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UCG MODEL 
 
The UCG model was parameterized using three all-atom actin filament simulation trajectories 
corresponding to the three states of the bound nucleotide. Details of the all-atom simulations are 
provided below. 
 
All-atom simulations 
 
All-atom simulations of periodic actin filaments were performed in Gromacs (version 5.1.4)(1), 
using a protocol similar to Ref. (2). Briefly, a single actin subunit based on the Oda structure 
(Protein Data Bank structure 2ZWH) (3), consisting of a particular state of the bound nucleotide 
(either ATP, ADP-Pi or ADP, the former two were obtained by replacing the nucleotide ADP in 
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the Oda structure with existing equilibrated simulations of ATP and ADP-Pi bound actin, with 
positions of replaced nucleotides found by aligning positions of actin subunits between the two 
(4)) was repeated along with a shift of 27.59 Å and a rotation of 166.6°, such that 13 repetitions of 
the subunit formed a single semi-periodic repeat of the actin helical structure. The simulation box 
was chosen such that the filament interacted with its own image in the periodic z-direction, 
mimicking a virtually infinite length filament. The system was solvated with TIP3P water and 
neutralized using salt ions, both of these tasks performed using VMD (5). The energy of the system 
was minimized, followed by gradual heating to increase the temperature from 0 K to 310 K, using 
the molecular dynamics code NAMD (6). The system was equilibrated at a temperature of 310 K 
and a pressure of 1 atm, until the root-mean-square deviation of the entire filament from its initial 
configuration reached a plateau. Production runs were performed using the terminal state of the 
system during equilibration, using the v-rescale thermostat (7) and the Parrinello-Rahman barostat 
implemented in Gromacs. The CHARMM27+CMAP force-field was used in these simulations (8). 
 
Three AA simulation trajectories were obtained, one for a pure ATP bound actin filament, one for 
a pure ADP-Pi bound actin filament, and one for a pure ADP bound actin filament. Each of these 
AA trajectories was used to obtain CG models for the filaments with corresponding states of the 
bound nucleotide.  
 
Pair-wise interactions 
 
The pair-wise interactions between CG beads were divided into two categories, the intra-subunit 
interactions and the inter-subunit interactions. The intra-subunit interactions, between CG bead 𝑖 
and 𝑗 at a distance 𝑟$% belonging to the same actin subunit, were modeled using the harmonic 
potential 𝑈', as 
 
 𝑈' 𝑟$% = 𝑘 𝑟$% − 𝑏

,. (1) 
 
Here, 𝑘 and 𝑏 are the bond stiffness and zero energy bond length respectively. The inter-subunit 
interactions, between CG beads belonging to two different actin subunits, were modeled using 
inverted Gaussian interaction potential 𝑈. , as 
 

 𝑈. 𝑟$% =
𝐻

𝜎1 2𝜋
exp −

𝑟$% − 𝑟71
,

2𝜎1,
, (2) 

 
where parameters 𝐻 and 𝜎1  govern the depth and width, and are related to the bond stiffness in 
the harmonic potential, while  𝑟71 governs the position of the minimum of the potential and is 
related to the equilibrium bond length in the harmonic potential.  
 
Interaction parameters between a pair of CG particles with the same nucleotide state were obtained 
by constructing a hetero-elastic network model (hENM) based on the underlying all-atom 
simulations of pure state filaments. The parameters 𝑘 and 𝑏 for all pairs of intra-subunit CG beads 
were obtained from the hetero-elastic network model. The parameters 𝐻, 𝜎1 and 𝑟71 for all pairs 
of inter-subunit CG beads were obtained by least-square fitting of the corresponding harmonic 
potential 𝑈', obtained from the hENM, to the inverted Gaussian interaction potential 𝑈.  in the  
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Figure S1: Persistence length of ATP, ADP-Pi and ADP bound actin filaments, as a function of the number of major beads. The 
major beads are chosen in the order of increasing CG indices. 

 
region where 𝑈' ≤ 3 kcal/mol. The inter-subunit beads interacted with springs only between a 
subset of CG sites that we call major beads and these inter-subunit springs were restricted to bead 
pairs that are up to two actin subunits apart in the filament. 
 
