS**(*R*) the lone pair of the nitrogen atom is not available for making a coordination bond with Pd. Instead, the O=S=O…Pd interaction leads to formation of a six-membered transition state stabilized by CH… $\pi$  interactions between the Ts group and the *t*-Bu group of the catalyst (*cis* to the migrating hydride).



Supplementary Figure 1<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 3t in CDCl<sub>3</sub>



Supplementary Figure 2<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1e in CDCl<sub>3</sub>



Supplementary Figure 3 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1h in CDCl<sub>3</sub>



Supplementary Figure 4 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1i in CDCl<sub>3</sub>



Supplementary Figure 5 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1j in CDCl<sub>3</sub>



Supplementary Figure 6<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1k in CDCl<sub>3</sub>



Supplementary Figure 7<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 11 in CDCl<sub>3</sub>



Supplementary Figure 8 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 10 in CDCl<sub>3</sub>



Supplementary Figure 9<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1p in CDCl<sub>3</sub>



Supplementary Figure 10<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1qin CDCl<sub>3</sub>



Supplementary Figure 11<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1r in CDCl<sub>3</sub>



Supplementary Figure 12<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1s in CDCl<sub>3</sub>



Supplementary Figure 13<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1t in CDCl<sub>3</sub>



Supplementary Figure 14<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1u in CDCl<sub>3</sub>



Supplementary Figure 15 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1w in CDCl<sub>3</sub>



Supplementary Figure 16<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1x in CDCl<sub>3</sub>



Supplementary Figure 17<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1y in CDCl<sub>3</sub>



Supplementary Figure 18<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1z in CDCl<sub>3</sub>



Supplementary Figure 19<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1aa in CDCl<sub>3</sub>



Supplementary Figure 20<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1ab in CDCl<sub>3</sub>



Supplementary Figure 21 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1ac in CDCl<sub>3</sub>



Supplementary Figure 22 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1ad in CDCl<sub>3</sub>



Supplementary Figure 23 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1ae in CDCl<sub>3</sub>



Supplementary Figure 24 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1af in CDCl<sub>3</sub>



Supplementary Figure 25 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 1ag in CDCl<sub>3</sub>



Supplementary Figure 26 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2d in CDCl<sub>3</sub>



Supplementary Figure 27 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2e in CDCl<sub>3</sub>



Supplementary Figure 28 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2f in CDCl<sub>3</sub>



Supplementary Figure 29 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2g in CDCl<sub>3</sub>



Supplementary Figure 30 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2h in CDCl<sub>3</sub>



Supplementary Figure 31 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2i in CDCl<sub>3</sub>



Supplementary Figure 32 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2j in CDCl<sub>3</sub>


Supplementary Figure 33 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2k in CDCl<sub>3</sub>



Supplementary Figure 34 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2l in CDCl<sub>3</sub>



Supplementary Figure 35 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2m in CDCl<sub>3</sub>



Supplementary Figure 36 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2n in CDCl<sub>3</sub>



Supplementary Figure 37 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 20 in CDCl<sub>3</sub>



Supplementary Figure 38 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2p in CDCl<sub>3</sub>



Supplementary Figure 39 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2q in CDCl<sub>3</sub>



Supplementary Figure 40<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2r in CDCl<sub>3</sub>



Supplementary Figure 41 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2s in CDCl<sub>3</sub>



Supplementary Figure 42 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2t in CDCl<sub>3</sub>



Supplementary Figure 43 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2u in CDCl<sub>3</sub>



Supplementary Figure 44 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2x in CDCl<sub>3</sub>



Supplementary Figure 45 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2y in CDCl<sub>3</sub>



Supplementary Figure 46 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2z in CDCl<sub>3</sub>



Supplementary Figure 47 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2aa in CDCl<sub>3</sub>



Supplementary Figure 48 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2ab in CDCl<sub>3</sub>



Supplementary Figure 49 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2ac in CDCl<sub>3</sub>



Supplementary Figure 50<sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2ad in CDCl<sub>3</sub>



Supplementary Figure 51 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2ae in CDCl<sub>3</sub>



Supplementary Figure 52 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2af in DMSO



Supplementary Figure 53 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 2ag in CDCl<sub>3</sub>



Supplementary Figure 54 <sup>1</sup>H NMR spectrum of compound 6 in CDCl<sub>3</sub>



Supplementary Figure 55 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 7x in CDCl<sub>3</sub>



Supplementary Figure 56 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 7y in CDCl<sub>3</sub>



Supplementary Figure 57 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 8x in CDCl<sub>3</sub>



Supplementary Figure 58 <sup>1</sup>H and <sup>13</sup>C NMR spectrum of compound 8y in CDCl<sub>3</sub>



(S)-N-(2,2-Dimethyl-1-phenylpropyl)-4-methylbenzenesulfonamide (2a)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 70/30, 220 nm, 0.7 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 7.807                | 99.976   |
| Peak 2 | 15.201               | 0.024    |

Supplementary Figure 59 HPLC spectra for product 2a



(S)-N-(2,2-Dimethyl-1-phenylpropyl)-4-methoxybenzenesulfonamide (2b)

99.0% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 70/30, 230 nm, 1.0 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 6.741                | 99.463   |
| Peak 2 | 14.974               | 0.537    |

Supplementary Figure 60 HPLC spectra for product 2b



(S)-N-(2,2-Dimethyl-1-phenylpropyl)-4-fluorobenzenesulfonamide (2c)

96.0% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 70/30, 230 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 4.987                | 97.998   |
| Peak 2 | 12.978               | 2.002    |

Supplementary Figure 61 HPLC spectra for product 2c



## (S)-N-(2,2-Dimethyl-1-phenylpropyl)benzenesulfonamide (2d)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 19.504               | 99.994   |
| Peak 2 | 44.072               | 0.006    |

Supplementary Figure 62 HPLC spectra for product 2d



(S)-N-(2,2-Dimethyl-1-phenylpropyl)methanesulfonamide (2e)

99.1% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC-3 column, Hexane/i-PrOH = 80/20, 210 nm, 0.6 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 16.755               | 0.456    |
| Peak 2 | 28.391               | 99.544   |

Supplementary Figure 63 HPLC spectra for product 2e



(S)-N-(2,2-Dimethyl-1-phenylbutyl)-4-methylbenzenesulfonamide (2f)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.5 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 16.103               | 99.954   |
| Peak 2 | 29.631               | 0.046    |

Supplementary Figure 64 HPLC spectra for product 2f



(S)-N-(Adamantan-1-yl(phenyl)methyl)-4-methylbenzenesulfonamide (2g)

99.1% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/i-PrOH = 90/10, 220 nm, 0.8 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 7.089                | 0.441    |
| Peak 2 | 9.774                | 99.559   |

Supplementary Figure 65 HPLC spectra for product 2g





99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 7.213                | 99.930   |
| Peak 2 | 8.195                | 0.070    |

Supplementary Figure 66 HPLC spectra for product 2h



(S)-N-(2,2-Dimethyl-1-(p-tolyl)propyl)-4-methylbenzenesulfonamide (2i)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 8.005                | 99.971   |
| Peak 2 | 8.668                | 0.029    |

Supplementary Figure 67 HPLC spectra for product 2i



(S)-N-(1-(3-Methoxyphenyl)-2,2-dimethylpropylidene)-4-methylbenzenesulfonam ide (2j)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 93/7, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 11.536               | 99.927   |
| Peak 2 | 16.254               | 0.073    |

Supplementary Figure 68 HPLC spectra for product 2j


(S)-N-(1-(4-Methoxyphenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2k)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 10.198               | 99.987   |
| Peak 2 | 12.584               | 0.013    |

Supplementary Figure 69 HPLC spectra for product 2k





99.9 ee%, entiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 96/4, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 21.936               | 100      |
| Peak 2 | 26.396               |          |

Supplementary Figure 70 HPLC spectra for product 21



(S)-N-(1-(3-Chlorophenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2m)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 97/3, 220 nm, 0.5 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 25.984               | 99.988   |
| Peak 2 | 35.033               | 0.012    |

Supplementary Figure 71 HPLC spectra for product 2m



(S)-N-(1-(4-Chlorophenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (2n)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 16.088               | 99.999   |
| Peak 2 | 22.531               | 0.001    |

Supplementary Figure 72 HPLC spectra for product 2n



(S)-N-(1-(3-Fluorophenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide (20)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 70/30, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 4.734                | 100      |
| Peak 2 | 5.454                |          |

Supplementary Figure 73 HPLC spectra for product 20



(S)-N-(2,2-Dimethyl-1-(p-tolyl)propyl)-4-methylbenzenesulfonamide (2p)

99.9% ee, entiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 70/30, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 5.124                | 99.963   |
| Peak 2 | 6.179                | 0.037    |

Supplementary Figure 74 HPLC spectra for product 2p



(S)-N-(1-(3,5-Dimethylphenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfonamide. (2q)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/*i*-PrOH = 93/7, 220 nm, 1.0 mL/min.



4.5 11.5 0.5 3.5 4.0 5.0 5.5 6.0 6.5 70 7.5 10.5 11.0 20 2.5 3.0 8.5 9.0 9.5 10.0 min

|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 5.597                | 99.853   |
| Peak 2 | 6.062                | 0.147    |

Supplementary Figure 75 HPLC spectra for product 2q



(S)-N-(1-(3,5-Di-tert-butylphenyl)-2,2-dimethylpropyl)-4-methylbenzenesulfona mide (2r)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 15.433               | 99.994   |
| Peak 2 | 16.043               | 0.006    |

Supplementary Figure 76 HPLC spectra for product 2r



(S)-N-(1-(Benzo[d][1,3]dioxol-5-yl)-2,2-dimethylpropyl)-4-methylbenzenesulfona mide (2s)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 28.085               | 99.942   |
| Peak 2 | 38.219               | 0.058    |

Supplementary Figure 77 HPLC spectra for product 2s



# (S)-N-(2,2-Dimethyl-1-(3-methyl-5-(trifluoromethyl)phenyl)propyl)-4-methylben zenesulfonamide (2t)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC-3 column, Hexane/*i*-PrOH = 95/5, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 28.098               | 100      |
| Peak 2 | 30.755               |          |

Supplementary Figure 78 HPLC spectra for product 2t



(S)-N-(2,2-Dimethyl-1-(naphthalen-2-yl)propyl)-4-methylbenzenesulfonamide (2u)

99.4% ee, enantiomeric excess was determined by HPLC, DAICEL ChiralpakOD column, Hexane/*i*-PrOH = 96/4, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 16.910               | 99.706   |
| Peak 2 | 22.082               | 0.294    |

Supplementary Figure 79 HPLC spectra for product 2u

#### (*R*)-*N*-(3,3-Dimethylbutan-2-yl)-4-methylbenzenesulfonamide (2v)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 99/1, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 13.000               | 0.006    |
| Peak 2 | 13.873               | 99.994   |

Supplementary Figure 80 HPLC spectra for product 2v

#### (*R*)-*N*-(2,2-Dimethylhexan-3-yl)-4-methylbenzenesulfonamide (2w)

99.8% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 99/1, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 6.451                | 0.037    |
| Peak 2 | 6.843                | 99.963   |

Supplementary Figure 81 HPLC spectra for product 2w



#### (*R*)-Benzyl 5,5-dimethyl-4-(4-methylphenylsulfonamido)hexanoate (2x)

99.7% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IE column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.5 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 58.893               | 99.839   |
| Peak 2 | 64.600               | 0.161    |

Supplementary Figure 82 HPLC spectra for product 2x



#### (*R*)-Ethyl 6,6-dimethyl-5-(4-methylphenylsulfonamido)heptanoate (2y)

99.4% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 92/8, 220 nm, 0.5 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 18.238               | 99.706   |
| Peak 2 | 21.161               | 0.294    |

Supplementary Figure 83 HPLC spectra for product 2y



(R)-Benzyl 7,7-dimethyl-6-(4-methylphenylsulfonamido)octanoate (2z)

99.1% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC-3 column, Hexane/*i*-PrOH = 90/10, 220 nm, 0.8 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 41.315               | 0.446    |
| Peak 2 | 43.561               | 99.554   |

Supplementary Figure 84 HPLC spectra for product 2z



(*R*)-*N*,*N*-Dibenzyl-5,5-dimethyl-4-(4-methylphenylsulfonamido)hexanamide (2aa)

99.4% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IE column, Hexane/*i*-PrOH = 85/15, 230 nm, 0.8 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 49.196               | 99.684   |
| Peak 2 | 59.932               | 0.316    |

Supplementary Figure 85 HPLC spectra for product 2aa



(*R*)-*N*-(2,2-Dimethylcyclopentyl)-4-methylbenzenesulfonamide (2ab)

99.3% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak AS column, Hexane/i-PrOH = 80/20, 220 nm, 0.6 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 15.879               | 0.357    |
| Peak 2 | 22.879               | 99.643   |

Supplementary Figure 86 HPLC spectra for product 2ab



# (*R*)-4-Methyl-N-(2,2,5,5-tetramethyltetrahydrofuran-3-yl)benzenesulfonamide (2ac)

99.8% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 80/20, 220 nm, 0.7 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 9.774                | 0.096    |
| Peak 2 | 12.965               | 99.904   |

Supplementary Figure 87 HPLC spectra for product 2ac



# (*R*)-*N*-((1-Methoxycyclohexyl)(phenyl)methyl)-4-methylbenzenesulfonamide (2ad)

99.4% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 220 nm, 0.8 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 18.894               | 99.681   |
| Peak 2 | 32.417               | 0.319    |

Supplementary Figure 88 HPLC spectra for product 2ad



(*R*)-Methyl 2,2-dimethyl-3-(4-methylphenylsulfonamido)butanoate (2ae)

96.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/i-PrOH = 85/15, 220 nm, 0.6 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 20.179               | 98.407   |
| Peak 2 | 25.366               | 1.593    |

Supplementary Figure 89 HPLC spectra for product 2ae



*N,N'-((3R,8R)-2,2,9,9-Tetramethyldecane-3,8-diyl)bis(4-methylbenzenesulfonami de) (2af)* 

99% de, 99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC-3 column, Hexane/*i*-PrOH = 90/10, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| meso   | 63.738               | 0        |
| Peak 1 | 72.915               | 0.069    |
| Peak 2 | 76.845               | 99.931   |

Supplementary Figure 90 HPLC spectra for product 2af



### (S)-2,2-Dimethyl-1-phenyl-N-(pyridin-2-ylmethylene)propan-1-amine(5)

99.3% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OD column, Hexane/i-PrOH = 95/5, 230 nm, 0.5 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 8.399                | 0.341    |
| Peak 2 | 9.453                | 99.659   |

Supplementary Figure 91 HPLC spectra for product 5



### (*R*)-5-(*Tert*-butyl)-1-tosylpyrrolidin-2-one (7x)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 220 nm, 1.0 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 11.188               | 99.991   |
| Peak 2 | 14.604               | 0.009    |

Supplementary Figure 92 HPLC spectra for product 7x



#### (*R*)-6-(*Tert*-butyl)-1-tosylpiperidin-2-one (7y)

99.9% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak OJ column, Hexane/*i*-PrOH = 80/20, 220 nm, 1.0 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 10.459               | 0.069    |
| Peak 2 | 12.497               | 99.931   |

Supplementary Figure 93 HPLC spectra for product 7y



### (*R*)-5-(*tert*-butyl)pyrrolidin-2-one(8x)

97% ee, enantiomeric excess was determined by HPLC, DAICEL Chiralpak IC czolumn, Hexane/i-PrOH = 80/20, 210 nm, 0.8 mL/min.





|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 17.373               | 98.677   |
| Peak 2 | 23.300               | 1.323    |

Supplementary Figure 94 HPLC spectra for product 8x



## (*R*)-6-(*tert*-butyl)piperidin-2-one (8y)

99% ee, entiomeric excess was determined by HPLC, DAICEL Chiralpak AS column, Hexane/*i*-PrOH = 85/15, 210 nm, 0.8 mL/min.



|        | Retention Time (min) | Area (%) |
|--------|----------------------|----------|
| Peak 1 | 18.411               | 99.133   |
| Peak 2 | 27.749               | 0.867    |

Supplementary Figure 95 HPLC spectra for product 8y



Supplementary Figure 96 ORTEP representation of 1a, 2a and 7x

The absolute configurations of the substrate 1a, the products 2a and 7x were determined to be *S* and *R* by X-ray crystallographic analysis (1a: 1875390, 2a: CCDC 1585399, 7x: CCDC 1585398). Therefore, substrates with aryl or alkyl groups (including functionalized compounds) are attacked by the hydride on the same favored side.

