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1 Additional supplementary figures

Figure S 1: Upper row: MTs in S2 cells expressing photoconvertible EOS2-tubulin were sta-
bilized with 40nM taxol. MTs in a stripe in the center of the cell were photoconverted from
green to red and fluorescence in the red channel was recorded. Three consecutive images in the
top row are taken 1 min apart. Lower row: Snapshots from one simulation of the MT network
with 10 active kinesin motors and N = 75 MTs at 1 minute intervals. Both dynein and kinesin
motors are shown in black. Fluorescent MT segments after photoconversion are shown in blue.
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Figure S 2: Measurement of process growth in control cells. Images taken at t =
28, 32, 40, 48, 60, 72 min.
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2 Details of the computational model
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Figure S 3: Details of the computational model. A: Representation of MTs as chains of nodes
and springs. B: Model representation of kinesin motors at the intersection of two segments of
intersecting MTs. C: Representation of dynein motors as stiff bars crossing the segment of a
MT.

2.1 Computational Model

There is a fixed number of M MTs. Each MT with index k is represented by a chain of Nn
k

nodes positioned at rnk,i (i = 1, ..., Nn
k , and rnk,i is a vector in 2D) at the nth moment in time

(n = 1, 2, . . . is the index of the computational step). The model mechanics can be gleaned from
Fig. S3 and Fig. S4.

The central part of our mathematical model is the following system of force balance equations
which we solve at every time step to update the positions of the MT nodes:

Fdrag
k,i + Fcomptens

k,i + Fbend
k,i + Ftherm

k,i + Fboundary
k,i +

Ndynein∑
j=1

Fdynein
j,k,i +

Nkinesin∑
l=1

Fkinesin
l,k,i = 0 . (1)

In what follows we detail the terms of this system of equations.

1. The equilibrium length of the segment between the nodes i and i + 1 is lnk,i; the segment
is a stiff linear spring deformations of which generate the force of tension/compression:

Fcomptens
k,i = −κS

2

δ

δrnk,i

Nn
k∑

i=1

(|rnk,i+1 − rnk,i| − lnk,i)2 .

The large value we use for κS (Table S 1) guarantees that the simulated MTs have appro-
priately high longitudinal stiffness.

2. Movement of a node is associated with the viscous drag force, which is proportional to the
lengths of the two segments adjacent to the node and to the velocity of the node:

Fdrag
k,i = γ l̄nk,i

rnk,i − rn−1
k,i

∆t
where l̄nk,i =

{
lnk,i/2 i = 1 , Nn

k ,

(lnk,i + lnk,i−1)/2 1 < i < Nn
k .
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Figure S 4: Computational implementation of the process growth. Short processes are elongated
by simultaneously shifting the two nodes at the tip of the process in the radial direction. Their
two neighboring nodes are also shifted radially by a proportional distance. Long processes are
elongated only at the tips, in a way such that the distance between the nodes at the tip does
not change.

3. The thermal force on a node is given by the standard formula:

Ftherm
k,i =

√
2 kBT γ l̄nk,i

∆t
θnk,i ,

where the random number θnk,i is drawn from the standard normal distribution and the
magnitude of the force is proportional to the square root from the thermal energy divided
by the effective diffusion coefficient (calculated from Einstein’s formula) (11). Note that
proportionality of the force to the factor 1/

√
∆t, where ∆t is the computational time

step interval, ensures that the consecutive Brownian movement’s displacements are as
prescribed by thermodynamics.

4. Elastic bending forces are given by:

Fbend
k,i = −κ

2

δ

δrnk,i

Nn
k −1∑
i=2

(tnk,i − tnk,i−1)2

l̄nk,i
,

where the normalized segment direction is given by tnk,i = (rnk,i+1 − rnk,i)/l
n
k,i.

5. Forces due to steric repulsion from the boundary are given by:

Fboundary
k,i = −107 × ∂

∂rnk,i

d(rnk,i)
3

3
,

where d = d(x) is zero for any point within the polygon that represents the cell area
(Fig. S4) and otherwise it is defined as the shortest distance to the boundary.

6. Dynein motors at the boundary are represented by stiff bars with endpoints at qnj,1 and
qnj,2 such that qnj,2 − qnj,1 is orthogonal to the boundary segment along which the point qnj,1
is located (Fig. S3 C). The point x at which the dynein segment intersects a MT segment
is expressed as and can be found as the solution of:

x = α rn−1
k,i+1 + (1− α) rn−1

k,i = β qn−1
j,2 + (1− β)qn−1

j,1 .
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Table S 1: List of parameters.