Figure S1 shows the variation in persistence length for the three states of bound nucleotide, 
obtained from the coarse-grained model simulated in LAMMPS MD software (9) using Langevin 
dynamics. Each data-point was calculated as an average over five simulation runs, with each 
initiated using a different seed for random force and initial velocity generation. For a given state 
of bound nucleotide, the filament became more flexible as the number of major beads decreased. 
 
Since the persistence length with 5 major beads (corresponding to CG bead indices 1 to 5 in Figure 
1 of main text) agreed best with known persistence lengths in the literature, 5 major beads were 
used in the rest of the manuscript. Given the difficulty in accurately measuring persistence length 
in experiments and the wide range of experimental values reported in literature that varies with 
solution conditions, we picked a value that is consistent with the reported range (10-18). The 5 
major beads in an actin subunit roughly correspond to the four major sub-domains in actin and the 
D-loop region (see Figure 1 of main text). The D-loop region inserts into actin’s barbed end “target 
binding cleft” and is an important mediator of longitudinal interactions in the filament (4, 13, 19-
23). This provided additional motivation for including at least these 5 major beads in our model. 
Note that the dependence of persistence length on the number of major beads seen from Figure S1  
was specific to the choice of restricting inter-subunit springs to be between subunits that were up 
to two subunits apart in the filament. Further, based on our previous work (14), the persistence 
length was expected to increase with the number of major beads as equivalent CG bead pairs had 
identical springs between them in our model. Thus, each subunit of a given nucleotide state 
experienced the same force-field. Although including heterogeneity in the force-field similar to 
Ref. (14) would result into a more stable persistence length across different major beads, it would 
increase complexity of the resulting model since conformational behavior of each subunit would 
be different in a heterogeneous filament. 
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Pair-wise interactions for the mixed state 
 
The nucleotide discrete state dynamics of actin subunits in the filament is allowed by the UCG 
model. Thus, during a particular simulation run, a given subunit can change its state from ATP to 
ADP-Pi and from ADP-Pi to ADP. This leads to the possibility of frequently observing several 
different combinations of the nucleotide states for neighboring subunits in a filament. 
 
In our model, the pair-wise interactions were limited to be between subunits that are up to two 
neighbors apart along the filament. The pair-wise interactions between CG beads of neighboring 
subunits in the same state, say both ATP, were obtained by constructing a hENM using all-atom 
simulations of the ATP bound actin filament (pure state), and converting to Gaussian potentials. 
Similarly, pair-wise interactions between CG beads, both belonging to ADP-Pi (or ADP) bound 
subunits were obtained from all-atom simulations of ADP-Pi (or ADP) bound actin filaments, 
respectively. However, when the two CG beads belong to subunits bound to dissimilar nucleotides, 
the pair-wise interactions were not obtained directly from all-atom simulations via direct hENM 
parametrization. Generally, hENM parametrization captures fluctuations in the positions of CG 
beads; however, the nearby neighbors of a mixed nucleotide state filament likely influence such 
fluctuations. A suitable parametrization assuming a reasonable number of spring types would 
average over all such possible nucleotide state combinations of neighbors. However, exhaustively 
performing all-atom simulations of different combinations of nucleotide states in the filament is 
computationally prohibitive. Given that each CG bead belonging to a subunit can interact with 
another CG bead belonging to one of five consecutive subunits (including other CG beads within 
the same subunit), there are 35=243 possible combinations of nucleotide states between five 
consecutive subunits along the filament that are need to be simulated at the least. Moreover, the 
pure state all-atom simulations consist of a periodic filament with 13 identical copies of actin 
subunit. To generate statistics of equivalent quality, 13 copies of each of the 243 possible 
combinations of nucleotide states are required to be simulated. To reduce this multi-body 
complexity to a significant degree, we used a mixing rule to create parameters controlling mixed 
state interactions from pure state filament parameters. Specifically, in this mixing approach, we 
averaged the intra-subunit interaction parameters (𝐻, 𝜎1 and 𝑟71) from the pure state filaments to 
obtain parameters for the mixed state. For example, given a CG bead 𝑖 belonging to an ADPPi 
bound subunit, and a CG bead 𝑗 belonging to an ADP bound subunit, the parameter 𝜎1;$< 𝑖, 𝑗  
between them was obtained as 
 