Supplementary Table 2 Bond lengths [A] and angles [deg] for 1a.

| S(1)-O(2)   | 1.429(2) |
|-------------|----------|
| S(1)-O(1)   | 1.434(2) |
| S(1)-N(1)   | 1.678(2) |
| S(1)-C(1)   | 1.767(3) |
| N(1)-C(8)   | 1.272(4) |
| C(8)-C(13)  | 1.507(4) |
| C(8)-C(9)   | 1.539(4) |
| C(6)-C(1)   | 1.383(4) |
| C(6)-C(5)   | 1.384(4) |
| C(6)-H(6A)  | 0.9500   |
| C(13)-C(18) | 1.390(4) |

| C(13)-C(14)     | 1.392(4)   |
|-----------------|------------|
| C(1)-C(2)       | 1.386(4)   |
| C(2)-C(3)       | 1.384(5)   |
| C(2)-H(2B)      | 0.9500     |
| C(9)-C(10)      | 1.526(5)   |
| C(9)-C(12)      | 1.533(5)   |
| C(9)-C(11)      | 1.539(5)   |
| C(5)-C(4)       | 1.388(5)   |
| C(5)-H(5A)      | 0.9500     |
| C(3)-C(4)       | 1.393(5)   |
| C(3)-H(3A)      | 0.9500     |
| C(4)-C(7)       | 1.495(5)   |
| C(7)-H(7A)      | 0.9800     |
| C(7)-H(7B)      | 0.9800     |
| C(7)-H(7C)      | 0.9800     |
| C(16)-C(17)     | 1.384(6)   |
| C(16)-C(15)     | 1.384(6)   |
| C(16)-H(16A)    | 0.9500     |
| C(18)-C(17)     | 1.383(5)   |
| C(18)-H(18A)    | 0.9500     |
| C(14)-C(15)     | 1.374(5)   |
| C(14)-H(14A)    | 0.9500     |
| C(17)-H(17A)    | 0.9500     |
| C(15)-H(15A)    | 0.9500     |
| C(12)-H(12A)    | 0.9800     |
| C(12)-H(12B)    | 0.9800     |
| C(12)-H(12C)    | 0.9800     |
| C(11)-H(11A)    | 0.9800     |
| C(11)-H(11B)    | 0.9800     |
| С(11)-Н(11С)    | 0.9800     |
| C(10)-H(10A)    | 0.9800     |
| C(10)-H(10B)    | 0.9800     |
| C(10)-H(10C)    | 0.9800     |
| O(2)-S(1)-O(1)  | 119.29(15) |
| O(2)-S(1)-N(1)  | 110.49(13) |
| O(1)-S(1)-N(1)  | 108.60(13) |
| O(2)-S(1)-C(1)  | 108.30(13) |
| O(1)-S(1)-C(1)  | 108.18(13) |
| N(1)-S(1)-C(1)  | 100.28(12) |
| C(8)-N(1)-S(1)  | 120.9(2)   |
| N(1)-C(8)-C(13) | 124.4(3)   |
| N(1)-C(8)-C(9)  | 117.3(3)   |
| C(13)-C(8)-C(9) | 118.2(2)   |

| C(1)-C(6)-C(5)     | 118.6(3) |
|--------------------|----------|
| C(1)-C(6)-H(6A)    | 120.7    |
| C(5)-C(6)-H(6A)    | 120.7    |
| C(18)-C(13)-C(14)  | 119.4(3) |
| C(18)-C(13)-C(8)   | 120.7(3) |
| C(14)-C(13)-C(8)   | 119.9(3) |
| C(6)-C(1)-C(2)     | 121.8(3) |
| C(6)-C(1)-S(1)     | 118.7(2) |
| C(2)-C(1)-S(1)     | 119.4(2) |
| C(3)-C(2)-C(1)     | 118.3(3) |
| C(3)-C(2)-H(2B)    | 120.9    |
| C(1)-C(2)-H(2B)    | 120.9    |
| C(10)-C(9)-C(12)   | 110.0(3) |
| C(10)-C(9)-C(8)    | 110.9(3) |
| C(12)-C(9)-C(8)    | 108.8(3) |
| C(10)-C(9)-C(11)   | 109.4(3) |
| C(12)-C(9)-C(11)   | 109.4(3) |
| C(8)-C(9)-C(11)    | 108.3(3) |
| C(6)-C(5)-C(4)     | 121.3(3) |
| C(6)-C(5)-H(5A)    | 119.3    |
| C(4)-C(5)-H(5A)    | 119.4    |
| C(2)-C(3)-C(4)     | 121.4(3) |
| C(2)-C(3)-H(3A)    | 119.3    |
| C(4)-C(3)-H(3A)    | 119.3    |
| C(5)-C(4)-C(3)     | 118.5(3) |
| C(5)-C(4)-C(7)     | 122.6(3) |
| C(3)-C(4)-C(7)     | 118.9(3) |
| C(4)-C(7)-H(7A)    | 109.5    |
| C(4)-C(7)-H(7B)    | 109.5    |
| H(7A)-C(7)-H(7B)   | 109.5    |
| C(4)-C(7)-H(7C)    | 109.5    |
| H(7A)-C(7)-H(7C)   | 109.5    |
| H(7B)-C(7)-H(7C)   | 109.5    |
| C(17)-C(16)-C(15)  | 119.9(3) |
| C(17)-C(16)-H(16A) | 120.0    |
| C(15)-C(16)-H(16A) | 120.0    |
| C(17)-C(18)-C(13)  | 120.0(3) |
| C(17)-C(18)-H(18A) | 120.0    |
| C(13)-C(18)-H(18A) | 120.0    |
| C(15)-C(14)-C(13)  | 120.3(3) |
| C(15)-C(14)-H(14A) | 119.9    |
| C(13)-C(14)-H(14A) | 119.9    |
| C(18)-C(17)-C(16)  | 120.1(3) |
| C(18)-C(17)-H(17A) | 119.9    |

| C(16)-C(17)-H(17A)  | 119.9    |
|---------------------|----------|
| C(14)-C(15)-C(16)   | 120.2(3) |
| C(14)-C(15)-H(15A)  | 119.9    |
| C(16)-C(15)-H(15A)  | 119.9    |
| C(9)-C(12)-H(12A)   | 109.5    |
| C(9)-C(12)-H(12B)   | 109.5    |
| H(12A)-C(12)-H(12B) | 109.5    |
| C(9)-C(12)-H(12C)   | 109.5    |
| H(12A)-C(12)-H(12C) | 109.5    |
| H(12B)-C(12)-H(12C) | 109.5    |
| C(9)-C(11)-H(11A)   | 109.5    |
| C(9)-C(11)-H(11B)   | 109.5    |
| H(11A)-C(11)-H(11B) | 109.5    |
| C(9)-C(11)-H(11C)   | 109.5    |
| H(11A)-C(11)-H(11C) | 109.5    |
| H(11B)-C(11)-H(11C) | 109.5    |
| C(9)-C(10)-H(10A)   | 109.5    |
| C(9)-C(10)-H(10B)   | 109.5    |
| H(10A)-C(10)-H(10B) | 109.5    |
| C(9)-C(10)-H(10C)   | 109.5    |
| H(10A)-C(10)-H(10C) | 109.5    |
| H(10B)-C(10)-H(10C) | 109.5    |
|                     |          |

# Supplementary Table 3 Bond lengths for 2a.

| Atom       | Atom | Length/Å | Atom | Atom | Length/Å |
|------------|------|----------|------|------|----------|
| <b>S</b> 1 | 01   | 1.432(3) | C11  | C12  | 1.388(6) |
| <b>S</b> 1 | O2   | 1.445(3) | C15  | C18  | 1.528(6) |
| <b>S</b> 1 | N1   | 1.622(3) | C15  | C16  | 1.530(6) |
| <b>S</b> 1 | C5   | 1.768(4) | C15  | C17  | 1.535(5) |
| N1         | C8   | 1.473(5) | C2   | C3   | 1.395(7) |
| C8         | C9   | 1.525(5) | C2   | C7   | 1.382(7) |
| C8         | C15  | 1.566(5) | C2   | C1   | 1.521(6) |
| C9         | C11  | 1.381(6) | C4   | C3   | 1.395(7) |
| C9         | C10  | 1.393(6) | C13  | C10  | 1.396(6) |
| C5         | C6   | 1.378(6) | C13  | C14  | 1.374(8) |
| C5         | C4   | 1.384(6) | C12  | C14  | 1.376(8) |
| C6         | C7   | 1.380(7) |      |      |          |

# Supplementary Table 4 Bond angles for 2a.

| Atom | Atom       | Atom | Angle/°    | Atom | Atom | Atom | Angle/°  |
|------|------------|------|------------|------|------|------|----------|
| 01   | <b>S</b> 1 | O2   | 119.25(18) | C9   | C11  | C12  | 120.7(5) |

| 01  | <b>S</b> 1 | N1         | 106.20(18) | C18 | C15 | C8  | 108.5(4) |
|-----|------------|------------|------------|-----|-----|-----|----------|
| 01  | <b>S</b> 1 | C5         | 108.05(19) | C18 | C15 | C16 | 109.6(3) |
| O2  | <b>S</b> 1 | N1         | 107.13(17) | C18 | C15 | C17 | 108.9(4) |
| O2  | <b>S</b> 1 | C5         | 107.9(2)   | C16 | C15 | C8  | 111.8(3) |
| N1  | <b>S</b> 1 | C5         | 107.87(17) | C16 | C15 | C17 | 108.6(4) |
| C8  | N1         | <b>S</b> 1 | 120.9(3)   | C17 | C15 | C8  | 109.4(3) |
| N1  | C8         | C9         | 113.8(3)   | C3  | C2  | C1  | 120.1(5) |
| N1  | C8         | C15        | 109.5(3)   | C7  | C2  | C3  | 118.9(4) |
| C9  | C8         | C15        | 113.3(3)   | C7  | C2  | C1  | 121.1(5) |
| C11 | C9         | C8         | 118.2(4)   | C5  | C4  | C3  | 119.6(4) |
| C11 | C9         | C10        | 119.6(4)   | C14 | C13 | C10 | 120.5(5) |
| C10 | C9         | C8         | 122.1(3)   | C2  | C3  | C4  | 120.2(5) |
| C6  | C5         | <b>S</b> 1 | 121.5(3)   | C9  | C10 | C13 | 119.2(5) |
| C6  | C5         | C4         | 120.4(4)   | C6  | C7  | C2  | 121.2(5) |
| C4  | C5         | <b>S</b> 1 | 118.0(3)   | C14 | C12 | C11 | 119.6(5) |
| C5  | C6         | C7         | 119.8(4)   | C13 | C14 | C12 | 120.4(4) |
|     |            |            |            |     |     |     |          |

## Supplementary Table 5 Bond lengths for 7x.

| Atom       | Atom | Length/Å | Atom | Atom | Length/Å |
|------------|------|----------|------|------|----------|
| <b>S</b> 2 | O4   | 1.429(3) | C27  | C30  | 1.507(6) |
| S2         | 05   | 1.425(3) | C23  | C20  | 1.518(6) |
| S2         | N2   | 1.656(3) | C10  | C11  | 1.383(6) |
| <b>S</b> 2 | C24  | 1.767(4) | C4   | C5   | 1.554(6) |
| <b>S</b> 1 | 01   | 1.424(3) | C4   | C3   | 1.535(6) |
| <b>S</b> 1 | O2   | 1.425(3) | C5   | C8   | 1.523(7) |
| <b>S</b> 1 | N1   | 1.670(3) | C5   | C7   | 1.532(6) |
| <b>S</b> 1 | C9   | 1.763(4) | C5   | C6   | 1.534(7) |
| O6         | C16  | 1.201(5) | C16  | C17  | 1.487(7) |
| O3         | C1   | 1.209(5) | C11  | C12  | 1.392(6) |
| N2         | C16  | 1.416(5) | C14  | C13  | 1.385(6) |
| N2         | C19  | 1.501(5) | C20  | C19  | 1.555(6) |
| N1         | C4   | 1.492(5) | C20  | C22  | 1.536(6) |
| N1         | C1   | 1.408(5) | C20  | C21  | 1.535(6) |
| C24        | C25  | 1.382(6) | C28  | C29  | 1.380(6) |
| C24        | C29  | 1.391(6) | C3   | C2   | 1.530(6) |
| C26        | C27  | 1.390(6) | C1   | C2   | 1.494(6) |
| C26        | C25  | 1.393(6) | C13  | C12  | 1.388(6) |
| C9         | C10  | 1.380(6) | C12  | C15  | 1.500(6) |
| C9         | C14  | 1.391(6) | C19  | C18  | 1.534(6) |

| C27 | C28 | 1.392(6) | C18 | C17 | 1.531(7) |
|-----|-----|----------|-----|-----|----------|
|     |     |          |     |     |          |

| Supplementary Table 6 Bond angles for 7x. |            |            |            |      |      |      |          |
|-------------------------------------------|------------|------------|------------|------|------|------|----------|
| Atom                                      | Atom       | Atom       | Angle/°    | Atom | Atom | Atom | Angle/°  |
| O4                                        | <b>S</b> 2 | N2         | 106.06(17) | C8   | C5   | C4   | 110.8(4) |
| O4                                        | <b>S</b> 2 | C24        | 109.54(17) | C8   | C5   | C7   | 107.9(4) |
| 05                                        | S2         | 04         | 118.7(2)   | C8   | C5   | C6   | 109.3(4) |
| 05                                        | <b>S</b> 2 | N2         | 109.95(17) | C7   | C5   | C4   | 107.8(4) |
| 05                                        | <b>S</b> 2 | C24        | 108.3(2)   | C7   | C5   | C6   | 109.1(4) |
| N2                                        | <b>S</b> 2 | C24        | 103.16(18) | C6   | C5   | C4   | 112.0(4) |
| 01                                        | <b>S</b> 1 | O2         | 119.3(2)   | 06   | C16  | N2   | 123.8(4) |
| 01                                        | <b>S</b> 1 | N1         | 105.61(17) | 06   | C16  | C17  | 128.9(4) |
| 01                                        | <b>S</b> 1 | C9         | 108.55(18) | N2   | C16  | C17  | 107.3(4) |
| O2                                        | <b>S</b> 1 | N1         | 109.07(17) | C10  | C11  | C12  | 120.9(4) |
| O2                                        | <b>S</b> 1 | C9         | 108.4(2)   | C13  | C14  | C9   | 118.6(4) |
| N1                                        | <b>S</b> 1 | C9         | 104.93(17) | C23  | C20  | C19  | 110.4(3) |
| C16                                       | N2         | <b>S</b> 2 | 120.1(3)   | C23  | C20  | C22  | 108.6(4) |
| C16                                       | N2         | C19        | 112.5(3)   | C23  | C20  | C21  | 108.6(4) |
| C19                                       | N2         | S2         | 125.0(3)   | C22  | C20  | C19  | 107.3(4) |
| C4                                        | N1         | <b>S</b> 1 | 124.8(3)   | C21  | C20  | C19  | 112.5(4) |
| C1                                        | N1         | <b>S</b> 1 | 120.7(3)   | C21  | C20  | C22  | 109.3(4) |
| C1                                        | N1         | C4         | 112.7(3)   | C29  | C28  | C27  | 121.2(4) |
| C25                                       | C24        | S2         | 120.9(3)   | C2   | C3   | C4   | 106.3(3) |
| C25                                       | C24        | C29        | 120.8(4)   | 03   | C1   | N1   | 123.7(4) |
| C29                                       | C24        | S2         | 118.1(3)   | 03   | C1   | C2   | 128.3(4) |
| C27                                       | C26        | C25        | 121.6(4)   | N1   | C1   | C2   | 108.0(4) |
| C10                                       | C9         | <b>S</b> 1 | 120.9(3)   | C14  | C13  | C12  | 121.6(4) |
| C10                                       | C9         | C14        | 121.0(4)   | C11  | C12  | C15  | 121.0(4) |
| C14                                       | C9         | <b>S</b> 1 | 118.1(3)   | C13  | C12  | C11  | 118.5(4) |
| C26                                       | C27        | C28        | 118.2(4)   | C13  | C12  | C15  | 120.5(4) |
| C26                                       | C27        | C30        | 120.9(4)   | N2   | C19  | C20  | 111.3(3) |
| C28                                       | C27        | C30        | 120.8(4)   | N2   | C19  | C18  | 101.5(3) |
| C24                                       | C25        | C26        | 118.7(4)   | C18  | C19  | C20  | 115.3(4) |
| C9                                        | C10        | C11        | 119.5(4)   | C17  | C18  | C19  | 105.8(3) |
| N1                                        | C4         | C5         | 112.3(3)   | C1   | C2   | C3   | 105.2(3) |
| N1                                        | C4         | C3         | 101.6(3)   | C16  | C17  | C18  | 106.4(4) |
| C3                                        | C4         | C5         | 115.1(4)   | C28  | C29  | C24  | 119.4(4) |

Computations were carried out using the range separated hybrid functional with damped atom—atom dispersion (WB97XD)<sup>[16]</sup> as implemented in the GAUSSIAN 09 software package.<sup>[17]</sup> For palladium atom the SDD basis set<sup>[18]</sup> with the associated effective core potential was employed. All other atoms were described with 6-31G\*\* basis with additional diffuse function for phosphorus.<sup>[19-23]</sup> Non-specific solvation was introduced by using the SMD continuum model<sup>[24]</sup> (2,2,2-trifluoroethanol).

|                           | Е            | E(ZPVE)      | Н            | G            |
|---------------------------|--------------|--------------|--------------|--------------|
| H <sub>2</sub>            | -1.174642    | -1.164498    | -1.161194    | -1.175987    |
| $C1+1a+H_2$               | -2926.016163 | -2925.210021 | -2925.156555 | -2925.330635 |
| C1                        | -1623.20386  | -1622.764477 | -1622.736839 | -1622.819727 |
| C1+1a                     | -2924.841521 | -2924.045523 | -2923.995361 | -2924.154648 |
| S1                        | -2924.866251 | -2924.066018 | -2924.016252 | -2924.146694 |
| TS(S)                     | -2924.859582 | -2924.061037 | -2924.011867 | -2924.139738 |
| S2                        | -2924.876166 | -2924.07224  | -2924.023083 | -2924.150913 |
| $S2+H_2$                  | -2926.050808 | -2925.236738 | -2925.184277 | -2925.3269   |
| S3                        | -2925.196516 | -2925.245373 | -2925.195572 | -2925.323778 |
| <b>TS2(S)</b>             | -2925.189665 | -2925.238252 | -2925.188721 | -2925.317100 |
| S4                        | -2925.232510 | -2925.281636 | -2925.231566 | -2925.362592 |
| <b>C1+2a</b> ( <i>S</i> ) | -2926.062955 | -2925.24264  | -2925.193058 | -2925.348964 |
| R1                        | -2924.873018 | -2924.073437 | -2924.023425 | -2924.15501  |
| TS(R)                     | -2924.854953 | -2924.056723 | -2924.007758 | -2924.134475 |
| R2                        | -2924.880186 | -2924.077228 | -2924.028111 | -2924.155793 |
| <b>TS2(R)</b>             | -2924.869297 | -2924.066519 | -2924.017931 | -2924.144162 |
| R3                        | -2924.90311  | -2924.099161 | -2924.049966 | -2924.178117 |
| R4                        | -2926.072188 | -2925.250088 | -2925.200407 | -2925.328883 |
| TS3(R)                    | -2926.053738 | -2925.234081 | -2925.184778 | -2925.31256  |
| R5                        | -2926.102538 | -2925.278072 | -2925.228696 | -2925.358932 |
|                           |              |              |              |              |

#### Supplementary Table 7 Coordinates and Geometries of the optimized structures<sup>[a]</sup>

<sup>[a]</sup> All the structures were fully optimized at WB97XD/SDD(Pd)/6-31G(d,p)(all others)/SMD(TFE).