Description Symbol Value Reference

Spring constant (microtubule node sepa-
ration)

κS 100 pN µm−1 almost inextensi-
ble & incompress-
ible

Drag on microtubules γ 1.4 pN µm−2 sec 3πη
log(10µm/r) (1)

Radius of microtubules r 0.0125 µm (2)
Viscosity of cytoplasm η 1 pN sec µm−2 1000× water (3)
Bending elasticity κ 10 pN µm2 (4)
Length of MT segment in simulations ls 0.2 µm chosen to be

much smaller
than characteris-
tic MT length

Off-rate of kinesin motors ζkin 0.1 sec−1 (5)
Off-rate of dynein motors ζdyn 0.1 sec−1 (5)
Turnover (random repositioning along the
cortex) rate of dynein motors

κdyn 0.05 sec−1 estimated

Number of microtubules N 150 chosen for numer-
ical convenience

Number of simultaneously bound kinesin
motors

Mk 20 fitting experimen-
tal results (Fig. 1)

Density of dynein motors Md 0.25/µ m fitting experimen-
tal results

Effective spatial range of a dynein motor ld 0.75/µm based on thick-
ness of actin cor-
tex (6)

Cell radius R0 10 µm (7)
Number of straight cortex segments Kc 100 chosen for numer-

ical convenience
Threshold value for process initiation and
elongation

Fp 3 pN estimated to
reproduce exper-
imental results
(Fig. 1 C)

Rate of process elongation Vp 0.1 µm sec−1 estimated to
reproduce exper-
imental results
(Fig. 1 C)

Stall force of dynein motors F dynein
s 1.36 pN (8)

Force free velocity of dynein motors V dynein
m 0.86 µm sec−1 (8)

Stall force of kinesin motors F kinesin
s 4.7 pN (8)

Force free velocity of kinesin motors V kinesin
m 0.57 µm sec−1 (8)

Thermal energy kBT 0.004 pN µm (9)

Namely, x is a convex combination (0 ≤ α ≤ 1) of either the endpoints of the MT segment,
or (0 ≤ β ≤ 1) of the endpoints of the dynein segment. The vector of the displacement of
the intersection between the MT and dynein segments within one time step,

Sj = α rnk,i+1 + (1− α) rnk,i − (β qnj,2 + (1− β)qnj,1) ,

is projected onto the directional vector of the MT segment tnk,i in order to setup a varia-
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Table S 2: List of parameters for microtubule dynamic instability.

Description Symbol Value Reference

Reference force to halt microtubule
growth

Fhalt 0.5 pN estimated

MT dynamics: rate of transition from
growth to pause

κ1 0.07 sec−1 (10)

MT dynamics: rate of transition from
pause to catastrophy

κ2 0.5 sec−1 estimated

MT dynamics: rate of transition from
shortening to pause

κ3 0.14 sec−1 (10)

MT dynamics: rate of transition from
pause to growth

κ4 0.5 sec−1 estimated

Microtuble growth rate vg 0.15 µm sec−1 (10)
Microtubule shortening rate vs 0.3µm sec−1 (10)

tional formulation of a linear force-velocity relation for dynein motors:

Fdynein
j,k,i = − δ

δrnk,i
F dynein
s

(
−Sj · tnk,i +

|Sj |2

2 ∆t V dynein
m

)
,

in which the second term in the bracket accounts for the linear attenuation of the motor
force by the motor velocity. The resulting force is in the direction of the MT minus-end.

7. Analogously, the kinesin-1 force, applied to the intersection of two MT segments at

x = α rn−1
k,i+1 + (1− α) rn−1

k,i = β rn−1
k̄,̄i+1

+ (1− β) rn−1
k̄,̄i

,

where the motor domain attaches to the MT with index k and the cargo domain - to the
MT with index k̄ (Fig. 3B), depends on the displacement of this intersection, Sl, within
one time step:

Sl = (α rnk,i+1 + (1− α) rnk,i)− (β rnk̄,̄i+1 + (1− β) rnk̄,̄i) .

The variational formulation of the force exerted by the kinesin-1 motor protein in the
direction of the plus end of the MT k with index k is given by:

Fkinesin
l,k,i = − δ

δrnk,i
F kinesin
s

(
Sl · tnk,i +

|Sl|2

2 ∆t V kinesin
m

)
.

The opposing force is applied to the MT with index k̄.

At every time step our simulations consist of three sub-steps:

1. Simulate the turnover (dissociation and re-association at new locations) of molecular mo-
tors.

2. Solve the system of force balance equations Eq. 1 to obtain the new positions and configu-
rations of the MTs. Note that numerically we solve the energy minimization problem the
solution of which satisfies Eq. 1. The components of the energy functional are chosen such
that their variations correspond to the forces listed in Eq. 1. We emphasize though that
the system is away from thermal equilibrium, and the energy functional does not corre-
spond to actual physical free energy. This is just a mathematical technique convenient for
the computation; the resulting forces have the standard form that was used many times
before in modeling studies.
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3. Evaluate Fboundary
k,i locally for every tip of a process and every segment of the boundary

that is not part of a process. If the threshold force value is exceeded, initiate, respectively
elongate the process by the distance ∆t Vp.