 𝜎1;$< 𝑖, 𝑗 = 	0.5 𝜎1 ATP, 𝑖, 𝑗 + 𝜎1(ADP-Pi, 𝑖, 𝑗) . (3) 

 
To justify our mixing approach, we performed two additional short all-atom simulations of 
periodic actin filaments made of 26 subunits (with compositions 01001101000001010111110110 
and 00010001110111000101100100 respectively, where 0=ADP-Pi, 1=ADP). These two 
filaments, in presence of the periodic boundary condition, consisted of all 2I = 32 possible 
combinations of nucleotide states ADP-Pi and ADP in five consecutive subunits along the filament. 
An approximate true average potential was created by averaging the explicit hENM parameters of 
each pair 𝑖, 𝑗  of CG beads in these filaments (transformed into inverted Gaussian interactions). 
The discrepancy between the mixing approach and this approximate average potential is 
summarized in Figure S2. We define a mismatch parameter that measures the discrepancy between 
the force-field parameter 𝜎1 for a pair of CG beads 𝑖, 𝑗  derived using the mixing approach  
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Figure S2: Comparison of the CG pair-wise interaction parameters obtained by using the mixing approach with those in average 
potential obtained from in the short all-atom simulations. Top panel shows the mismatch parameter, a measure for the difference 
in pair-wise interaction parameter 𝜎1 obtained by the mixing approach and those in the average potential. The bottom four panels 
show the interaction potential between four sets of pairs of CG beads belonging to neighboring subunits, corresponding to lowest 
(panel a), two intermediate (panels b and c) and the largest (panel d) mismatch values (marked with a,b,c and d in the top panel). 
The interaction potential between a CG bead 𝑖 belonging to an ADP-Pi bound subunit and a CG bead 𝑗, belonging to a ADP bound 
subunit obtained by using the mixing approach is shown in red, with the corresponding pure state potentials shown as dotted black 
curves, and the average potential from short all-atom simulations is shown in solid green, with the potentials corresponding to ±1 
standard deviation in parameters 𝐻 and 𝜎1 shown with the dotted green curves. 

 
 (𝜎1;$< 	𝑖, 𝑗 ) and that in the average potential obtained from the short all-atom simulations 
(𝜎1

LMN 	𝑖, 𝑗 ).  
 

 mismatch(𝑖, 𝑗) = 	
𝜎1
Avg 	𝑖, 𝑗 − 𝜎1Mix 	𝑖, 𝑗

MAX 𝜎1
Avg 	𝑖, 𝑗 , 𝜎1Mix 	𝑖, 𝑗

 

 
(4) 

Here, 𝜎1 is the inverted Gaussian interaction parameter that characterizes the steepness of the 
potential energy (Equation (2)). The top panel in Figure S2 shows the mismatch parameter for all 
pairs of interacting CG beads in our model, plotted with increasing values of the mismatch 
parameter. Clearly, the mismatch was observed to be small for many pairs of CG beads, but was 
significant for certain CG bead pairs towards the right-hand side of the plot. 
 
Parameters of the inverted Gaussian interaction for a pair of CG beads in the average potential 
obtained from the short all-atom simulations varied significantly owing to different combinations 
of bound nucleotides of the rest of their neighboring subunits along the filament. We calculate the 
average and standard deviation of the parameters 𝐻 and 𝜎1 along the filament for each pair of CG 
beads corresponding to a distinct nucleotide pair. The four panels a, b, c and d on the bottom show 
the form of the inverted Gaussian potential obtained with the mixing approach and that in the 
average potential, corresponding to the four pairs of CG beads marked in the top panel (a 
corresponds to the lowest mismatch, d corresponds to the highest mismatch, and b and c 
correspond to the intermediate mismatch). It can be seen that even for the pair of CG beads 
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corresponding to the largest mismatch, the potential obtained using the mixing approach was 
within the variation in the average potential (corresponding ±1 standard deviation in parameters 
𝐻 and 𝜎1, shown as dotted green lines in Figure S2) obtained from the all-atom simulations. Given 
the huge computational advantage balanced by the reasonable accuracy of our rather simple mixing 
approach, we used it in the rest of this work to obtain interactions between a pair of CG beads 
corresponding to distinct nucleotide states, acknowledging that alternative choices are possible. 
 