# Supplementary Table 8

## **C1**

Cartesian coordinates

| 6  | -0.722680 | -0.648953 | -0.320542 |  |
|----|-----------|-----------|-----------|--|
| 15 | 0.904010  | -1.491985 | -0.558497 |  |
| 6  | -0.779277 | 0.627945  | 0.315430  |  |
| 6  | -3.061956 | 0.514624  | 0.303723  |  |
| 6  | -3.001528 | -0.721558 | -0.395902 |  |
| 15 | 0.794036  | 1.535426  | 0.614967  |  |
| 46 | 2.461404  | 0.028328  | -0.189399 |  |
| 6  | 0.682384  | 3.072777  | -0.442667 |  |
| 6  | 0.340282  | 2.631175  | -1.872698 |  |
| 1  | 1.038861  | 1.870162  | -2.240569 |  |
| 1  | -0.675615 | 2.228807  | -1.941648 |  |
| 6  | -0.358023 | 4.071715  | 0.072208  |  |
| 1  | -0.395966 | 4.928067  | -0.611140 |  |
| 1  | -1.356799 | 3.629838  | 0.121002  |  |
| 1  | -0.097522 | 4.450627  | 1.065333  |  |
| 6  | 2.081975  | 3.707185  | -0.412859 |  |
| 1  | 2.839065  | 3.031761  | -0.827877 |  |
| 1  | 2.077314  | 4.621406  | -1.017097 |  |
| 1  | 2.382924  | 3.981324  | 0.604090  |  |
| 6  | 0.666195  | 2.051805  | 2.358711  |  |
| 1  | -0.290739 | 2.541517  | 2.553657  |  |
| 1  | 0.757618  | 1.165708  | 2.992297  |  |
| 1  | 1.485210  | 2.737258  | 2.591739  |  |
| 6  | 0.804583  | -2.223654 | -2.215633 |  |
| 1  | 1.646595  | -2.905250 | -2.355342 |  |
| 1  | -0.138981 | -2.760593 | -2.334878 |  |
| 1  | 0.867080  | -1.420373 | -2.953526 |  |
| 6  | 0.930913  | -2.861535 | 0.713720  |  |
| 6  | -0.154671 | -3.902772 | 0.406635  |  |
| 1  | -0.127043 | -4.667268 | 1.190770  |  |
| 1  | -1.156442 | -3.466977 | 0.394839  |  |
| 1  | 0.020198  | -4.401775 | -0.551210 |  |

| 0.692282  | -2.229053                                                                                                                                                                                                                                               | 2.091966                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.764639  | -3.010164                                                                                                                                                                                                                                               | 2.856345                                             |
| 1.443144  | -1.464167                                                                                                                                                                                                                                               | 2.318855                                             |
| -0.301767 | -1.776452                                                                                                                                                                                                                                               | 2.169918                                             |
| 2.310849  | -3.532235                                                                                                                                                                                                                                               | 0.675059                                             |
| 3.104025  | -2.842179                                                                                                                                                                                                                                               | 0.976171                                             |
| 2.306902  | -4.376055                                                                                                                                                                                                                                               | 1.373549                                             |
| 2.548927  | -3.922595                                                                                                                                                                                                                                               | -0.319793                                            |
| -1.804239 | -1.293906                                                                                                                                                                                                                                               | -0.688133                                            |
| -1.926109 | 1.180197                                                                                                                                                                                                                                                | 0.640707                                             |
| -4.200853 | -1.376993                                                                                                                                                                                                                                               | -0.768231                                            |
| -4.322277 | 1.069734                                                                                                                                                                                                                                                | 0.635662                                             |
| -5.407106 | -0.815974                                                                                                                                                                                                                                               | -0.438314                                            |
| -4.133201 | -2.318458                                                                                                                                                                                                                                               | -1.303443                                            |
| -5.468023 | 0.412469                                                                                                                                                                                                                                                | 0.269610                                             |
| -4.347985 | 2.012390                                                                                                                                                                                                                                                | 1.172452                                             |
| -6.330324 | -1.314143                                                                                                                                                                                                                                               | -0.716027                                            |
| -6.436879 | 0.832600                                                                                                                                                                                                                                                | 0.519591                                             |
| 3.322494  | -1.120858                                                                                                                                                                                                                                               | -0.844662                                            |
| 0.403008  | 3.496871                                                                                                                                                                                                                                                | -2.541397                                            |
|           | 0.692282<br>0.764639<br>1.443144<br>-0.301767<br>2.310849<br>3.104025<br>2.306902<br>2.548927<br>-1.804239<br>-1.926109<br>-4.200853<br>-4.322277<br>-5.407106<br>-4.133201<br>-5.468023<br>-4.347985<br>-6.330324<br>-6.436879<br>3.322494<br>0.403008 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

# Supplementary Table 9

### **S1**

Cartesian Coordinates

| 6  | 2.989803  | -1.206916 | 0.062218  |
|----|-----------|-----------|-----------|
| 15 | 1.360289  | -2.057900 | -0.057579 |
| 6  | 3.037771  | 0.220351  | 0.088070  |
| 6  | 5.314791  | 0.122118  | -0.124849 |
| 6  | 5.268025  | -1.295515 | -0.041486 |
| 15 | 1.481358  | 1.179516  | 0.380438  |
| 46 | -0.208851 | -0.534670 | 0.339985  |
| 6  | 1.770436  | 1.977491  | 2.055742  |
| 6  | 2.001353  | 0.851614  | 3.073307  |
| 1  | 1.187403  | 0.119113  | 3.066406  |
| 1  | 2.940797  | 0.321169  | 2.882781  |
| 6 | 2.958279  | 2.946133  | 2.066468  |
|---|-----------|-----------|-----------|
| 1 | 3.055480  | 3.371705  | 3.072279  |
| 1 | 3.898909  | 2.450700  | 1.816537  |
| 1 | 2.811224  | 3.777368  | 1.369953  |
| 6 | 0.490043  | 2.751451  | 2.398165  |
| 1 | -0.390152 | 2.104090  | 2.398948  |
| 1 | 0.590247  | 3.189052  | 3.398163  |
| 1 | 0.314632  | 3.569358  | 1.692666  |
| 6 | 1.623970  | 2.519829  | -0.846949 |
| 1 | 2.632279  | 2.940011  | -0.843414 |
| 1 | 1.399715  | 2.121630  | -1.838820 |
| 1 | 0.900957  | 3.302100  | -0.608562 |
| 6 | 1.491055  | -3.458011 | 1.092327  |
| 1 | 0.661576  | -4.146443 | 0.914759  |
| 1 | 2.443500  | -3.975886 | 0.960272  |
| 1 | 1.419392  | -3.073815 | 2.113023  |
| 6 | 1.294269  | -2.721579 | -1.806811 |
| 6 | 2.365940  | -3.799143 | -2.020983 |
| 1 | 2.312610  | -4.138479 | -3.061313 |
| 1 | 3.374875  | -3.421576 | -1.839273 |
| 1 | 2.198806  | -4.669245 | -1.378876 |
| 6 | 1.516021  | -1.543549 | -2.766731 |
| 1 | 1.417645  | -1.904098 | -3.796521 |
| 1 | 0.770968  | -0.754666 | -2.614549 |
| 1 | 2.514604  | -1.106499 | -2.660783 |
| 6 | -0.097124 | -3.327510 | -2.043237 |
| 1 | -0.878415 | -2.563076 | -2.019374 |
| 1 | -0.109207 | -3.796029 | -3.033429 |
| 1 | -0.340784 | -4.100436 | -1.306862 |
| 7 | 4.076030  | -1.943167 | 0.031482  |
| 7 | 4.177555  | 0.861351  | -0.041942 |
| 6 | 6.471590  | -2.042060 | -0.072891 |
| 6 | 6.565168  | 0.772911  | -0.266921 |
| 6 | 7.668584  | -1.387201 | -0.201773 |
| 1 | 6.413352  | -3.123315 | -0.001643 |
| 6 | 7.715032  | 0.027674  | -0.304070 |

| 1  | 6.581834  | 1.855753  | -0.336048 |
|----|-----------|-----------|-----------|
| 1  | 8.595556  | -1.950762 | -0.230550 |
| 1  | 8.676282  | 0.519839  | -0.410906 |
| 1  | -0.911524 | -1.936095 | 0.291020  |
| 6  | -3.284352 | -0.550836 | 0.967619  |
| 7  | -2.446636 | 0.244188  | 0.368646  |
| 16 | -2.780042 | 0.803365  | -1.212742 |
| 8  | -2.071973 | -0.047643 | -2.171526 |
| 8  | -4.211681 | 1.013057  | -1.413405 |
| 6  | -2.010800 | 2.395498  | -1.167591 |
| 6  | -2.131389 | 3.211688  | -0.043795 |
| 6  | -1.453563 | 2.866564  | -2.352542 |
| 6  | -1.662703 | 4.515798  | -0.114773 |
| 1  | -2.574725 | 2.836204  | 0.872567  |
| 6  | -1.003704 | 4.181435  | -2.405955 |
| 1  | -1.368927 | 2.221145  | -3.220575 |
| 6  | -1.097340 | 5.021635  | -1.293375 |
| 1  | -1.740284 | 5.155311  | 0.759732  |
| 1  | -0.564583 | 4.555266  | -3.325971 |
| 6  | -4.388535 | -1.253921 | 0.250001  |
| 6  | -5.742786 | -0.956184 | 0.420340  |
| 6  | -4.001357 | -2.284786 | -0.614296 |
| 6  | -6.700046 | -1.685843 | -0.274896 |
| 1  | -6.046787 | -0.134895 | 1.058852  |
| 6  | -4.968276 | -3.020351 | -1.292857 |
| 1  | -2.947864 | -2.517371 | -0.740386 |
| 6  | -6.317091 | -2.721661 | -1.125552 |
| 1  | -7.750604 | -1.442729 | -0.151477 |
| 1  | -4.662524 | -3.823582 | -1.955748 |
| 1  | -7.070795 | -3.291448 | -1.660101 |
| 6  | -3.070641 | -0.881237 | 2.443106  |
| 6  | -2.839830 | -2.396730 | 2.599848  |
| 1  | -3.684844 | -2.978599 | 2.223055  |
| 1  | -1.932368 | -2.714740 | 2.076757  |
| 1  | -2.718563 | -2.620009 | 3.664133  |
| 6  | -4.350773 | -0.486783 | 3.214099  |

| 1 | -4.156005 | -0.624227 | 4.281509  |
|---|-----------|-----------|-----------|
| 1 | -4.612572 | 0.563215  | 3.048923  |
| 1 | -5.204502 | -1.113696 | 2.950180  |
| 6 | -1.898914 | -0.110234 | 3.044846  |
| 1 | -2.053504 | 0.968603  | 2.964627  |
| 1 | -1.804588 | -0.365440 | 4.104264  |
| 1 | -0.949178 | -0.366540 | 2.559551  |
| 1 | 2.061727  | 1.279947  | 4.080133  |
| 6 | -0.575237 | 6.431224  | -1.338195 |
| 1 | 0.350039  | 6.512964  | -0.756913 |
| 1 | -0.358056 | 6.743041  | -2.362521 |
| 1 | -1.295380 | 7.132748  | -0.906400 |
|   |           |           |           |

**TS**(*S*) v = 318.4i

Cartesian Coordinates

| 6  | 2.797050  | -1.271340 | 0.008532  |
|----|-----------|-----------|-----------|
| 15 | 1.129555  | -2.003255 | -0.199472 |
| 6  | 2.908317  | 0.147483  | 0.067597  |
| 6  | 5.179453  | -0.045622 | -0.096458 |
| 6  | 5.067306  | -1.462454 | -0.048816 |
| 15 | 1.388138  | 1.159364  | 0.354058  |
| 46 | -0.399824 | -0.446771 | 0.382982  |
| 6  | 1.712417  | 1.945428  | 2.029452  |
| 6  | 2.030577  | 0.823842  | 3.027324  |
| 1  | 1.261341  | 0.046166  | 3.034862  |
| 1  | 2.993336  | 0.349439  | 2.810564  |
| 6  | 2.870688  | 2.949752  | 1.988823  |
| 1  | 3.009077  | 3.359513  | 2.996230  |
| 1  | 3.809490  | 2.486435  | 1.678331  |
| 1  | 2.658208  | 3.788311  | 1.318607  |
| 6  | 0.428884  | 2.681509  | 2.432213  |
| 1  | -0.436654 | 2.015706  | 2.449715  |
| 1  | 0.556121  | 3.103875  | 3.435536  |
| 1  | 0.215319  | 3.507040  | 1.747631  |

| 6  | 1.566843  | 2.489514  | -0.874655 |
|----|-----------|-----------|-----------|
| 1  | 2.602152  | 2.837565  | -0.900942 |
| 1  | 1.283511  | 2.112278  | -1.859130 |
| 1  | 0.908870  | 3.317670  | -0.604831 |
| 6  | 1.175625  | -3.580233 | 0.694932  |
| 1  | 0.278351  | -4.154562 | 0.451957  |
| 1  | 2.066740  | -4.149954 | 0.422603  |
| 1  | 1.190614  | -3.373711 | 1.767753  |
| 6  | 1.014324  | -2.351149 | -2.038947 |
| 6  | 2.076213  | -3.369353 | -2.470650 |
| 1  | 1.976227  | -3.533870 | -3.549231 |
| 1  | 3.093071  | -3.017936 | -2.278128 |
| 1  | 1.941813  | -4.335325 | -1.974790 |
| 6  | 1.206409  | -1.025113 | -2.789524 |
| 1  | 1.079453  | -1.207594 | -3.862047 |
| 1  | 0.460457  | -0.281918 | -2.486237 |
| 1  | 2.205922  | -0.602900 | -2.641594 |
| 6  | -0.386137 | -2.902331 | -2.332506 |
| 1  | -1.162274 | -2.171314 | -2.092650 |
| 1  | -0.455392 | -3.128523 | -3.402282 |
| 1  | -0.588459 | -3.828274 | -1.784569 |
| 7  | 3.846787  | -2.058860 | -0.022652 |
| 7  | 4.075267  | 0.742821  | -0.025170 |
| 6  | 6.238027  | -2.260278 | -0.071891 |
| 6  | 6.460113  | 0.552059  | -0.195252 |
| 6  | 7.465094  | -1.656124 | -0.158618 |
| 1  | 6.130859  | -3.339286 | -0.029405 |
| 6  | 7.576353  | -0.242669 | -0.225172 |
| 1  | 6.526293  | 1.634342  | -0.237116 |
| 1  | 8.366724  | -2.259738 | -0.180969 |
| 1  | 8.560203  | 0.208970  | -0.299473 |
| 1  | -1.263541 | -1.758419 | 0.519726  |
| 6  | -2.795936 | -0.766769 | 0.967328  |
| 7  | -2.429451 | 0.487956  | 0.637084  |
| 16 | -2.913239 | 1.118988  | -0.854963 |
| 8  | -2.505888 | 0.262831  | -1.975293 |

| 8 | -4.330775 | 1.474386  | -0.750689 |
|---|-----------|-----------|-----------|
| 6 | -2.015773 | 2.638660  | -0.951397 |
| 6 | -2.047595 | 3.539105  | 0.112986  |
| 6 | -1.483004 | 2.992535  | -2.186553 |
| 6 | -1.503413 | 4.802181  | -0.067106 |
| 1 | -2.485647 | 3.259323  | 1.065475  |
| 6 | -0.959051 | 4.270833  | -2.351565 |
| 1 | -1.479015 | 2.283323  | -3.007324 |
| 6 | -0.957980 | 5.189405  | -1.299837 |
| 1 | -1.510476 | 5.507883  | 0.758724  |
| 1 | -0.538570 | 4.552138  | -3.312255 |
| 6 | -3.693951 | -1.645091 | 0.119086  |
| 6 | -5.035715 | -1.278161 | -0.045793 |
| 6 | -3.265316 | -2.866808 | -0.405980 |
| 6 | -5.905943 | -2.095219 | -0.761439 |
| 1 | -5.405589 | -0.355757 | 0.382649  |
| 6 | -4.133741 | -3.676836 | -1.128134 |
| 1 | -2.243216 | -3.191408 | -0.253746 |
| 6 | -5.457563 | -3.290262 | -1.315355 |
| 1 | -6.940385 | -1.789958 | -0.883355 |
| 1 | -3.769365 | -4.612302 | -1.541105 |
| 1 | -6.136358 | -3.919603 | -1.882368 |
| 6 | -2.792199 | -1.095164 | 2.480651  |
| 6 | -2.510530 | -2.578590 | 2.745531  |
| 1 | -3.231990 | -3.233304 | 2.250384  |
| 1 | -1.503514 | -2.857432 | 2.416685  |
| 1 | -2.577241 | -2.762597 | 3.821845  |
| 6 | -4.208130 | -0.749285 | 2.996360  |
| 1 | -4.206875 | -0.844626 | 4.086259  |
| 1 | -4.484214 | 0.279755  | 2.745009  |
| 1 | -4.968308 | -1.428013 | 2.603206  |
| 6 | -1.784558 | -0.242061 | 3.249553  |
| 1 | -2.018530 | 0.821766  | 3.174436  |
| 1 | -1.805644 | -0.524341 | 4.306134  |
| 1 | -0.766572 | -0.404812 | 2.877990  |
| 1 | 2.089597  | 1.247432  | 4.036001  |

| 6 | -0.366535 | 6.561795 | -1.465882 |
|---|-----------|----------|-----------|
| 1 | -0.154714 | 6.781110 | -2.515096 |
| 1 | -1.043646 | 7.329722 | -1.079729 |
| 1 | 0.572098  | 6.643456 | -0.906474 |

