

Zhong supplemental figure 1

Zhong supplemental figure 2

Zhong supplemental figure 3

Zhong supplemental figure 4

Α

Zhong supplemental figure 5

Zhong supplemental figure 6

Legends to supplemental figures

Supplemental figure 1: Degradation of HoxA9 by granule proteases

A: *Elane*^{-/-} cells still degrade HoxA9. Western blot of extracts from myeloblasts derived from *Elane*^{-/-} animals by HoxA9 transformation and analyzed for presence of HoxA9 and Elane. Wt cells are included as controls.

B: Sequences detecting deletions in single-cell cloned Crispr lines targeting *Prtn3* and *Ctsg*.

Supplemental figure 2: *Elane/Prtn3/Ctsg* triple knock-out myeloblasts (EPC) enable efficient ChIP of HoxA9

A: Representative example for a CFC replating assay done with EPC and wt primary HSPCs transformed by HoxA9. Stained colonies after two rounds of replating are shown for two differently tagged HoxA9 constructs as indicated.

B: HOXA9 is stable in extracts of human MV4;11 AML cells. Western blot detecting HOXA9 in triton lysates of MV4;11 cells incubated on ice for 10 min or boiled directly in SDS.

C: Granule protease RNA expression in human AML cell lines. *ELANE*, *PRTN3*, and *CTSG* RNA was quantified in THP1, Molm13, and MV4;11 cells by qPCR. Values are plotted relative to THP1.

D: Granule proteases degrade HoxA9 during ChIP procedure. An anti-flag ChIP was performed in parallel under identical conditions in EPC and wt cells transformed by 3xflagHoxA9. Efficiency of precipitation was determined by qPCR with primers for a control region not bound by HoxA9 and primers specific for the strong HoxA9 peak immediately downstream of *Ahi1*. Data are normalized to input.

E: HoxA9 binds cell-type specific to the CD3 TCR locus. IGV plot showing HoxA9 binding in 4 replicates of murine myeloblasts and in MV4;11 cells in comparison to the HoxA9 binding pattern in T-cells ³¹. The inset depicts a Venn diagram counting overlapping and unique peaks for each cell-type.

F: Species and cell type conserved binding of HoxA9 to the *Pim1* locus. For clarity correlation between the tripartite enhancer structure in mouse and human samples is connected by lines.

G: Comparison of EPC ChIP results with previous data from Huang et al. ¹⁸ Left panel: Venn diagramm. Raw data of Huang et al. were analyzed with the same parameters as for the current ChIP experiments and resulting overlapping and unique peaks are plotted. Right panel: Peak calling around the confirmed HoxA9 target *Myb* demonstrates increased detection sensitivity for ChIP done in EPC cells.

Supplemental figure 3: GSEA of the HoxA9 regulatory pattern.

A: Characterization of HoxA9-ER cells after cessation of HoxA9 activity. Triplicate samples of HoxA9-ER cells were sampled in the presence of tamoxifen and during a time course (as indicated) after the inductor was removed. Proliferation was determined by cell counting, cell cycle analysis was done by standard propidium-iodide staining. For FACS analysis only one representative example is shown.

B: Two examples of gene expression patterns with significant similarity to the HoxA9 induced signatures. Both are driven through the strong regulation of histone and ribosomal protein genes by HoxA9.

Supplemental figure 4: HoxA9 binds to enhancers and promoters

A: Global correlation of HoxA9 binding and H3K4me/H3K27ac modification. The occupation plots show H3K4 mono-methylation and H3K27 acetylation in a region +/- 5kb around all identified murine HoxA9 peaks. The sort order is either according to modification intensity (left panels) or determined by decreasing HoxA9 peak-strenth (right panels).

B: Species conserved HoxA9 binding pattern to the promoter/gene region and the known downstream enhancer in MV4;11 cells.

C: A HoxA9 regulated putative enhancer for *Myb* within the *Ahi1* locus. The IGV tracks depict HoxA9 occupancy as well as nascent RNA reads, H3K27ac, H3K4me at 0h and 72h after cessation of HoxA9 activity. A potential enhancer structure is boxed. Note that the scale of the RNA tracks was adjusted so that enhancer RNAs become visible.

Supplemental figure 5: HoxA9 regulates itself and Meis1.

A: Detail of HoxA9 binding and RNA production in murine and MV4;11 cells around the HoxA9 coding region. Viral (exon) sequences and regions exclusively transcribed from the endogenous locus are boxed and labeled.

B: Epigenetic editing changes H3K4me and H3K27ac modification at the putative HoxA1 and HoxA6 enhancers. HoxA9 transformed cells expressing a catalytically inactive ("dead") Cas9 protein fused to the KRAB repressor domain and a sgRNA targeting this chimeric repressor to the putative HoxA1 and HoxA6 enhancers were used for H3K27ac and H3K4me specific ChIP experiments. Modification levels at the center of the respective enhancer region were measured by qPCR and are given as relative values compared to control cells without sgRNA.

C: HoxA9 regulatory situation at the *Meis1* locus in murine and human cells.

Supplemental figure 6: Expression of *HoxA9* and *Prtn3* during murine hematopoietic differentiation