UCG PARAMETER INTERPRETATION 
 
The formulas presented for UCG transitions inherently have a large bearing on the results of the 
current study. It is therefore useful to note natural assumptions which could produce the rules used. 
While ideally one would like to know exactly the instantaneous rates as a function of monomer 
configuration, we do not have access to this data. Instead, we are forced to infer the dependence 
of a transition probability based on the configuration of the system. We chose to do so by primarily 
assuming that, for example, the transition state free energy controlling the rate of F-ATP→F-ADP-
Pi tracks the pointwise free energy of either the reactants or the products as the configuration of 
the system changes (i.e. as the reactant free energy changes, the transition state free energy changes 
similarly). Importantly, if the transition state stability has the same dependence on configuration 
as the reactants do, then the instantaneous rate of the forward reaction does not change (as it is 
controlled by the difference in these two energies, and as such will stay constant). Contrastingly, 
if the stability of the transition state instead follows the products, then the forward reaction will 
change rate as the protein changes configuration, but the rate of the reverse reactions will stay 
constant as configuration changes. These concepts are close to the kinetic implications of the 
Hammond postulate in organic chemistry (24). 
 
Hammond-type dependence has been observed for macroscopic rates and environmental 
dependence in complex reactions (e.g. protein folding and unfolding (25, 26), and more recently 
DNA hairpin folding and unfolding (27)). It should be noted that the Metropolis-Hastings criteria 
was chosen as a convenient approximation which one can interpret via transition states: the 
cooperativity seen derives from a fluctuating pocket around ATP which moves ATP towards a 
relatively static barrier. Additionally, the dependence proposed in our study does match the 
detailed information gained upon flattening actin in our earlier QM/MM studies (28, 29). 
Unfortunately, no such data is known for phosphate release. The conclusions made in this study 
primarily focus on the extent of nonlocality observed at the resolution of the MSM and not the 
fine-grained details of the cooperativity. Clearly, if the individual monomers in the filament did 
not "feel" the state of a given neighboring monomer, no cooperativity would be observed in the 
current study. As such, the main conclusions are robust to the exact conformational dependence of 
the rate imposed. 
 
Whether the transition state stability primarily follows the stability of the reactants or products in 
the UCG model depends on the parameters of the model and the specific filament configuration 
considered (additional complexity on the transition state stability is introduced via the dihedral 
dependence parameters). In the following discussion, we will consider 𝑖 → 𝑗 the forward reaction. 
The conditional statement in the Metropolis-Hastings-like rate law switches between the two 
transition state cases. Specifically, the following conditional 
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MIN
𝑘%→$ 𝜙
𝑘$→% 𝜙

exp −𝛽 𝑈% − 𝑈$ − 𝜖$% , 1  

 
divides our configurational phase space into two sets, with one set satisfying 
 

𝑘%→$ 𝜙
𝑘$→% 𝜙

exp −𝛽 𝑈% − 𝑈$ − 𝜖$% < 1 

 
and the other set defined as its complement. This condition can be rearranged giving 
 

−β 𝑈% − 𝑈$ − 𝜖$% − log
0.5 + 0.5 tanh 𝜂 𝜙 − 𝜙e
0.5 − 0.5 tanh 𝜂 𝜙 − 𝜙e

< log
𝑘$→%e

𝑘%→$e  

 
Note that when no additional dihedral dependence is added (i.e. 𝜂 = 0) the third term on the left 
side is zero. Roughly, a highly endergonic reaction (𝑈% − 𝑈$ ≫ 0)	forces the transition state to 
follow the products in stability. More specifically, assuming our rates can be expressed modulo a 
proportionality constant similarly to the following form from transition state theory, with 𝑈 
denoting free energy and ‡ denoting transition state values 
 

exp −𝛽(𝑈$,%
‡ − 𝑈$hijj)  

 
we find that we can express the energy of our transition state (modulo a constant) in our first set 
(that satisfying the given conditional) as 
 