**S2** 

Cartesian coordinates

| 6  | 2.968561  | -1.163853 | 0.081616  |
|----|-----------|-----------|-----------|
| 15 | 1.367857  | -2.000450 | -0.160507 |
| 6  | 2.932033  | 0.254157  | 0.064123  |
| 6  | 5.205000  | 0.306040  | -0.000755 |
| 6  | 5.240143  | -1.113406 | 0.122790  |
| 15 | 1.302482  | 1.084278  | 0.268279  |
| 46 | -0.333697 | -0.518974 | 0.210321  |
| 6  | 1.395092  | 1.834422  | 1.983091  |
| 6  | 1.618904  | 0.694481  | 2.985086  |
| 1  | 0.838409  | -0.068203 | 2.921023  |
| 1  | 2.589637  | 0.209029  | 2.837319  |
| 6  | 2.541898  | 2.850446  | 2.084035  |
| 1  | 2.496158  | 3.305443  | 3.079788  |
| 1  | 3.523166  | 2.386326  | 1.968275  |
| 1  | 2.445884  | 3.654285  | 1.348352  |
| 6  | 0.068288  | 2.556297  | 2.248913  |
| 1  | -0.800484 | 1.936036  | 2.017617  |
| 1  | 0.025342  | 2.833902  | 3.307613  |
| 1  | -0.002544 | 3.473550  | 1.658700  |
| 6  | 1.326089  | 2.433696  | -0.939849 |
| 1  | 2.324752  | 2.878119  | -0.946329 |
| 1  | 1.090366  | 2.044872  | -1.931505 |
| 1  | 0.591937  | 3.187443  | -0.653781 |
| 6  | 1.361279  | -3.467174 | 0.904342  |
| 1  | 0.487824  | -4.080206 | 0.667787  |
| 1  | 2.273979  | -4.049252 | 0.757491  |
| 1  | 1.297383  | -3.139292 | 1.944875  |

| 6  | 1.400020  | -2.523266 | -1.959026 |
|----|-----------|-----------|-----------|
| 6  | 2.414541  | -3.654643 | -2.163733 |
| 1  | 2.449016  | -3.896844 | -3.231750 |
| 1  | 3.422744  | -3.368286 | -1.851304 |
| 1  | 2.125168  | -4.561580 | -1.624380 |
| 6  | 1.781366  | -1.302080 | -2.809257 |
| 1  | 1.695928  | -1.572213 | -3.866953 |
| 1  | 1.113277  | -0.452936 | -2.626182 |
| 1  | 2.812329  | -0.980682 | -2.631063 |
| 6  | -0.006154 | -3.000546 | -2.343580 |
| 1  | -0.750741 | -2.205005 | -2.232617 |
| 1  | 0.004008  | -3.307526 | -3.395189 |
| 1  | -0.318859 | -3.865633 | -1.751038 |
| 7  | 4.091898  | -1.840360 | 0.132535  |
| 7  | 4.023302  | 0.976560  | -0.016625 |
| 6  | 6.488888  | -1.777623 | 0.199298  |
| 6  | 6.418819  | 1.032595  | -0.076763 |
| 6  | 7.647359  | -1.048456 | 0.136685  |
| 1  | 6.496364  | -2.857782 | 0.300861  |
| 6  | 7.612308  | 0.363241  | -0.007885 |
| 1  | 6.370664  | 2.111622  | -0.179334 |
| 1  | 8.607146  | -1.551189 | 0.194656  |
| 1  | 8.546396  | 0.912891  | -0.060594 |
| 1  | -1.719914 | -1.618758 | 1.080280  |
| 6  | -2.664112 | -0.974401 | 1.021917  |
| 7  | -2.207221 | 0.357540  | 0.552742  |
| 16 | -2.958104 | 0.998284  | -0.750686 |
| 8  | -2.725018 | 0.236488  | -1.996200 |
| 8  | -4.370559 | 1.263030  | -0.426562 |
| 6  | -2.191791 | 2.583538  | -0.961406 |
| 6  | -2.262371 | 3.528792  | 0.061178  |
| 6  | -1.692740 | 2.918736  | -2.215046 |
| 6  | -1.783376 | 4.809777  | -0.172335 |
| 1  | -2.682450 | 3.267562  | 1.026859  |
| 6  | -1.229326 | 4.212351  | -2.437000 |
| 1  | -1.666470 | 2.177746  | -3.006198 |

| 6 | -1.260595 | 5.171405  | -1.422606 |
|---|-----------|-----------|-----------|
| 1 | -1.823896 | 5.547973  | 0.623725  |
| 1 | -0.833846 | 4.475472  | -3.413640 |
| 6 | -3.534762 | -1.841274 | 0.107476  |
| 6 | -4.902274 | -1.633652 | -0.105986 |
| 6 | -2.935568 | -2.948283 | -0.497710 |
| 6 | -5.629349 | -2.493679 | -0.923258 |
| 1 | -5.404843 | -0.788752 | 0.343462  |
| 6 | -3.656692 | -3.807261 | -1.322114 |
| 1 | -1.881755 | -3.142640 | -0.320257 |
| 6 | -5.011341 | -3.579426 | -1.540460 |
| 1 | -6.688109 | -2.310289 | -1.079753 |
| 1 | -3.158679 | -4.653347 | -1.786446 |
| 1 | -5.584749 | -4.243112 | -2.180469 |
| 6 | -3.095665 | -0.943313 | 2.530827  |
| 6 | -3.558688 | -2.342807 | 2.958524  |
| 1 | -4.485022 | -2.641009 | 2.460693  |
| 1 | -2.796064 | -3.099371 | 2.737338  |
| 1 | -3.737800 | -2.356241 | 4.038546  |
| 6 | -4.206959 | 0.083117  | 2.776109  |
| 1 | -4.412365 | 0.143515  | 3.850281  |
| 1 | -3.906378 | 1.076565  | 2.431929  |
| 1 | -5.142418 | -0.187280 | 2.280888  |
| 6 | -1.878945 | -0.563590 | 3.381742  |
| 1 | -1.518590 | 0.438698  | 3.143947  |
| 1 | -2.143602 | -0.578868 | 4.444148  |
| 1 | -1.058708 | -1.276515 | 3.232361  |
| 1 | 1.603637  | 1.107862  | 3.999061  |
| 6 | -0.735745 | 6.562388  | -1.649719 |
| 1 | -0.556972 | 6.753165  | -2.710773 |
| 1 | -1.438404 | 7.313244  | -1.275705 |
| 1 | 0.210723  | 6.707524  | -1.117034 |
|   |           |           |           |

#### **S**3

Cartesian coordinates

| 6  | -2.902216 | -0.232724 | 0.826927  |  |
|----|-----------|-----------|-----------|--|
| 15 | -1.449997 | 0.396004  | 1.721493  |  |
| 6  | -2.709885 | -0.544307 | -0.538606 |  |
| 6  | -4.956769 | -0.830952 | -0.773293 |  |
| 6  | -5.132264 | -0.609090 | 0.623614  |  |
| 15 | -0.985700 | -0.657826 | -1.181430 |  |
| 46 | 0.467563  | 0.017957  | 0.527965  |  |
| 6  | -0.820038 | -2.473355 | -1.620487 |  |
| 6  | -1.166615 | -3.276182 | -0.358644 |  |
| 1  | -0.557587 | -2.972417 | 0.498343  |  |
| 1  | -2.223635 | -3.178640 | -0.090213 |  |
| 6  | -1.761201 | -2.856102 | -2.770695 |  |
| 1  | -1.619890 | -3.923501 | -2.974726 |  |
| 1  | -2.812470 | -2.692152 | -2.527455 |  |
| 1  | -1.523106 | -2.308664 | -3.687465 |  |
| 6  | 0.623512  | -2.744761 | -2.048856 |  |
| 1  | 1.338631  | -2.437910 | -1.286953 |  |
| 1  | 0.739703  | -3.821386 | -2.214671 |  |
| 1  | 0.870447  | -2.227986 | -2.979529 |  |
| 6  | -1.102571 | 0.333797  | -2.696986 |  |
| 1  | -1.999862 | 0.025589  | -3.239155 |  |
| 1  | -1.192121 | 1.386089  | -2.417688 |  |
| 1  | -0.212134 | 0.191106  | -3.305795 |  |
| 6  | -1.467151 | -0.402989 | 3.348439  |  |
| 1  | -0.687006 | 0.030294  | 3.978448  |  |
| 1  | -2.443872 | -0.267148 | 3.819055  |  |
| 1  | -1.270011 | -1.469273 | 3.210899  |  |
| 6  | -1.715630 | 2.236157  | 1.902042  |  |
| 6  | -2.992460 | 2.513940  | 2.706535  |  |
| 1  | -3.109045 | 3.599682  | 2.793676  |  |
| 1  | -3.885437 | 2.117212  | 2.217909  |  |
| 1  | -2.933814 | 2.101620  | 3.718211  |  |
| 6  | -1.825678 | 2.831805  | 0.490774  |  |
| 1  | -1.926613 | 3.919021  | 0.575520  |  |
| 1  | -0.932907 | 2.621484  | -0.107664 |  |

| 1                                                                            | -2.703782                                                                                                                                                                    | 2.455497                                                                                                                                                                 | -0.044739                                                                                                                                                                    |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                                                            | -0.506135                                                                                                                                                                    | 2.829744                                                                                                                                                                 | 2.636760                                                                                                                                                                     |
| 1                                                                            | 0.418745                                                                                                                                                                     | 2.703491                                                                                                                                                                 | 2.070761                                                                                                                                                                     |
| 1                                                                            | -0.675543                                                                                                                                                                    | 3.904242                                                                                                                                                                 | 2.764612                                                                                                                                                                     |
| 1                                                                            | -0.374514                                                                                                                                                                    | 2.391750                                                                                                                                                                 | 3.631324                                                                                                                                                                     |
| 7                                                                            | -4.076416                                                                                                                                                                    | -0.282336                                                                                                                                                                | 1.411783                                                                                                                                                                     |
| 7                                                                            | -3.721245                                                                                                                                                                    | -0.800170                                                                                                                                                                | -1.335144                                                                                                                                                                    |
| 6                                                                            | -6.428712                                                                                                                                                                    | -0.693574                                                                                                                                                                | 1.189433                                                                                                                                                                     |
| 6                                                                            | -6.084429                                                                                                                                                                    | -1.111995                                                                                                                                                                | -1.583934                                                                                                                                                                    |
| 6                                                                            | -7.499650                                                                                                                                                                    | -0.975361                                                                                                                                                                | 0.382993                                                                                                                                                                     |
| 1                                                                            | -6.541221                                                                                                                                                                    | -0.523583                                                                                                                                                                | 2.255142                                                                                                                                                                     |
| 6                                                                            | -7.326954                                                                                                                                                                    | -1.182284                                                                                                                                                                | -1.011147                                                                                                                                                                    |
| 1                                                                            | -5.931422                                                                                                                                                                    | -1.274512                                                                                                                                                                | -2.645742                                                                                                                                                                    |
| 1                                                                            | -8.496006                                                                                                                                                                    | -1.039219                                                                                                                                                                | 0.807968                                                                                                                                                                     |
| 1                                                                            | -8.194515                                                                                                                                                                    | -1.401695                                                                                                                                                                | -1.624901                                                                                                                                                                    |
| 1                                                                            | 4.270239                                                                                                                                                                     | -1.007274                                                                                                                                                                | -0.763636                                                                                                                                                                    |
| 6                                                                            | 3.623943                                                                                                                                                                     | -0.899001                                                                                                                                                                | 0.113739                                                                                                                                                                     |
| 7                                                                            | 2.505268                                                                                                                                                                     | 0.011090                                                                                                                                                                 | -0.269249                                                                                                                                                                    |
| 16                                                                           | 2.666841                                                                                                                                                                     | 0.775932                                                                                                                                                                 | -1.674557                                                                                                                                                                    |
| 8                                                                            | 4.082493                                                                                                                                                                     | 1.034804                                                                                                                                                                 | -2.006706                                                                                                                                                                    |
| 8                                                                            | 1.930099                                                                                                                                                                     | 0.153277                                                                                                                                                                 | -2.796199                                                                                                                                                                    |
|                                                                              |                                                                                                                                                                              |                                                                                                                                                                          |                                                                                                                                                                              |
| 6                                                                            | 1.876303                                                                                                                                                                     | 2.348137                                                                                                                                                                 | -1.367656                                                                                                                                                                    |
| 6<br>6                                                                       | 1.876303<br>1.131634                                                                                                                                                         | 2.348137<br>2.944122                                                                                                                                                     | -1.367656<br>-2.381418                                                                                                                                                       |
| 6<br>6<br>6                                                                  | 1.876303<br>1.131634<br>2.093709                                                                                                                                             | 2.348137<br>2.944122<br>3.018951                                                                                                                                         | -1.367656<br>-2.381418<br>-0.163678                                                                                                                                          |
| 6<br>6<br>6<br>6                                                             | 1.876303<br>1.131634<br>2.093709<br>0.580649                                                                                                                                 | 2.348137<br>2.944122<br>3.018951<br>4.205333                                                                                                                             | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283                                                                                                                             |
| 6<br>6<br>6<br>6<br>1                                                        | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942                                                                                                                     | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756                                                                                                                 | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538                                                                                                                |
| 6<br>6<br>6<br>1<br>6                                                        | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700                                                                                                         | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351                                                                                                     | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812                                                                                                    |
| 6<br>6<br>6<br>1<br>6<br>1                                                   | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436                                                                                             | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642                                                                                         | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469                                                                                        |
| 6<br>6<br>6<br>1<br>6<br>1<br>6                                              | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992                                                                                 | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346                                                                             | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827                                                                           |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>6<br>1                               | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992<br>-0.007547                                                                    | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122                                                                 | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119                                                              |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>1<br>1                               | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992<br>-0.007547<br>1.710953                                                        | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122<br>4.798999                                                     | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119<br>0.964606                                                  |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>1<br>6                               | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992<br>-0.007547<br>1.710953<br>3.121566                                            | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122<br>4.798999<br>-2.307224                                        | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119<br>0.964606<br>0.404552                                      |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>6<br>6      | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992<br>-0.007547<br>1.710953<br>3.121566<br>2.213537                                | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122<br>4.798999<br>-2.307224<br>-2.613898                           | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119<br>0.964606<br>0.404552<br>1.424153                          |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>6<br>6<br>6 | $\begin{array}{c} 1.876303\\ 1.131634\\ 2.093709\\ 0.580649\\ 0.978942\\ 1.545700\\ 2.677436\\ 0.774992\\ -0.007547\\ 1.710953\\ 3.121566\\ 2.213537\\ 3.600191 \end{array}$ | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122<br>4.798999<br>-2.307224<br>-2.613898<br>-3.360317              | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119<br>0.964606<br>0.404552<br>1.424153<br>-0.381917             |
| 6<br>6<br>6<br>1<br>6<br>1<br>6<br>1<br>1<br>6<br>6<br>6<br>6<br>6<br>6      | 1.876303<br>1.131634<br>2.093709<br>0.580649<br>0.978942<br>1.545700<br>2.677436<br>0.774992<br>-0.007547<br>1.710953<br>3.121566<br>2.213537<br>3.600191<br>1.780349        | 2.348137<br>2.944122<br>3.018951<br>4.205333<br>2.425756<br>4.281351<br>2.552642<br>4.890346<br>4.664122<br>4.798999<br>-2.307224<br>-2.613898<br>-3.360317<br>-3.921725 | -1.367656<br>-2.381418<br>-0.163678<br>-2.175283<br>-3.321538<br>0.023812<br>0.623469<br>-0.972827<br>-2.965119<br>0.964606<br>0.404552<br>1.424153<br>-0.381917<br>1.630322 |

| 6 | 3.172345  | -4.669990 | -0.179698 |
|---|-----------|-----------|-----------|
| 1 | 4.309687  | -3.148442 | -1.177670 |
| 6 | 2.251995  | -4.955645 | 0.825184  |
| 1 | 1.068111  | -4.130617 | 2.423633  |
| 1 | 3.554312  | -5.465194 | -0.813133 |
| 1 | 1.909354  | -5.973714 | 0.983776  |
| 6 | 4.612211  | -0.356101 | 1.217360  |
| 6 | 5.598366  | -1.486508 | 1.562778  |
| 1 | 5.114657  | -2.303904 | 2.105970  |
| 1 | 6.057783  | -1.906141 | 0.660236  |
| 1 | 6.402504  | -1.094393 | 2.194888  |
| 6 | 3.950017  | 0.126807  | 2.512223  |
| 1 | 3.281865  | -0.614590 | 2.957426  |
| 1 | 4.728992  | 0.347137  | 3.251012  |
| 1 | 3.396683  | 1.057203  | 2.352214  |
| 6 | 5.432132  | 0.818207  | 0.663794  |
| 1 | 6.132779  | 1.167585  | 1.430997  |
| 1 | 6.012221  | 0.524818  | -0.216377 |
| 1 | 4.797573  | 1.661000  | 0.380227  |
| 1 | -0.965810 | -4.335992 | -0.548366 |
| 6 | 0.139316  | 6.232285  | -0.733867 |
| 1 | -0.068723 | 6.749507  | -1.674140 |
| 1 | -0.812737 | 6.112286  | -0.203214 |
| 1 | 0.778797  | 6.870726  | -0.117902 |
| 1 | 1.557291  | 0.752888  | 1.793701  |
| 1 | 1.124828  | 0.261913  | 2.229591  |
|   |           |           |           |