4. MT dynamics: Every MT cycles through the following four states: growing, pause 1,
shortening, pause 2 and proceeds to the next state at random times, according to the
respective transition rates listed in Table 1. In addition, MTs which shrink to a minimum
length of 0.2 µm immediately proceed to state pause 2 (“rescue”). On the other hand,
MTs which experience mechanical load at the plus ends are also more likely to proceed
to the next state: The force F = Fboundary

k,i · (−tk,Nn
k −1), i.e. component of the force from

the membrane parallel to the MT tip, corresponds to the pressure onto the plus end of
MT with index k and upregulates the transition rate to pause 1 according to the Bell law:
κ1 exp(F/Fhalt).

3 Additional notes on the model and comparison of the numer-
ical and experimental results.

As is shown in Fig. 4, the simulations predict roughly the same average process lengths as the
experimental data. However, the variance in lengths is much greater in the experiment, and
also the longest observed processes are much longer than the longest processes predicted by the
model. It is likely that the greater variance in the experiments is associated with complex factors
that the model does not take into account. Three of these factors are 1) dynamic adhesions of
the process to the substrate; 2) MT associated proteins other than motors; 3) 3D geometry of
the processes, rather than the idealized 2D model geometry. Also, the longest observed processes
could be associated with augmin-mediated MT nucleation or branching from other MTs in the
processes, as well as by changes in MT dynamics in the processes due to interactions with the
adhesions.

We assumed in the model that the force generated by kinesin on the intersection between
two MTs is directed parallel to the MT with the motor domain on it and has magnitude that
is independent on the intersection angle. In principle, either the motor force magnitude or the
force direction, or both, could be functions of the MT intersection angle. If the force generated
by the motor domain decreases when the angle between the intersecting MTs increases, it is easy
to imagine (and we confirmed this with a few trial simulations) that the MTs would be moving
less frequently and more slowly, and as a result, the processes would grow slower. However,
this trend can be offset by an increase of the working kinesin numbers. We have not attempted
systematic simulations of this more complex model because we have no data on the angular force
dependence, and also ignoring this possible effect is not the main simplification of the model.

In the simulations the cortex was split into 100 segments for the following reasons. When
testing the model, this number was varied, and we found that when the number of segments
was significantly smaller, then the number of the generated processes was, predictably, smaller
(and the zigzag boundary looked less realistic). The rates of the processes’ growth were slightly
different, because of the variety of mutually opposing factors: on the one hand, on the average,
a greater number of MTs entered artificially wider processes; on the other hand, dyneins could
not reach some of the MTs. When the segment number was increased above 100, neither the
number of generated processes, nor the rate of the process growth, depended sensitively on the
segment number. The reasons are: According to the model, it is the number of MTs that are
propelled (by kinesins) more or less perpendicularly to the cell boundary outward that limits the
number of the cell processes initiated. As far as this number is significantly smaller, than the
number of boundary segments, finer segmentation does not affect the process number. After the
processes start to grow, they become traps for other MTs growing or being propelled outward,
and new processes rarely appear long after 10 processes grow significantly. The initial force
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to induce the process is independent of the segment size in the model, and so a single MT
propelled by a single kinesin perpendicularly to the boundary rarely fails to initiate the process.
As was discussed in the manuscript, the rate of the process growth is limited mostly by the MT
dynamics and kinetics of the motor action, and so is not very sensitive to the net motor force.
For all these reasons, we chose to divide the boundary into 100 segments in the simulations.

4 Experimental methods

Drosophila S2 cultures: S2 cells were cultured in Insect-Xpress media (Lonza) at 25°C. For
MT sliding experiments in S2 cell, a stable cell line expressing pMT-tdEOS-tubulin was created
using Effecten transfection kit (Qiagen). Expression of pMT construct was induced by adding
200µM CuSO4 to the media for 48 h. To induce the formation of microtubule-based processes,
S2 cells were plated in media supplemented with 2.5µM Cytochalastin D. To block microtubule
dynamics, addition of 40 nM Taxol was added right before imaging. To knockdown Dynein
levels, S2 cell cultures at 1.5× 106 cells/mL were treated twice (on day 1 and 3) with 20µg of
double-stranded RNA targeting Dynein Heavy Chain sequence. Cell analysis was performed on
day 5.

Microscopy and imaging: All microscopy images were acquired using a Nikon (Tokyo,
Japan) Eclipse U2000 inverted microscope at 25 °C. To image microtubule sliding in S2 cells, a
Yokogawa CSU10 spinning disk confocal head, Nikon Perfect Focus system, and 100x/1.45- N.A.
objective was used. Images were acquired with an Evolve EMCCD (Photometrics) controlled
Nikon NIS-Elements software (AR 4.00.07). S2 cells expressing tdEOS-tubulin were photocon-
verted for 5 sec using 405 nm light from a light emitting diode light source (89 North Heliophor),
which was constrained to a rectangular slit. To image process formation in S2 cells, a Nikon Per-
fect Focus system, a 100x1.4- Ph3 Plan APO objective and a digital CMOS, ORCA-Flash4.0 V2
C11440-22CU (Hamamatsu Photonics, Hamamatsu, Japan) controlled by MetaMorph, version
7.7.7.0 (Molecular Devices, Sunnyvale, CA) was used. Phase-contrast images were illuminated
using a CoolLED PrecisExcite (Hampshire, UK).
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