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NAME PROBE
top 40 driver genes row_0 RPS20
row_1 RPS28
row_2 RPL34
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Legends to supplemental figures

Supplemental figure 1: Degradation of HoxA9 by granule proteases

A: Elane”" cells still degrade HoxA9. Western blot of extracts from myeloblasts derived
from Elane” animals by HoxA9 transformation and analyzed for presence of HoxA9 and
Elane. Wt cells are included as controls.

B: Sequences detecting deletions in single-cell cloned Crispr lines targeting Prtn3 and Ctsg.

Supplemental figure 2: Elane/Prtn3/Ctsg triple knock-out myeloblasts (EPC) enable
efficient ChIP of HoxA9

A: Representative example for a CFC replating assay done with EPC and wt primary
HSPCs transformed by HoxA9. Stained colonies after two rounds of replating are shown
for two differently tagged HoxA9 constructs as indicated.

B: HOXADO is stable in extracts of human MV4;11 AML cells. Western blot detecting
HOXAQY in triton lysates of MV4;11 cells incubated on ice for 10 min or boiled directly in
SDS.

C: Granule protease RNA expression in human AML cell lines. ELANE, PRTN3, and CTSG
RNA was quantified in THP1, Molm13, and MV4;11 cells by qPCR. Values are plotted
relative to THP1.

D: Granule proteases degrade HoxA9 during ChIP procedure. An anti-flag ChIP was
performed in parallel under identical conditions in EPC and wt cells transformed by
3xflagHoxA9. Efficiency of precipitation was determined by qPCR with primers for a
control region not bound by HoxA9 and primers specific for the strong HoxA9 peak

immediately downstream of 44i/. Data are normalized to input.



E: HoxA9 binds cell-type specific to the CD3 TCR locus. IGV plot showing HoxA9
binding in 4 replicates of murine myeloblasts and in MV4;11 cells in comparison to the

HoxA9 binding pattern in T-cells '

. The inset depicts a Venn diagram counting
overlapping and unique peaks for each cell-type.

F: Species and cell type conserved binding of HoxA9 to the Piml locus. For clarity
correlation between the tripartite enhancer structure in mouse and human samples is
connected by lines.

G: Comparison of EPC ChIP results with previous data from Huang et al. '® Left panel:
Venn diagramm. Raw data of Huang et al. were analyzed with the same parameters as for
the current ChIP experiments and resulting overlapping and unique peaks are plotted. Right

panel: Peak calling around the confirmed HoxA9 target Myb demonstrates increased

detection sensitivity for ChIP done in EPC cells.

Supplemental figure 3: GSEA of the HoxA9 regulatory pattern.

A: Characterization of HoxA9-ER cells after cessation of HoxA9 activity. Triplicate
samples of HoxA9-ER cells were sampled in the presence of tamoxifen and during a time
course (as indicated) after the inductor was removed. Proliferation was determined by cell
counting, cell cycle analysis was done by standard propidium-iodide staining. For FACS
analysis only one representative example is shown.

B: Two examples of gene expression patterns with significant similarity to the HoxA9
induced signatures. Both are driven through the strong regulation of histone and ribosomal

protein genes by HoxA9.

Supplemental figure 4: HoxA9 binds to enhancers and promoters



A: Global correlation of HoxA9 binding and H3K4me/H3K27ac modification. The
occupation plots show H3K4 mono-methylation and H3K27 acetylation in a region +/- 5kb
around all identified murine HoxA9 peaks. The sort order is either according to
modification intensity (left panels) or determined by decreasing HoxA9 peak-strenth (right

panels).

B: Species conserved HoxA9 binding pattern to the promoter/gene region and the known
downstream enhancer in MV4;11 cells.

C: A HoxA9 regulated putative enhancer for Myb within the 4Ahil locus. The IGV tracks
depict HoxA9 occupancy as well as nascent RNA reads, H3K27ac, H3K4me at Oh and 72h
after cessation of HoxA9 activity. A potential enhancer structure is boxed. Note that the

scale of the RNA tracks was adjusted so that enhancer RNAs become visible.

Supplemental figure 5: HoxA9 regulates itself and Meis1.

A: Detail of HoxA9 binding and RNA production in murine and MV4;11 cells around the
HoxA9 coding region. Viral (exon) sequences and regions exclusively transcribed from the
endogenous locus are boxed and labeled.

B: Epigenetic editing changes H3K4me and H3K27ac modification at the putative HoxA1
and HoxA6 enhancers. HoxA9 transformed cells expressing a catalytically inactive
(“dead”) Cas9 protein fused to the KRAB repressor domain and a sgRNA targeting this
chimeric repressor to the putative HoxA1 and HoxA6 enhancers were used for H3K27ac
and H3K4me specific ChIP experiments. Modification levels at the center of the respective
enhancer region were measured by qPCR and are given as relative values compared to
control cells without sgRNA.

C: HoxA9 regulatory situation at the Meis/ locus in murine and human cells.



Supplemental figure 6: Expression of HoxA9 and Prtn3 during murine hematopoietic

differentiation