**TS2(S)** *v* = 926.4*i* 

Cartesian coorates

| 6  | -2.894866 | -0.112665 | 0.812293  |  |
|----|-----------|-----------|-----------|--|
| 15 | -1.390544 | 0.495431  | 1.652504  |  |
| 6  | -2.775119 | -0.481592 | -0.552331 |  |
| 6  | -5.038352 | -0.719768 | -0.672021 |  |
| 6  | -5.142702 | -0.441172 | 0.721043  |  |

| 15 | -1.085241 | -0.685290 | -1.252354 |
|----|-----------|-----------|-----------|
| 46 | 0.426509  | 0.014121  | 0.391158  |
| 6  | -1.001659 | -2.496791 | -1.709202 |
| 6  | -1.438089 | -3.298005 | -0.474440 |
| 1  | -0.884866 | -2.999458 | 0.421565  |
| 1  | -2.508831 | -3.186898 | -0.276006 |
| 6  | -1.906945 | -2.819709 | -2.904390 |
| 1  | -1.848126 | -3.897500 | -3.094530 |
| 1  | -2.951587 | -2.562895 | -2.715188 |
| 1  | -1.576851 | -2.303984 | -3.811065 |
| 6  | 0.452573  | -2.817669 | -2.070056 |
| 1  | 1.130811  | -2.601120 | -1.243683 |
| 1  | 0.529767  | -3.885264 | -2.303576 |
| 1  | 0.784742  | -2.255071 | -2.947294 |
| 6  | -1.133388 | 0.305506  | -2.774388 |
| 1  | -2.016171 | 0.034029  | -3.358328 |
| 1  | -1.188172 | 1.362149  | -2.501718 |
| 1  | -0.225699 | 0.127291  | -3.352487 |
| 6  | -1.357119 | -0.295339 | 3.282637  |
| 1  | -0.504972 | 0.086427  | 3.849195  |
| 1  | -2.286724 | -0.091001 | 3.819785  |
| 1  | -1.243349 | -1.373106 | 3.141280  |
| 6  | -1.611172 | 2.340928  | 1.830763  |
| 6  | -2.899771 | 2.663576  | 2.599507  |
| 1  | -2.966869 | 3.751658  | 2.706910  |
| 1  | -3.793107 | 2.321461  | 2.072548  |
| 1  | -2.897375 | 2.228196  | 3.603249  |
| 6  | -1.668357 | 2.925622  | 0.412883  |
| 1  | -1.759088 | 4.015074  | 0.480298  |
| 1  | -0.759576 | 2.694973  | -0.151719 |
| 1  | -2.532601 | 2.552268  | -0.147417 |
| 6  | -0.406720 | 2.906740  | 2.595395  |
| 1  | 0.537132  | 2.717820  | 2.078183  |
| 1  | -0.530806 | 3.991938  | 2.677305  |
| 1  | -0.341023 | 2.499771  | 3.609459  |
| 7  | -4.043111 | -0.114744 | 1.447995  |

| 7  | -3.829135 | -0.745370 | -1.289585 |
|----|-----------|-----------|-----------|
| 6  | -6.412559 | -0.471517 | 1.348977  |
| 6  | -6.209027 | -1.002741 | -1.418336 |
| 6  | -7.526939 | -0.755640 | 0.604324  |
| 1  | -6.470585 | -0.259230 | 2.411446  |
| 6  | -7.424918 | -1.019338 | -0.786955 |
| 1  | -6.110076 | -1.209870 | -2.478847 |
| 1  | -8.503335 | -0.777798 | 1.077140  |
| 1  | -8.325187 | -1.239672 | -1.351376 |
| 1  | 4.309530  | -1.180943 | -0.677395 |
| 6  | 3.658873  | -1.037070 | 0.191843  |
| 7  | 2.652553  | -0.004454 | -0.184046 |
| 16 | 2.845968  | 0.737174  | -1.619865 |
| 8  | 4.272221  | 0.938841  | -1.926713 |
| 8  | 2.093530  | 0.078560  | -2.705062 |
| 6  | 2.080649  | 2.319857  | -1.337537 |
| 6  | 1.263186  | 2.855145  | -2.327922 |
| 6  | 2.370793  | 3.046941  | -0.181757 |
| 6  | 0.709969  | 4.119000  | -2.144393 |
| 1  | 1.054011  | 2.288392  | -3.228149 |
| 6  | 1.808532  | 4.304278  | -0.013739 |
| 1  | 3.014727  | 2.632350  | 0.587486  |
| 6  | 0.967746  | 4.857813  | -0.987439 |
| 1  | 0.060640  | 4.531018  | -2.911494 |
| 1  | 2.018586  | 4.863498  | 0.893587  |
| 6  | 3.004174  | -2.383791 | 0.449794  |
| 6  | 1.987526  | -2.566929 | 1.393942  |
| 6  | 3.444451  | -3.497381 | -0.270815 |
| 6  | 1.422886  | -3.822844 | 1.600996  |
| 1  | 1.618199  | -1.725340 | 1.972899  |
| 6  | 2.880766  | -4.755091 | -0.068731 |
| 1  | 4.233735  | -3.376389 | -1.008148 |
| 6  | 1.863666  | -4.921910 | 0.867143  |
| 1  | 0.632120  | -3.940596 | 2.336334  |
| 1  | 3.234055  | -5.602844 | -0.648220 |
| 1  | 1.418201  | -5.899394 | 1.025205  |

| 6 | 4.639519  | -0.594112 | 1.338266  |
|---|-----------|-----------|-----------|
| 6 | 5.561474  | -1.783339 | 1.657274  |
| 1 | 5.020530  | -2.604850 | 2.136486  |
| 1 | 6.037756  | -2.174073 | 0.750684  |
| 1 | 6.355286  | -1.461813 | 2.339900  |
| 6 | 3.945247  | -0.152459 | 2.633768  |
| 1 | 3.265966  | -0.910925 | 3.031378  |
| 1 | 4.706449  | 0.033927  | 3.399505  |
| 1 | 3.393507  | 0.783802  | 2.504889  |
| 6 | 5.517128  | 0.567348  | 0.853753  |
| 1 | 6.214738  | 0.855955  | 1.647905  |
| 1 | 6.102697  | 0.286919  | -0.027028 |
| 1 | 4.922777  | 1.447247  | 0.595613  |
| 1 | -1.237430 | -4.360421 | -0.649700 |
| 6 | 0.359132  | 6.217092  | -0.779378 |
| 1 | -0.457926 | 6.400405  | -1.481448 |
| 1 | -0.026770 | 6.321049  | 0.239310  |
| 1 | 1.110631  | 7.001438  | -0.923989 |
| 1 | 1.967317  | 0.579248  | 1.026217  |
| 1 | 1.323400  | 0.690586  | 1.684422  |
|   |           |           |           |

#### **S4**

Cartesian coordinates

| 6  | -2.830972 | -0.274535 | 0.848240  |
|----|-----------|-----------|-----------|
| 15 | -1.374906 | 0.359888  | 1.777325  |
| 6  | -2.685850 | -0.595262 | -0.534254 |
| 6  | -4.951093 | -0.884065 | -0.680369 |
| 6  | -5.076475 | -0.658203 | 0.716721  |
| 15 | -0.990694 | -0.736369 | -1.263141 |
| 46 | 0.451623  | -0.009011 | 0.549035  |
| 6  | -0.880254 | -2.567060 | -1.673890 |
| 6  | -1.212368 | -3.343067 | -0.391066 |
| 1  | -0.638054 | -2.979509 | 0.467083  |
| 1  | -2.277688 | -3.276288 | -0.146034 |

| 6 | -1.827075 | -2.992255 | -2.801168 |
|---|-----------|-----------|-----------|
| 1 | -1.734622 | -4.075715 | -2.942076 |
| 1 | -2.871386 | -2.767199 | -2.572281 |
| 1 | -1.567891 | -2.513152 | -3.750245 |
| 6 | 0.567060  | -2.835360 | -2.103860 |
| 1 | 1.277397  | -2.562936 | -1.321865 |
| 1 | 0.686913  | -3.903529 | -2.317845 |
| 1 | 0.825740  | -2.281319 | -3.012118 |
| 6 | -1.214351 | 0.131022  | -2.853839 |
| 1 | -2.096432 | -0.250526 | -3.372395 |
| 1 | -1.352408 | 1.196304  | -2.655052 |
| 1 | -0.330443 | -0.008832 | -3.479698 |
| 6 | -1.495101 | -0.427732 | 3.409475  |
| 1 | -0.797644 | 0.061142  | 4.093628  |
| 1 | -2.513250 | -0.356003 | 3.797563  |
| 1 | -1.214070 | -1.479162 | 3.307498  |
| 6 | -1.715472 | 2.191706  | 1.969720  |
| 6 | -2.950932 | 2.435222  | 2.846008  |
| 1 | -3.132666 | 3.514569  | 2.896237  |
| 1 | -3.847266 | 1.960570  | 2.439630  |
| 1 | -2.800129 | 2.074769  | 3.868171  |
| 6 | -1.931354 | 2.770731  | 0.564069  |
| 1 | -2.028795 | 3.859281  | 0.638439  |
| 1 | -1.084661 | 2.552150  | -0.095461 |
| 1 | -2.844018 | 2.385119  | 0.097260  |
| 6 | -0.490483 | 2.847995  | 2.621425  |
| 1 | 0.393918  | 2.774519  | 1.983410  |
| 1 | -0.707160 | 3.909920  | 2.782882  |
| 1 | -0.255717 | 2.402062  | 3.593864  |
| 7 | -3.989363 | -0.331580 | 1.463275  |
| 7 | -3.733646 | -0.857070 | -1.282951 |
| 6 | -6.350849 | -0.740841 | 1.330187  |
| 6 | -6.106311 | -1.169342 | -1.449471 |
| 6 | -7.451419 | -1.025827 | 0.564556  |
| 1 | -6.424572 | -0.567194 | 2.398876  |
| 6 | -7.328762 | -1.238236 | -0.833300 |
|   |           |           |           |

| 1  | -5.991035 | -1.336654 | -2.515502 |
|----|-----------|-----------|-----------|
| 1  | -8.431527 | -1.088472 | 1.026176  |
| 1  | -8.217279 | -1.460888 | -1.415314 |
| 1  | 4.446471  | -0.738929 | -0.653614 |
| 6  | 3.781416  | -0.754354 | 0.215836  |
| 7  | 2.691718  | 0.264806  | -0.046835 |
| 16 | 2.843132  | 1.001037  | -1.594885 |
| 8  | 4.231593  | 1.407683  | -1.805204 |
| 8  | 2.259498  | 0.083891  | -2.567160 |
| 6  | 1.836717  | 2.444510  | -1.410412 |
| 6  | 0.917965  | 2.729211  | -2.413631 |
| 6  | 2.053167  | 3.328294  | -0.349895 |
| 6  | 0.175776  | 3.902695  | -2.333095 |
| 1  | 0.789583  | 2.051670  | -3.249045 |
| 6  | 1.293872  | 4.486351  | -0.283376 |
| 1  | 2.800551  | 3.136147  | 0.414742  |
| 6  | 0.343835  | 4.789908  | -1.267877 |
| 1  | -0.544628 | 4.127385  | -3.113745 |
| 1  | 1.445041  | 5.171695  | 0.545206  |
| 6  | 3.231953  | -2.161736 | 0.313915  |
| 6  | 2.242762  | -2.534796 | 1.228837  |
| 6  | 3.784586  | -3.145412 | -0.510737 |
| 6  | 1.818139  | -3.858196 | 1.313278  |
| 1  | 1.788397  | -1.791856 | 1.878219  |
| 6  | 3.361547  | -4.469567 | -0.428405 |
| 1  | 4.554161  | -2.871170 | -1.227330 |
| 6  | 2.374886  | -4.830108 | 0.485365  |
| 1  | 1.046208  | -4.128323 | 2.027594  |
| 1  | 3.800456  | -5.216838 | -1.082472 |
| 1  | 2.039757  | -5.860697 | 0.551463  |
| 6  | 4.691523  | -0.326323 | 1.418159  |
| 6  | 5.737545  | -1.431108 | 1.629183  |
| 1  | 5.281631  | -2.363378 | 1.974192  |
| 1  | 6.287816  | -1.640638 | 0.705127  |
| 1  | 6.459894  | -1.109069 | 2.385936  |
| 6  | 3.918470  | -0.114925 | 2.726935  |

| 1 | 3.432195  | -1.030453 | 3.072085  |
|---|-----------|-----------|-----------|
| 1 | 4.619781  | 0.199832  | 3.506635  |
| 1 | 3.157542  | 0.669195  | 2.644161  |
| 6 | 5.434508  | 0.972703  | 1.066543  |
| 1 | 6.114815  | 1.232422  | 1.883677  |
| 1 | 6.025249  | 0.859675  | 0.152962  |
| 1 | 4.759944  | 1.825273  | 0.930439  |
| 1 | -0.966468 | -4.401639 | -0.531822 |
| 6 | -0.488024 | 6.036046  | -1.156088 |
| 1 | -1.002741 | 6.259141  | -2.093639 |
| 1 | -1.246738 | 5.914608  | -0.374463 |
| 1 | 0.128382  | 6.896845  | -0.880883 |
| 1 | 2.806229  | 1.026442  | 0.624397  |
| 1 | 0.989281  | 0.450568  | 1.947285  |
|   |           |           |           |

#### **R1**

Cartesian coordinates

| 6  | 2.973430  | -1.168982 | -0.092393 |
|----|-----------|-----------|-----------|
| 15 | 1.307620  | -1.769206 | -0.612462 |
| 6  | 3.093220  | 0.107335  | 0.538711  |
| 6  | 5.369486  | -0.067567 | 0.423665  |
| 6  | 5.246047  | -1.371280 | -0.129095 |
| 15 | 1.559161  | 0.952840  | 1.111992  |
| 46 | -0.203891 | -0.462387 | 0.358796  |
| 6  | 1.719563  | 1.004070  | 2.975764  |
| 6  | 1.995658  | -0.427419 | 3.457493  |
| 1  | 1.251443  | -1.135605 | 3.073624  |
| 1  | 2.989749  | -0.775825 | 3.157543  |
| 6  | 2.829048  | 1.950571  | 3.444768  |
| 1  | 2.915709  | 1.881630  | 4.535445  |
| 1  | 3.798262  | 1.693943  | 3.009682  |
| 1  | 2.602960  | 2.992157  | 3.195829  |
| 6  | 0.363883  | 1.481995  | 3.519045  |
| 1  | -0.434483 | 0.768045  | 3.296176  |

| 1 | 0.433164  | 1.588681  | 4.607598  |
|---|-----------|-----------|-----------|
| 1 | 0.078364  | 2.456171  | 3.107413  |
| 6 | 1.738322  | 2.658518  | 0.496092  |
| 1 | 2.711268  | 3.077892  | 0.762886  |
| 1 | 1.632140  | 2.645968  | -0.591535 |
| 1 | 0.942152  | 3.276272  | 0.919036  |
| 6 | 1.302929  | -3.536531 | -0.203444 |
| 1 | 0.431210  | -4.005055 | -0.666750 |
| 1 | 2.218151  | -4.015618 | -0.557524 |
| 1 | 1.228406  | -3.645220 | 0.881303  |
| 6 | 1.316443  | -1.600171 | -2.476584 |
| 6 | 2.286279  | -2.604034 | -3.114065 |
| 1 | 2.317680  | -2.419287 | -4.193544 |
| 1 | 3.301985  | -2.500996 | -2.723794 |
| 1 | 1.957644  | -3.636609 | -2.962503 |
| 6 | 1.740894  | -0.162618 | -2.809357 |
| 1 | 1.591682  | 0.016756  | -3.879509 |
| 1 | 1.147684  | 0.573043  | -2.256727 |
| 1 | 2.798526  | 0.010186  | -2.585159 |
| 6 | -0.106063 | -1.865355 | -2.989540 |
| 1 | -0.815584 | -1.119598 | -2.621759 |
| 1 | -0.099471 | -1.822769 | -4.084413 |
| 1 | -0.467912 | -2.856329 | -2.695482 |
| 7 | 4.021780  | -1.899022 | -0.393267 |
| 7 | 4.267534  | 0.652113  | 0.763000  |
| 6 | 6.411042  | -2.115794 | -0.438179 |
| 6 | 6.657410  | 0.480552  | 0.643052  |
| 6 | 7.644978  | -1.563480 | -0.212544 |
| 1 | 6.295392  | -3.109101 | -0.859501 |
| 6 | 7.768857  | -0.257637 | 0.329047  |
| 1 | 6.732725  | 1.477579  | 1.064713  |
| 1 | 8.542448  | -2.124991 | -0.451380 |
| 1 | 8.758198  | 0.156449  | 0.494464  |
| 1 | -1.141650 | -1.589139 | -0.217626 |
| 6 | -4.033754 | -0.682167 | -0.563866 |
| 6 | -4.338153 | -1.073039 | 0.847440  |

| 6  | -3.598949 | -2.049640 | 1.520930  |
|----|-----------|-----------|-----------|
| 6  | -5.397233 | -0.430212 | 1.495996  |
| 6  | -3.909058 | -2.363837 | 2.840318  |
| 1  | -2.764955 | -2.538459 | 1.029905  |
| 6  | -5.710532 | -0.761618 | 2.810743  |
| 1  | -5.974035 | 0.325581  | 0.972739  |
| 6  | -4.965249 | -1.724307 | 3.486195  |
| 1  | -3.323108 | -3.113586 | 3.362916  |
| 1  | -6.537234 | -0.262382 | 3.306092  |
| 1  | -5.205176 | -1.975126 | 4.514813  |
| 6  | -4.495862 | -1.585428 | -1.701730 |
| 6  | -3.778626 | -2.945501 | -1.585853 |
| 1  | -2.690300 | -2.822949 | -1.586524 |
| 1  | -4.072205 | -3.491844 | -0.686341 |
| 1  | -4.052962 | -3.555557 | -2.452115 |
| 6  | -4.178827 | -0.966652 | -3.065533 |
| 1  | -4.660356 | 0.007001  | -3.191379 |
| 1  | -3.101672 | -0.836171 | -3.207269 |
| 1  | -4.545601 | -1.634637 | -3.850708 |
| 6  | -6.016538 | -1.794794 | -1.565987 |
| 1  | -6.554361 | -0.843505 | -1.632137 |
| 1  | -6.358763 | -2.437153 | -2.383103 |
| 1  | -6.278107 | -2.279054 | -0.621321 |
| 7  | -3.446692 | 0.418144  | -0.897277 |
| 16 | -2.823284 | 1.455090  | 0.249329  |
| 8  | -3.854169 | 2.229906  | 0.931991  |
| 8  | -1.891670 | 0.726351  | 1.157748  |
| 6  | -1.862272 | 2.535312  | -0.769246 |
| 6  | -1.200654 | 2.056911  | -1.897295 |
| 6  | -1.729089 | 3.858604  | -0.354040 |
| 6  | -0.393440 | 2.927548  | -2.618666 |
| 1  | -1.324607 | 1.029887  | -2.221812 |
| 6  | -0.913607 | 4.710334  | -1.088220 |
| 1  | -2.257209 | 4.221876  | 0.521306  |
| 6  | -0.233432 | 4.260495  | -2.225292 |
| 1  | 0.118966  | 2.561988  | -3.503716 |

| 1 | -0.806680 | 5.744254  | -0.773711 |
|---|-----------|-----------|-----------|
| 1 | 1.949930  | -0.454700 | 4.552037  |
| 6 | 0.670847  | 5.185826  | -2.990800 |
| 1 | 1.626628  | 5.300635  | -2.466835 |
| 1 | 0.881178  | 4.798863  | -3.990773 |
| 1 | 0.228938  | 6.181511  | -3.087704 |
|   |           |           |           |

**TS**(*R*) v = 837.1i

Cartesian coordinates

| 6  | -2.778998 | 0.132109  | 0.809933  |  |
|----|-----------|-----------|-----------|--|
| 15 | -1.092408 | 0.532463  | 1.422723  |  |
| 6  | -2.923427 | -0.263426 | -0.548537 |  |
| 6  | -5.189042 | -0.169123 | -0.331394 |  |
| 6  | -5.043145 | 0.144600  | 1.049817  |  |
| 15 | -1.395964 | -0.705634 | -1.459343 |  |
| 46 | 0.402352  | -0.239343 | -0.059399 |  |
| 6  | -1.534651 | -2.543688 | -1.778197 |  |
| 6  | -1.885938 | -3.224364 | -0.447013 |  |
| 1  | -1.199788 | -2.931739 | 0.354600  |  |
| 1  | -2.908671 | -2.995308 | -0.131179 |  |
| 6  | -2.610798 | -2.839431 | -2.830029 |  |
| 1  | -2.702136 | -3.925869 | -2.940092 |  |
| 1  | -3.588168 | -2.444654 | -2.539957 |  |
| 1  | -2.344437 | -2.427921 | -3.808024 |  |
| 6  | -0.166778 | -3.033308 | -2.277339 |  |
| 1  | 0.611611  | -2.911113 | -1.519361 |  |
| 1  | -0.242290 | -4.100288 | -2.514600 |  |
| 1  | 0.148494  | -2.508301 | -3.185087 |  |
| 6  | -1.492255 | 0.178366  | -3.041789 |  |
| 1  | -2.445939 | -0.018746 | -3.537101 |  |
| 1  | -1.399766 | 1.249983  | -2.847115 |  |
| 1  | -0.669362 | -0.144380 | -3.684732 |  |
| 6  | -1.056082 | -0.088948 | 3.125906  |  |
| 1  | -0.250366 | 0.404483  | 3.673461  |  |

\_

| 1 | -2.011018 | 0.123601  | 3.612703  |
|---|-----------|-----------|-----------|
| 1 | -0.884314 | -1.167661 | 3.113007  |
| 6 | -1.069287 | 2.405552  | 1.472023  |
| 6 | -1.953229 | 2.915899  | 2.617872  |
| 1 | -1.975186 | 4.010501  | 2.575453  |
| 1 | -2.982316 | 2.555108  | 2.538282  |
| 1 | -1.556358 | 2.628182  | 3.595833  |
| 6 | -1.586274 | 2.931682  | 0.125829  |
| 1 | -1.440106 | 4.016750  | 0.092948  |
| 1 | -1.041684 | 2.496896  | -0.719095 |
| 1 | -2.654687 | 2.734724  | -0.009035 |
| 6 | 0.380757  | 2.854825  | 1.689315  |
| 1 | 1.023215  | 2.561511  | 0.854297  |
| 1 | 0.403800  | 3.946701  | 1.776022  |
| 1 | 0.796540  | 2.437413  | 2.612352  |
| 7 | -3.811376 | 0.310002  | 1.599631  |
| 7 | -4.100775 | -0.383616 | -1.116776 |
| 6 | -6.196463 | 0.313045  | 1.855404  |
| 6 | -6.485894 | -0.288475 | -0.888875 |
| 6 | -7.438810 | 0.184499  | 1.291595  |
| 1 | -6.064340 | 0.546111  | 2.906861  |
| 6 | -7.584410 | -0.113942 | -0.088320 |
| 1 | -6.577712 | -0.523123 | -1.944238 |
| 1 | -8.326897 | 0.314636  | 1.901322  |
| 1 | -8.580349 | -0.208247 | -0.508636 |
| 1 | 1.624790  | -0.036397 | 1.089566  |
| 6 | 3.133329  | -0.726703 | 0.982645  |
| 6 | 2.732561  | -2.158316 | 0.701365  |
| 6 | 1.620635  | -2.779309 | 1.283785  |
| 6 | 3.566034  | -2.912923 | -0.131406 |
| 6 | 1.350061  | -4.119942 | 1.036653  |
| 1 | 0.947876  | -2.204617 | 1.911693  |
| 6 | 3.291197  | -4.255107 | -0.380270 |
| 1 | 4.441022  | -2.450457 | -0.577299 |
| 6 | 2.183790  | -4.863228 | 0.203086  |
| 1 | 0.477555  | -4.581489 | 1.488156  |

| 1  | 3.948899  | -4.824961 | -1.029091 |
|----|-----------|-----------|-----------|
| 1  | 1.969439  | -5.909464 | 0.008533  |
| 6  | 3.625572  | -0.396354 | 2.410526  |
| 6  | 2.701418  | -0.919996 | 3.513411  |
| 1  | 1.691760  | -0.514409 | 3.412128  |
| 1  | 2.640051  | -2.010726 | 3.526892  |
| 1  | 3.097836  | -0.601420 | 4.482322  |
| 6  | 3.794416  | 1.118118  | 2.571531  |
| 1  | 4.565536  | 1.511379  | 1.906944  |
| 1  | 2.857060  | 1.641042  | 2.357753  |
| 1  | 4.082786  | 1.344107  | 3.602778  |
| 6  | 5.001588  | -1.083158 | 2.553172  |
| 1  | 5.704201  | -0.725117 | 1.795396  |
| 1  | 5.412345  | -0.852668 | 3.541178  |
| 1  | 4.919084  | -2.170860 | 2.466019  |
| 7  | 3.773501  | -0.011770 | 0.044414  |
| 16 | 3.176908  | 0.154095  | -1.425713 |
| 8  | 4.188246  | -0.088442 | -2.455981 |
| 8  | 1.902378  | -0.620519 | -1.637589 |
| 6  | 2.673534  | 1.862298  | -1.457486 |
| 6  | 3.387674  | 2.822609  | -0.744211 |
| 6  | 1.556962  | 2.213430  | -2.214016 |
| 6  | 2.954932  | 4.142573  | -0.771925 |
| 1  | 4.251655  | 2.538968  | -0.154640 |
| 6  | 1.139638  | 3.538606  | -2.229317 |
| 1  | 1.009891  | 1.461219  | -2.771461 |
| 6  | 1.824185  | 4.519685  | -1.505230 |
| 1  | 3.499849  | 4.890912  | -0.203739 |
| 1  | 0.260293  | 3.811841  | -2.805666 |
| 1  | -1.809615 | -4.309771 | -0.572640 |
| 6  | 1.367211  | 5.952199  | -1.530352 |
| 1  | 1.580814  | 6.453958  | -0.582700 |
| 1  | 1.887119  | 6.505014  | -2.321281 |
| 1  | 0.294305  | 6.023715  | -1.727977 |
|    |           |           |           |

Standard orientation:

| 6  | -2.862511 | 0.135704  | 0.810616  |
|----|-----------|-----------|-----------|
| 15 | -1.158472 | 0.409444  | 1.404165  |
| 6  | -2.998621 | -0.283064 | -0.535452 |
| 6  | -5.254904 | -0.106195 | -0.370336 |
| 6  | -5.121020 | 0.254665  | 1.004193  |
| 15 | -1.470925 | -0.796302 | -1.398673 |
| 46 | 0.321169  | -0.180747 | -0.195229 |
| 6  | -1.540878 | -2.656373 | -1.513467 |
| 6  | -1.905433 | -3.200845 | -0.125044 |
| 1  | -1.238538 | -2.816288 | 0.653510  |
| 1  | -2.938725 | -2.964084 | 0.147727  |
| 6  | -2.603006 | -3.062358 | -2.544715 |
| 1  | -2.695191 | -4.153644 | -2.523566 |
| 1  | -3.584776 | -2.636921 | -2.318698 |
| 1  | -2.317372 | -2.770053 | -3.559241 |
| 6  | -0.159497 | -3.166988 | -1.945622 |
| 1  | 0.602741  | -2.962217 | -1.189764 |
| 1  | -0.223086 | -4.251513 | -2.083548 |
| 1  | 0.162262  | -2.725502 | -2.893821 |
| 6  | -1.500233 | -0.043252 | -3.041697 |
| 1  | -2.413993 | -0.343537 | -3.561276 |
| 1  | -1.484572 | 1.043171  | -2.929377 |
| 1  | -0.624465 | -0.372954 | -3.604978 |
| 6  | -0.996687 | -0.466709 | 2.979890  |
| 1  | -0.017148 | -0.253658 | 3.415458  |
| 1  | -1.782831 | -0.140078 | 3.665377  |
| 1  | -1.094477 | -1.539185 | 2.797362  |
| 6  | -0.980248 | 2.247341  | 1.667313  |
| 6  | -1.720314 | 2.679828  | 2.937875  |
| 1  | -1.642752 | 3.769052  | 3.026198  |
| 1  | -2.781673 | 2.417982  | 2.902819  |
| 1  | -1.278195 | 2.240497  | 3.836742  |

| 6 | -1.563733 | 2.953729  | 0.435382  |
|---|-----------|-----------|-----------|
| 1 | -1.316110 | 4.019365  | 0.488288  |
| 1 | -1.145272 | 2.559143  | -0.496083 |
| 1 | -2.653414 | 2.862986  | 0.394574  |
| 6 | 0.521851  | 2.546957  | 1.793176  |
| 1 | 1.059738  | 2.299762  | 0.870740  |
| 1 | 0.653835  | 3.617507  | 1.982596  |
| 1 | 0.978329  | 2.003085  | 2.627209  |
| 7 | -3.896756 | 0.381963  | 1.578958  |
| 7 | -4.163329 | -0.388284 | -1.128531 |
| 6 | -6.281350 | 0.504348  | 1.777810  |
| 6 | -6.545303 | -0.195442 | -0.947629 |
| 6 | -7.516576 | 0.404497  | 1.194054  |
| 1 | -6.159059 | 0.773260  | 2.821698  |
| 6 | -7.648987 | 0.056056  | -0.175828 |
| 1 | -6.627723 | -0.466992 | -1.994695 |
| 1 | -8.409801 | 0.596389  | 1.779451  |
| 1 | -8.640226 | -0.014292 | -0.611333 |
| 6 | 3.218597  | -0.629408 | 0.781405  |
| 6 | 2.778028  | -2.097195 | 0.731121  |
| 6 | 1.700679  | -2.553302 | 1.498010  |
| 6 | 3.450773  | -3.019795 | -0.073081 |
| 6 | 1.310908  | -3.890804 | 1.472896  |
| 1 | 1.158824  | -1.856153 | 2.129082  |
| 6 | 3.063376  | -4.357683 | -0.104274 |
| 1 | 4.277438  | -2.678786 | -0.687033 |
| 6 | 1.992851  | -4.800734 | 0.669740  |
| 1 | 0.468739  | -4.216938 | 2.076265  |
| 1 | 3.602016  | -5.055530 | -0.738860 |
| 1 | 1.690036  | -5.843118 | 0.641629  |
| 6 | 4.115038  | -0.318153 | 2.030929  |
| 6 | 3.349419  | -0.602204 | 3.330661  |
| 1 | 2.397292  | -0.056770 | 3.362143  |
| 1 | 3.140170  | -1.666035 | 3.468442  |
| 1 | 3.946855  | -0.272689 | 4.187289  |
| 6 | 4.497743  | 1.166096  | 2.021352  |

| 1  | 5.167211  | 1.397621  | 1.190441  |
|----|-----------|-----------|-----------|
| 1  | 3.611460  | 1.807399  | 1.942188  |
| 1  | 5.015014  | 1.424372  | 2.951686  |
| 6  | 5.391177  | -1.167820 | 1.994490  |
| 1  | 5.935714  | -1.016229 | 1.057701  |
| 1  | 6.051987  | -0.885176 | 2.821432  |
| 1  | 5.171206  | -2.235549 | 2.094176  |
| 7  | 3.912970  | -0.224204 | -0.432306 |
| 16 | 3.076229  | 0.192197  | -1.659768 |
| 8  | 3.841970  | 0.079364  | -2.910730 |
| 8  | 1.728793  | -0.539903 | -1.775230 |
| 6  | 2.548522  | 1.904994  | -1.522855 |
| 6  | 3.339995  | 2.811005  | -0.820806 |
| 6  | 1.364599  | 2.327974  | -2.124513 |
| 6  | 2.914594  | 4.125219  | -0.675401 |
| 1  | 4.271406  | 2.484713  | -0.375244 |
| 6  | 0.950839  | 3.647892  | -1.973868 |
| 1  | 0.763185  | 1.631866  | -2.698335 |
| 6  | 1.706061  | 4.559845  | -1.232139 |
| 1  | 3.525754  | 4.822638  | -0.108985 |
| 1  | 0.018804  | 3.969139  | -2.430220 |
| 1  | -1.803437 | -4.290781 | -0.141612 |
| 6  | 1.230802  | 5.970760  | -1.016882 |
| 1  | 1.072675  | 6.165206  | 0.049487  |
| 1  | 1.971721  | 6.694634  | -1.371441 |
| 1  | 0.289253  | 6.159133  | -1.538617 |
| 1  | 2.301116  | -0.005699 | 0.966464  |
|    |           |           |           |

**TS2**( $\mathbf{R}$ ) v = 62.6iStandard orientation:

| 6  | -2.722184 | -0.219133 | 0.892643  |  |
|----|-----------|-----------|-----------|--|
| 15 | -1.043217 | 0.038972  | 1.567378  |  |
| 6  | -2.824834 | -0.392118 | -0.509408 |  |
| 6  | -5.089677 | -0.360702 | -0.356910 |  |

\_

| 6  | -4.987560 | -0.255107 | 1.062109  |
|----|-----------|-----------|-----------|
| 15 | -1.268807 | -0.674423 | -1.424933 |
| 46 | 0.483697  | -0.204755 | -0.101655 |
| 6  | -1.253593 | -2.493766 | -1.845559 |
| 6  | -1.547556 | -3.280165 | -0.560386 |
| 1  | -0.844969 | -3.029847 | 0.241215  |
| 1  | -2.567073 | -3.109498 | -0.200042 |
| 6  | -2.328983 | -2.773132 | -2.905620 |
| 1  | -2.347219 | -3.852594 | -3.090813 |
| 1  | -3.326471 | -2.469356 | -2.576904 |
| 1  | -2.102598 | -2.274985 | -3.852794 |
| 6  | 0.131512  | -2.864405 | -2.392381 |
| 1  | 0.914341  | -2.721250 | -1.644290 |
| 1  | 0.115522  | -3.922889 | -2.673044 |
| 1  | 0.388399  | -2.282205 | -3.282277 |
| 6  | -1.345497 | 0.326836  | -2.927262 |
| 1  | -2.284669 | 0.119921  | -3.446901 |
| 1  | -1.303085 | 1.382291  | -2.650026 |
| 1  | -0.499520 | 0.078544  | -3.570634 |
| 6  | -0.882719 | -1.068549 | 2.990569  |
| 1  | 0.073768  | -0.882881 | 3.484563  |
| 1  | -1.702465 | -0.896806 | 3.692447  |
| 1  | -0.916408 | -2.101065 | 2.635033  |
| 6  | -0.979519 | 1.816976  | 2.125770  |
| 6  | -1.918548 | 2.052202  | 3.313880  |
| 1  | -1.856951 | 3.109473  | 3.594507  |
| 1  | -2.959138 | 1.826180  | 3.067659  |
| 1  | -1.627340 | 1.457826  | 4.185011  |
| 6  | -1.377508 | 2.702394  | 0.935392  |
| 1  | -1.250806 | 3.752242  | 1.220144  |
| 1  | -0.748672 | 2.513977  | 0.058178  |
| 1  | -2.425004 | 2.556087  | 0.652053  |
| 6  | 0.472520  | 2.093676  | 2.534631  |
| 1  | 1.155774  | 1.946370  | 1.693406  |
| 1  | 0.560558  | 3.134638  | 2.863793  |
| 1  | 0.788775  | 1.449262  | 3.361616  |

| 7 | -3.776462 | -0.173498 | 1.672173  |
|---|-----------|-----------|-----------|
| 7 | -3.977561 | -0.443116 | -1.132604 |
| 6 | -6.166231 | -0.212316 | 1.846757  |
| 6 | -6.368143 | -0.405053 | -0.965359 |
| 6 | -7.389277 | -0.262581 | 1.231448  |
| 1 | -6.068168 | -0.133891 | 2.924390  |
| 6 | -7.490694 | -0.356957 | -0.181455 |
| 1 | -6.424993 | -0.482905 | -2.045983 |
| 1 | -8.296248 | -0.228413 | 1.826052  |
| 1 | -8.473328 | -0.393059 | -0.640171 |
| 6 | 2.976571  | -0.505040 | 0.954224  |
| 6 | 2.881953  | -1.950834 | 0.465316  |
| 6 | 1.974114  | -2.835324 | 1.056524  |
| 6 | 3.706475  | -2.426049 | -0.557371 |
| 6 | 1.893149  | -4.163173 | 0.641854  |
| 1 | 1.319573  | -2.481761 | 1.848222  |
| 6 | 3.626967  | -3.751541 | -0.974738 |
| 1 | 4.409687  | -1.750825 | -1.034818 |
| 6 | 2.721067  | -4.626243 | -0.376548 |
| 1 | 1.174989  | -4.830044 | 1.109667  |
| 1 | 4.274661  | -4.101615 | -1.773079 |
| 1 | 2.657179  | -5.658248 | -0.707827 |
| 6 | 3.954966  | -0.360205 | 2.183098  |
| 6 | 3.423421  | -1.158094 | 3.378978  |
| 1 | 2.410594  | -0.837993 | 3.653653  |
| 1 | 3.401538  | -2.233826 | 3.183853  |
| 1 | 4.070135  | -0.993540 | 4.247031  |
| 6 | 4.054419  | 1.115331  | 2.589668  |
| 1 | 4.505905  | 1.716444  | 1.797796  |
| 1 | 3.071497  | 1.534969  | 2.823402  |
| 1 | 4.676837  | 1.207129  | 3.486428  |
| 6 | 5.352305  | -0.866112 | 1.806435  |
| 1 | 5.726938  | -0.355959 | 0.913673  |
| 1 | 6.048742  | -0.666954 | 2.628127  |
| 1 | 5.359681  | -1.943725 | 1.616983  |
| 7 | 3.374173  | 0.457308  | -0.045008 |

| 16 | 2.856094  | 0.736277  | -1.445892 |
|----|-----------|-----------|-----------|
| 8  | 3.865867  | 0.756628  | -2.518374 |
| 8  | 1.689754  | -0.183208 | -1.848417 |
| 6  | 2.101393  | 2.361717  | -1.417101 |
| 6  | 2.313876  | 3.205114  | -0.333815 |
| 6  | 1.265436  | 2.750174  | -2.466137 |
| 6  | 1.664866  | 4.436891  | -0.286170 |
| 1  | 2.964700  | 2.888982  | 0.474003  |
| 6  | 0.615553  | 3.974565  | -2.399123 |
| 1  | 1.107470  | 2.093712  | -3.315940 |
| 6  | 0.799179  | 4.833820  | -1.305914 |
| 1  | 1.825056  | 5.089457  | 0.567440  |
| 1  | -0.048875 | 4.270999  | -3.206561 |
| 1  | -1.441954 | -4.348648 | -0.775175 |
| 6  | 0.058093  | 6.141536  | -1.239623 |
| 1  | -1.023998 | 5.972247  | -1.261590 |
| 1  | 0.298708  | 6.691984  | -0.326893 |
| 1  | 0.303889  | 6.774920  | -2.098504 |
| 1  | 1.989920  | -0.232846 | 1.419586  |

#### **R3**

Standard orientation:

| 6  | -2.740154 | 0.118237  | 0.849290  |  |
|----|-----------|-----------|-----------|--|
| 15 | -0.991296 | 0.329273  | 1.371098  |  |
| 6  | -2.993517 | -0.164120 | -0.519511 |  |
| 6  | -5.231678 | -0.052369 | -0.134818 |  |
| 6  | -4.978761 | 0.157543  | 1.252080  |  |
| 15 | -1.543536 | -0.586472 | -1.546859 |  |
| 46 | 0.355343  | -0.160397 | -0.378844 |  |
| 6  | -1.682369 | -2.411764 | -1.896682 |  |
| 6  | -1.963924 | -3.125462 | -0.566586 |  |
| 1  | -1.225885 | -2.864344 | 0.199947  |  |
| 1  | -2.963027 | -2.895658 | -0.182926 |  |
| 6  | -2.803826 | -2.687648 | -2.904384 |  |

| 1 | -2.889809 | -3.771434 | -3.041014 |
|---|-----------|-----------|-----------|
| 1 | -3.769646 | -2.312131 | -2.554440 |
| 1 | -2.588267 | -2.243475 | -3.880774 |
| 6 | -0.328443 | -2.867911 | -2.461525 |
| 1 | 0.474574  | -2.743689 | -1.728793 |
| 1 | -0.393731 | -3.931169 | -2.716853 |
| 1 | -0.057492 | -2.319514 | -3.369836 |
| 6 | -1.676060 | 0.352372  | -3.092051 |
| 1 | -2.652437 | 0.191825  | -3.555729 |
| 1 | -1.544653 | 1.413518  | -2.866349 |
| 1 | -0.884621 | 0.026547  | -3.771656 |
| 6 | -0.827482 | -0.700301 | 2.856191  |
| 1 | 0.180464  | -0.602229 | 3.264859  |
| 1 | -1.558162 | -0.385377 | 3.605700  |
| 1 | -1.010415 | -1.742092 | 2.582922  |
| 6 | -0.776018 | 2.125336  | 1.841498  |
| 6 | -1.845508 | 2.578922  | 2.842694  |
| 1 | -1.611085 | 3.606167  | 3.143607  |
| 1 | -2.847152 | 2.575661  | 2.406965  |
| 1 | -1.855410 | 1.961648  | 3.745767  |
| 6 | -0.871520 | 2.954626  | 0.553532  |
| 1 | -0.772412 | 4.015872  | 0.806237  |
| 1 | -0.075171 | 2.695098  | -0.150245 |
| 1 | -1.836384 | 2.817336  | 0.052339  |
| 6 | 0.618924  | 2.268041  | 2.468862  |
| 1 | 1.401300  | 1.863500  | 1.821261  |
| 1 | 0.820036  | 3.333031  | 2.629299  |
| 1 | 0.672873  | 1.767827  | 3.441127  |
| 7 | -3.708481 | 0.248687  | 1.725263  |
| 7 | -4.208815 | -0.229807 | -1.011484 |
| 6 | -6.067183 | 0.292300  | 2.149199  |
| 6 | -6.568114 | -0.107008 | -0.601934 |
| 6 | -7.349435 | 0.231032  | 1.670297  |
| 1 | -5.854378 | 0.448571  | 3.201598  |
| 6 | -7.601041 | 0.032791  | 0.287362  |
| 1 | -6.740688 | -0.266435 | -1.661224 |

| 1  | -8.187508 | 0.335892  | 2.351562  |
|----|-----------|-----------|-----------|
| 1  | -8.627014 | -0.010792 | -0.063207 |
| 6  | 2.737621  | -1.022562 | 1.305141  |
| 6  | 2.581049  | -2.386252 | 0.637000  |
| 6  | 1.589964  | -3.245578 | 1.125506  |
| 6  | 3.352680  | -2.819321 | -0.447706 |
| 6  | 1.372557  | -4.498785 | 0.557071  |
| 1  | 0.978697  | -2.927994 | 1.966785  |
| 6  | 3.136220  | -4.070475 | -1.020317 |
| 1  | 4.121358  | -2.178016 | -0.863991 |
| 6  | 2.147763  | -4.916195 | -0.520844 |
| 1  | 0.595457  | -5.144284 | 0.955722  |
| 1  | 3.746286  | -4.384606 | -1.862149 |
| 1  | 1.982645  | -5.890395 | -0.971038 |
| 6  | 4.030464  | -0.818266 | 2.159061  |
| 6  | 4.090982  | -1.982914 | 3.162318  |
| 1  | 3.162020  | -2.064329 | 3.739244  |
| 1  | 4.264452  | -2.940913 | 2.662188  |
| 1  | 4.911304  | -1.821643 | 3.869681  |
| 6  | 3.882790  | 0.492058  | 2.944732  |
| 1  | 3.848084  | 1.357135  | 2.277548  |
| 1  | 2.967469  | 0.492434  | 3.548087  |
| 1  | 4.732735  | 0.621805  | 3.623414  |
| 6  | 5.346373  | -0.781712 | 1.376545  |
| 1  | 5.388414  | 0.062568  | 0.685857  |
| 1  | 6.179090  | -0.680495 | 2.081852  |
| 1  | 5.511321  | -1.701209 | 0.807323  |
| 7  | 2.336405  | 0.131646  | 0.455714  |
| 16 | 2.854637  | 0.430961  | -1.028209 |
| 8  | 4.257096  | 0.188607  | -1.371634 |
| 8  | 1.877332  | -0.279434 | -1.962852 |
| 6  | 2.475114  | 2.160435  | -1.215578 |
| 6  | 2.931806  | 3.067620  | -0.261944 |
| 6  | 1.711939  | 2.577899  | -2.301536 |
| 6  | 2.593632  | 4.406929  | -0.392901 |
| 1  | 3.525723  | 2.733177  | 0.581722  |
|    |           |           |           |

| 6 | 1.385876  | 3.925724  | -2.417208 |
|---|-----------|-----------|-----------|
| 1 | 1.359639  | 1.860935  | -3.035143 |
| 6 | 1.810548  | 4.855297  | -1.464544 |
| 1 | 2.938125  | 5.117540  | 0.352990  |
| 1 | 0.784209  | 4.255418  | -3.259284 |
| 1 | -1.907507 | -4.207141 | -0.728821 |
| 6 | 1.413991  | 6.302856  | -1.562568 |
| 1 | 0.593524  | 6.519546  | -0.868810 |
| 1 | 2.247553  | 6.959514  | -1.297310 |
| 1 | 1.076272  | 6.557436  | -2.570232 |
| 1 | 1.950989  | -0.995071 | 2.063799  |
|   |           |           |           |

## **R4**

Standard orientation:

| 6  | -2.617615 | -0.057841 | 0.921980  |
|----|-----------|-----------|-----------|
| 15 | -0.865153 | 0.289126  | 1.340545  |
| 6  | -2.954521 | -0.215337 | -0.445709 |
| 6  | -5.163694 | -0.215778 | 0.092012  |
| 6  | -4.821509 | -0.164908 | 1.474930  |
| 15 | -1.574382 | -0.514813 | -1.603559 |
| 46 | 0.418983  | -0.188538 | -0.509333 |
| 6  | -1.809096 | -2.273513 | -2.194604 |
| 6  | -2.021450 | -3.159129 | -0.958011 |
| 1  | -1.220838 | -3.027675 | -0.222200 |
| 1  | -2.981158 | -2.960640 | -0.470886 |
| 6  | -3.019337 | -2.356368 | -3.135337 |
| 1  | -3.177941 | -3.408420 | -3.396349 |
| 1  | -3.932963 | -1.980506 | -2.668351 |
| 1  | -2.846171 | -1.804008 | -4.063827 |
| 6  | -0.543538 | -2.716420 | -2.942637 |
| 1  | 0.309789  | -2.825402 | -2.267856 |
| 1  | -0.735521 | -3.694401 | -3.396656 |
| 1  | -0.274308 | -2.023525 | -3.747682 |
| 6  | -1.782571 | 0.635628  | -2.990321 |

| 1 | -2.797246 | 0.568069  | -3.390070 |
|---|-----------|-----------|-----------|
| 1 | -1.596055 | 1.650247  | -2.629323 |
| 1 | -1.058500 | 0.391584  | -3.771681 |
| 6 | -0.557367 | -0.696086 | 2.832908  |
| 1 | 0.400753  | -0.420511 | 3.277253  |
| 1 | -1.358843 | -0.501978 | 3.550490  |
| 1 | -0.554248 | -1.756461 | 2.571110  |
| 6 | -0.830717 | 2.097429  | 1.804526  |
| 6 | -1.914167 | 2.443031  | 2.834351  |
| 1 | -1.763889 | 3.485963  | 3.135336  |
| 1 | -2.922066 | 2.354727  | 2.423323  |
| 1 | -1.846672 | 1.824810  | 3.734117  |
| 6 | -1.065093 | 2.895634  | 0.516249  |
| 1 | -1.039136 | 3.965204  | 0.749366  |
| 1 | -0.295843 | 2.690846  | -0.231802 |
| 1 | -2.045169 | 2.672234  | 0.079102  |
| 6 | 0.551520  | 2.386636  | 2.408104  |
| 1 | 1.362598  | 1.989187  | 1.795113  |
| 1 | 0.676572  | 3.471116  | 2.495363  |
| 1 | 0.637142  | 1.957880  | 3.411472  |
| 7 | -3.525966 | -0.065635 | 1.869019  |
| 7 | -4.198559 | -0.261687 | -0.862103 |
| 6 | -5.848317 | -0.183565 | 2.451175  |
| 6 | -6.527187 | -0.257350 | -0.290870 |
| 6 | -7.158070 | -0.232256 | 2.052346  |
| 1 | -5.567823 | -0.148402 | 3.498640  |
| 6 | -7.499278 | -0.265065 | 0.674511  |
| 1 | -6.767761 | -0.291876 | -1.348255 |
| 1 | -7.950113 | -0.242523 | 2.794074  |
| 1 | -8.545536 | -0.300579 | 0.389086  |
| 6 | 2.621069  | -1.127556 | 1.245065  |
| 6 | 2.601788  | -2.381780 | 0.372389  |
| 6 | 1.579977  | -3.314564 | 0.584183  |
| 6 | 3.527960  | -2.640073 | -0.643496 |
| 6 | 1.475491  | -4.467232 | -0.191789 |
| 1 | 0.854162  | -3.134227 | 1.373763  |

| 6  | 3.424728  | -3.787652 | -1.426249 |
|----|-----------|-----------|-----------|
| 1  | 4.325995  | -1.934933 | -0.842154 |
| 6  | 2.399228  | -4.705943 | -1.205272 |
| 1  | 0.669779  | -5.171647 | -0.006954 |
| 1  | 4.153560  | -3.966082 | -2.211611 |
| 1  | 2.323050  | -5.598991 | -1.818257 |
| 6  | 3.753565  | -1.103327 | 2.325399  |
| 6  | 3.481253  | -2.299556 | 3.259010  |
| 1  | 2.482352  | -2.239243 | 3.707609  |
| 1  | 3.559973  | -3.255629 | 2.731913  |
| 1  | 4.214031  | -2.307629 | 4.072927  |
| 6  | 3.619965  | 0.176977  | 3.161652  |
| 1  | 3.845560  | 1.070969  | 2.578400  |
| 1  | 2.603721  | 0.274457  | 3.561775  |
| 1  | 4.309786  | 0.139086  | 4.012272  |
| 6  | 5.183737  | -1.258537 | 1.790236  |
| 1  | 5.448831  | -0.484474 | 1.069011  |
| 1  | 5.889204  | -1.189731 | 2.626395  |
| 1  | 5.328423  | -2.237690 | 1.323487  |
| 7  | 2.294017  | 0.122354  | 0.490453  |
| 16 | 3.357587  | 0.944862  | -0.420274 |
| 8  | 4.502314  | 1.445509  | 0.362452  |
| 8  | 3.746171  | 0.258642  | -1.676192 |
| 6  | 2.423608  | 2.380609  | -0.924224 |
| 6  | 2.475956  | 3.527834  | -0.135939 |
| 6  | 1.732921  | 2.382809  | -2.135283 |
| 6  | 1.800567  | 4.669401  | -0.548516 |
| 1  | 3.046611  | 3.532217  | 0.786243  |
| 6  | 1.054135  | 3.531340  | -2.529942 |
| 1  | 1.735305  | 1.508073  | -2.775722 |
| 6  | 1.071266  | 4.686599  | -1.742459 |
| 1  | 1.841269  | 5.563296  | 0.067524  |
| 1  | 0.514427  | 3.531440  | -3.472777 |
| 1  | -2.016578 | -4.207829 | -1.273402 |
| 6  | 0.304046  | 5.913497  | -2.152228 |
| 1  | -0.662738 | 5.945503  | -1.636198 |

| 1 | 0.845346 | 6.826520  | -1.888878 |
|---|----------|-----------|-----------|
| 1 | 0.107654 | 5.921564  | -3.227464 |
| 1 | 1.727246 | -1.219493 | 1.862889  |
| 1 | 1.680279 | -0.651190 | -1.835208 |
| 1 | 0.992243 | -0.692966 | -2.206082 |
|   |          |           |           |

**TS3(***R***)** v = 1220i

Standard orientation:

| 6  | -3.063848 | -0.323256 | 0.814994  |
|----|-----------|-----------|-----------|
| 15 | -1.751152 | 0.655830  | 1.629849  |
| 6  | -2.747774 | -0.932873 | -0.427113 |
| 6  | -4.940548 | -1.483155 | -0.703358 |
| 6  | -5.234445 | -0.963722 | 0.590160  |
| 15 | -0.980969 | -1.020844 | -0.920071 |
| 46 | 0.232877  | 0.251543  | 0.605191  |
| 6  | -0.529430 | -2.832295 | -0.861836 |
| 6  | -0.404017 | -3.212732 | 0.619481  |
| 1  | 0.359982  | -2.613828 | 1.125598  |
| 1  | -1.355135 | -3.079536 | 1.148289  |
| 6  | -1.570917 | -3.724792 | -1.546092 |
| 1  | -1.175325 | -4.746666 | -1.569015 |
| 1  | -2.519597 | -3.743695 | -1.005228 |
| 1  | -1.763897 | -3.418788 | -2.578528 |
| 6  | 0.816550  | -2.976380 | -1.583760 |
| 1  | 1.570278  | -2.291959 | -1.191313 |
| 1  | 1.182131  | -3.998742 | -1.443128 |
| 1  | 0.714023  | -2.801142 | -2.659014 |
| 6  | -0.974299 | -0.470833 | -2.649855 |
| 1  | -1.600277 | -1.133185 | -3.253307 |
| 1  | -1.369632 | 0.546918  | -2.693637 |
| 1  | 0.050828  | -0.478207 | -3.023749 |
| 6  | -1.792475 | 0.205374  | 3.384982  |
| 1  | -1.093743 | 0.839791  | 3.934884  |
| 1  | -2.802977 | 0.330756  | 3.781242  |

| 1 | -1.485818 | -0.838906 | 3.482922  |
|---|-----------|-----------|-----------|
| 6 | -2.247558 | 2.443391  | 1.418513  |
| 6 | -3.612135 | 2.717097  | 2.064670  |
| 1 | -3.847279 | 3.777867  | 1.924287  |
| 1 | -4.412510 | 2.131071  | 1.607772  |
| 1 | -3.602645 | 2.517182  | 3.140406  |
| 6 | -2.299230 | 2.721858  | -0.090134 |
| 1 | -2.519501 | 3.783038  | -0.249074 |
| 1 | -1.342071 | 2.499570  | -0.572650 |
| 1 | -3.083777 | 2.140094  | -0.586043 |
| 6 | -1.180972 | 3.321884  | 2.086665  |
| 1 | -0.194115 | 3.179305  | 1.640262  |
| 1 | -1.463298 | 4.371459  | 1.950072  |
| 1 | -1.111638 | 3.130842  | 3.162459  |
| 7 | -4.270049 | -0.360109 | 1.331756  |
| 7 | -3.672734 | -1.468520 | -1.189954 |
| 6 | -6.556419 | -1.043145 | 1.094007  |
| 6 | -5.979912 | -2.051034 | -1.481449 |
| 6 | -7.539728 | -1.605579 | 0.323370  |
| 1 | -6.759057 | -0.644742 | 2.082725  |
| 6 | -7.250720 | -2.108463 | -0.972498 |
| 1 | -5.737656 | -2.437989 | -2.465736 |
| 1 | -8.555270 | -1.667044 | 0.700691  |
| 1 | -8.050563 | -2.545936 | -1.561042 |
| 6 | 3.278599  | -0.564774 | 1.018456  |
| 6 | 3.567597  | -1.933563 | 0.426422  |
| 6 | 3.149921  | -3.068389 | 1.127113  |
| 6 | 4.257079  | -2.113292 | -0.777677 |
| 6 | 3.395026  | -4.349590 | 0.637576  |
| 1 | 2.620773  | -2.947697 | 2.069060  |
| 6 | 4.494554  | -3.390550 | -1.276113 |
| 1 | 4.617936  | -1.255833 | -1.335094 |
| 6 | 4.064496  | -4.513952 | -0.571320 |
| 1 | 3.057032  | -5.215592 | 1.199016  |
| 1 | 5.024675  | -3.508390 | -2.216499 |
| 1 | 4.252898  | -5.509286 | -0.962369 |
|   |           |           |           |

| 6  | 4.523509  | 0.091424  | 1.730683  |
|----|-----------|-----------|-----------|
| 6  | 4.710181  | -0.674074 | 3.053983  |
| 1  | 3.831824  | -0.574312 | 3.702636  |
| 1  | 4.886502  | -1.740971 | 2.881654  |
| 1  | 5.575585  | -0.278703 | 3.596166  |
| 6  | 4.232361  | 1.560160  | 2.059884  |
| 1  | 4.217537  | 2.174888  | 1.156584  |
| 1  | 3.276798  | 1.679202  | 2.584394  |
| 1  | 5.017295  | 1.952726  | 2.715387  |
| 6  | 5.844013  | 0.000934  | 0.953459  |
| 1  | 5.777780  | 0.480923  | -0.023671 |
| 1  | 6.630126  | 0.504911  | 1.527279  |
| 1  | 6.157341  | -1.037658 | 0.811329  |
| 7  | 2.425652  | 0.316249  | 0.169269  |
| 16 | 2.797684  | 0.889933  | -1.308282 |
| 8  | 4.199849  | 1.335543  | -1.373237 |
| 8  | 2.394654  | -0.030131 | -2.385632 |
| 6  | 1.744542  | 2.322594  | -1.429461 |
| 6  | 1.793473  | 3.320254  | -0.455214 |
| 6  | 0.950966  | 2.473205  | -2.562598 |
| 6  | 1.015867  | 4.459101  | -0.612220 |
| 1  | 2.418566  | 3.209266  | 0.424399  |
| 6  | 0.179552  | 3.622030  | -2.704778 |
| 1  | 0.935966  | 1.701666  | -3.323527 |
| 6  | 0.195598  | 4.626732  | -1.734082 |
| 1  | 1.040222  | 5.228259  | 0.154333  |
| 1  | -0.449233 | 3.733764  | -3.583436 |
| 1  | -0.117669 | -4.267107 | 0.699871  |
| 6  | -0.644428 | 5.864067  | -1.889165 |
| 1  | -0.983040 | 6.235681  | -0.918011 |
| 1  | -0.064552 | 6.664071  | -2.363713 |
| 1  | -1.519850 | 5.672934  | -2.515289 |
| 1  | 2.586474  | -0.750006 | 1.847191  |
| 1  | 0.990524  | 1.265054  | 1.776474  |
| 1  | 1.687273  | 1.101382  | 1.152035  |
|    |           |           |           |
## Supplementary Table 22 R5

Standard orientation:

| 6  | 3.166460 | -0.683256 | 0.250068  |  |
|----|----------|-----------|-----------|--|
| 15 | 1.804668 | -1.449325 | 1.238411  |  |
| 6  | 2.965020 | 0.578420  | -0.385688 |  |
| 6  | 4.995239 | 0.368628  | -1.417589 |  |
| 6  | 5.237410 | -0.834708 | -0.702382 |  |
| 15 | 1.485188 | 1.581392  | 0.057103  |  |
| 46 | 0.099424 | 0.025206  | 1.272852  |  |
| 6  | 2.189764 | 2.949363  | 1.136210  |  |
| 6  | 2.808846 | 2.287419  | 2.375570  |  |
| 1  | 2.076113 | 1.674563  | 2.913088  |  |
| 1  | 3.665171 | 1.655415  | 2.115856  |  |
| 6  | 3.239740 | 3.794856  | 0.407634  |  |
| 1  | 3.614032 | 4.558549  | 1.099187  |  |
| 1  | 4.091613 | 3.199469  | 0.071060  |  |
| 1  | 2.815674 | 4.312203  | -0.458301 |  |
| 6  | 1.020942 | 3.851648  | 1.560186  |  |
| 1  | 0.303650 | 3.320912  | 2.191502  |  |
| 1  | 1.415130 | 4.690129  | 2.145273  |  |
| 1  | 0.488545 | 4.270951  | 0.699699  |  |
| 6  | 1.031295 | 2.350741  | -1.534267 |  |
| 1  | 1.900893 | 2.819300  | -1.999800 |  |
| 1  | 0.641548 | 1.577298  | -2.201436 |  |
| 1  | 0.254561 | 3.101893  | -1.370659 |  |
| 6  | 2.560056 | -1.735135 | 2.869481  |  |
| 1  | 1.885519 | -2.344605 | 3.475454  |  |
| 1  | 3.522674 | -2.239846 | 2.759058  |  |
| 1  | 2.707710 | -0.770646 | 3.361251  |  |
| 6  | 1.485309 | -3.117952 | 0.451612  |  |
| 6  | 2.702267 | -4.047437 | 0.573070  |  |
| 1  | 2.450669 | -4.999126 | 0.091810  |  |
| 1  | 3.586977 | -3.638790 | 0.083086  |  |
| 1  | 2.948429 | -4.259354 | 1.617939  |  |

| 6 | 1.145689  | -2.876638 | -1.024938 |
|---|-----------|-----------|-----------|
| 1 | 0.861751  | -3.828585 | -1.486607 |
| 1 | 0.308972  | -2.182762 | -1.146785 |
| 1 | 2.003949  | -2.480046 | -1.577584 |
| 6 | 0.301833  | -3.769705 | 1.177885  |
| 1 | -0.605384 | -3.170435 | 1.101075  |
| 1 | 0.106343  | -4.745893 | 0.721067  |
| 1 | 0.517189  | -3.932257 | 2.239265  |
| 7 | 4.291508  | -1.347523 | 0.126059  |
| 7 | 3.850887  | 1.073092  | -1.220794 |
| 6 | 6.464530  | -1.521047 | -0.876645 |
| 6 | 5.973980  | 0.857381  | -2.317930 |
| 6 | 7.397785  | -1.022952 | -1.748091 |
| 1 | 6.631850  | -2.436241 | -0.318014 |
| 6 | 7.149478  | 0.170329  | -2.475387 |
| 1 | 5.769122  | 1.775733  | -2.858542 |
| 1 | 8.338709  | -1.544367 | -1.891043 |
| 1 | 7.905271  | 0.540080  | -3.160791 |
| 6 | -3.372581 | 1.460502  | -0.519388 |
| 6 | -3.024267 | 1.079524  | 0.908370  |
| 6 | -3.846845 | 0.226289  | 1.629169  |
| 6 | -1.865921 | 1.593125  | 1.533455  |
| 6 | -3.543451 | -0.121488 | 2.952284  |
| 1 | -4.742341 | -0.173813 | 1.161934  |
| 6 | -1.547906 | 1.226730  | 2.847329  |
| 1 | -1.297086 | 2.372723  | 1.040819  |
| 6 | -2.399709 | 0.364020  | 3.559942  |
| 1 | -4.210675 | -0.782530 | 3.496509  |
| 1 | -0.701502 | 1.684732  | 3.352628  |
| 1 | -2.159016 | 0.095502  | 4.583266  |
| 6 | -3.893284 | 2.916146  | -0.718992 |
| 6 | -5.106327 | 3.120798  | 0.197891  |
| 1 | -5.881862 | 2.370450  | 0.004882  |
| 1 | -4.830935 | 3.060153  | 1.255779  |
| 1 | -5.544266 | 4.108931  | 0.022744  |
| 6 | -4.338144 | 3.065915  | -2.179899 |

| 1  | -3.494360 | 2.960683  | -2.867508 |
|----|-----------|-----------|-----------|
| 1  | -5.088572 | 2.313187  | -2.446565 |
| 1  | -4.781537 | 4.055115  | -2.334572 |
| 6  | -2.831552 | 3.979257  | -0.411389 |
| 1  | -1.903838 | 3.788999  | -0.961866 |
| 1  | -3.200583 | 4.963392  | -0.718824 |
| 1  | -2.603119 | 4.039523  | 0.656513  |
| 7  | -2.219376 | 1.163912  | -1.399015 |
| 16 | -2.312499 | -0.078966 | -2.484003 |
| 8  | -3.155587 | 0.332793  | -3.602427 |
| 8  | -0.918019 | -0.445789 | -2.751263 |
| 6  | -3.140321 | -1.422212 | -1.673511 |
| 6  | -4.357665 | -1.880032 | -2.167677 |
| 6  | -2.577337 | -1.967717 | -0.521270 |
| 6  | -5.012443 | -2.907915 | -1.497430 |
| 1  | -4.789662 | -1.435536 | -3.057323 |
| 6  | -3.246669 | -2.989193 | 0.136095  |
| 1  | -1.643681 | -1.577476 | -0.122287 |
| 6  | -4.469968 | -3.476170 | -0.341397 |
| 1  | -5.963878 | -3.268108 | -1.877403 |
| 1  | -2.822397 | -3.409837 | 1.043385  |
| 1  | 3.164553  | 3.065492  | 3.060346  |
| 6  | -5.171032 | -4.599340 | 0.371423  |
| 1  | -6.238124 | -4.617147 | 0.136173  |
| 1  | -4.746330 | -5.563707 | 0.069898  |
| 1  | -5.052615 | -4.514012 | 1.455304  |
| 1  | -4.199731 | 0.811482  | -0.828229 |
| 1  | -0.481126 | -1.182887 | 2.073448  |
| 1  | -1.328944 | 1.102577  | -0.912066 |
|    |           |           |           |

## **Supplementary References**

- Sasano, Y., Murakami, K., Nishiyama, T., Kwon, E., Iwabuchi, Y.
  3-Methyl-4-oxa-5-azahomoadamantane: Alkoxyamine-Type Organocatalyst for Alcohol Oxidation. *Angew. Chem. Int. Ed.* 52, 12624–12627 (2013).
- [2] Díaz-Valenzuela, M. B., Phillips, S. D., France, M. B., Gunn, M. E., Clarke, M. L. Enantioselective Hydrogenation and Transfer Hydrogenation of Bulky Ketones Catalysed by a Ruthenium Complex of a Chiral Tridentate Ligand. *Chem. Eur. J.* 15, 1227–1232 (2009).
- [3] Liu, C., Achtenhagen, M., Szostak, M. Chemoselective Ketone Synthesis by the Addition of Organometallics to N-Acylazetidines. Org. Lett. 18, 2375-2378 (2016).
- [4] Lo Fiego, M. J., Lockhart, M. T., Chopa, A. B. Catalyst-free alkanoylation of aromatic rings via arylstannanes. Scope and limitations. J. Organomet. Chem. 694, 3674–3678 (2009).
- [5] Palmer, B. D., Boyd, M., Denny, W. A. Aromatic Lithiation Directed by the Carboxylic Acid Groups. Synthesis of 9-Substituted Dibenzodioxin-1-carboxylic Acids and 6-Substituted Phenoxathiin-4-carboxylic Acids. J. Org. Chem. 55, 438–441 (1990).
- [6] Okuma, K., Izaki, T., Kubo, K., Shioji, K., Yokomori, Y. Reaction of Ketone Hydrazones with Diselenium Dihalides: Simple Synthesis of  $\Delta^3$ -1,3,4-Selenadiazolines and 2,5-Diarylselenophenes. *Bull. Chem. Soc. Jpn.*, **78**, 1121–1126 (2005).
- [7] Ogiwara, Y., Miyake, M., Kochi, T., Kakiuchi, F. Syntheses of RuHCl(CO)(PAr<sub>3</sub>)<sub>3</sub> and RuH<sub>2</sub>(CO)(PAr<sub>3</sub>)<sub>3</sub> Containing Various Triarylphosphines and Their Use for Arylation of Sterically Congested Aromatic C–H Bonds. *Organometallics*, **36**, 159–164 (2017).
- [8] Ceccon, A., Corvaja, C., Giacometti, G., Venzo, A. Benzyl radicals with O and O containing substituents at C(7). *J. Chem. Soc., Perkin Trans.* **2**, 283–288 (1978).
- [9] Lauterbach, T., Arndt, S., Rudolph, M., Rominger, F., Hashmi, A. S. K. Gold Catalysis: β-Ketonaphthalenes via Molecular Gymnastics of 1,6-Diyne-4-en-3-ols. *Adv. Synth. Catal.* 355, 1755–1761 (2013).
- [10] Chen, J., Zhang, Z., Liu, D., Zhang, W. Palladium-Catalyzed Chemo- and Enantioselective C-O Bond Cleavage of α-Acyloxy Ketones via Hydrogenolysis. *Angew. Chem. Int. Ed.* 55, 8444–8447 (2016).
- [11] Yamada, Y. M. A., Jin, C., Uozumi, Y. H<sub>2</sub>O<sub>2</sub>-Oxidation of Alcohols Promoted by Polymeric Phosphotungstate Catalysts. *Org. Lett.* **12**, 4540–4543 (2010).
- [12] Ortiz, P., Collados, J. F., Harutyunyan, S. R. Direct Synthesis of Enolizable N-Sulfonyl Ketimines Under Microwave Irradiation. *Eur. J. Org. Chem.* 1247–1250 (2016).
- [13] Yang, Q., Shang, G., Gao, W., Deng, J., Zhang, X. A Highly Enantioselective, Pd-TangPhos-Catalyzed Hydrogenation of *N*-Tosylimines. *Angew. Chem. Int. Ed.* 45, 3832–3835 (2006).

- [14] Beisel, T., Manolikakes, G. Palladium-Catalyzed Enantioselective Three-Component Synthesis of -Substituted Amines. *Org. Lett.* 17, 3162–3166 (2015).
- [15] Berger, R., Rabbat, P. M. A., Leighton. G. L. Toward a Versatile Allylation Reagent: Practical, Enantioselective Allylation of Acylhydrazones Using Strained Silacycles. J. Am. Chem. Soc. 125, 9596-9597 (2003).
- [16] Chai, J.-D., Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- [17] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, Jr. J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. *Gaussian 09, Revision D. 01*, Gaussian, Inc., Wallingford CT, 2009.
- [18] Bergner, A., Dolg, M., Kuechle, W., Stoll, H., Preuß, H. *Ab initio* energy-adjusted pseudopotentials for elements of groups 13–17. *Mol. Phys.*, **80**, 1431–1441 (1993).
- [19] Ditchfield, R., Hehre, W. J., Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys., 54, 724–728 (1971).
- [20] Hehre, W. J., Ditchfield, R., Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys., 56, 2257–2261 (1972).
- [21] Hariharan, P. C., Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta*, **28**, 213–222 (1973).
- [22] Hariharan, P. C., Pople, J. A. Accuracy of AH<sub>n</sub> equilibrium geometries by single determinant molecular orbital theory. *Mol. Phys.*, 27, 209–214 (1974).
- [23] Gordon, M. S. The isomers of silacyclopropane. Chem. Phys. Lett., 76, 163–168 (1980).
- [24] Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B, 113, 6378–6396 (2009).