 𝑈$,%

‡ = 𝑈%klmm − 𝑘n𝑇	log	𝑘%→$ 𝜙 , (5) 
 
where we have assumed that 𝜖$% has been incorporated into either 𝑈% or 𝑈$ giving corrected energies 
𝑈%hijj and 𝑈$hijj. Importantly, the inverse reaction in the first set shares the same transition state 
energy; however, as its local energy is given by 𝑈%𝒄ijj, the rate no longer takes this term into 
account. While we have only considered the first set in phase space in this paragraph, the second 
set enjoys the same relations with the role of reactants and products reversed and the appropriate 
parameters swapped out. The switching point in the transition state behavior is affected by all 
parameters, but is controlled in practice by setting 𝜖$% while other parameters are modified. 
Additional parameters, e.g. 𝑘%→$e , modify the constant offset in energy and dihedral dependence of 
the transition state, and 𝜂 controls the sharpness of the dihedral dependence.  
 

UCG PARAMETER ESTIMATION 
 
There are three parameters in the UCG model for each of the reactions F-ATP ⇌	F-ADP-Pi and F-
ADP-Pi ⇌	F-ADP + Pi. The prefactor 𝑘$→%e  in absence of the dihedral dependence corresponds to 
the rate of attempting a subunit from state 𝑖 to final state 𝑗. Here 𝑖, 𝑗 ∈ [ATP, ADP-Pi, ADP]. The 
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prefactor for the corresponding quantity in the reverse reaction is 𝑘%→$e . The third parameter, 
Metropolis-Hasting correction factor  𝜖$%, was added to account for the lack of a common reference 
state for the internal energy of the two states. 
 
In the following discussion,  ∙  denotes an average quantity.  We need three constraints in order 
to estimate the three parameters. Two of these constraints are given through matching average 
values  𝐾$→%  and 𝐾%→$   with known forward and reverse macroscopic rates of reactions 𝑅$→% 
and 𝑅%→$  respectively. The forward macroscopic rate 𝑅$→% of the reaction F-ATP ⇌	F-ADP-Pi is 
0.3 s-1 and that for the reaction F-ADP-Pi ⇌	F-ADP + Pi is 0.0068 s-1. The estimated Gibbs free 
energy for the reaction F-ATP ⇌	F-ADP-Pi calculated using metadynamics simulations, Δ𝐺 is in 
the range of -3 to -6 kcal/mol (28, 29). The estimates for the total change in Gibbs free energy for 
the net reaction F-ATP ⇌	F-ADP + Pi under physiological conditions varies in a much wider range 
(30, 31). We chose Δ𝐺 = −3.2 kcal/mol for the reaction F-ATP ⇌	 F-ADP-Pi, and Δ𝐺 = −5.5 
kcal/mol for the reaction F-ADP-Pi ⇌	F-ADP + Pi. These values of Δ𝐺 were used to calculate the 
reverse reaction macroscopic rates 𝑅%→$, using the relationship 
 
 𝑅%→$ = 𝑅$→% exp 𝛽Δ𝐺  (6) 

 
Due to lack of additional relevant information from the atomistic simulations and from 
experiments, we imposed the third constraint by specifying the average value of the acceptance 
probability for the forward reaction sampled in our simulations. 
 
 𝑝$→% → 0.1 (7) 

 
The motivation behind choosing a small average probability of acceptance for the forward reaction 
was to make the state transitions sensitive towards the potential energy difference between the two 
states. As 𝑝$→% → 1, the transitions 𝑖 → 𝑗 become insensitive to the potential energy difference, 
and the instantaneous transition rate for the forward reaction is simply given by the rate of 
attempting. The arbitrarily specified value affects the sensitivity of the reaction rates towards the 
potential energy difference, which in turn depends on the states of neighboring subunits and affects 
the degree of cooperativity observed in our UCG simulations. Acknowledging this dependence, 
we used a parameter 𝑋 later in our kinetic model to vary the extent of the observed cooperativity. 
 
To summarize, the three constraints are 

𝐾$→% = 	𝑘$→%e 0.5 + 0.5 tanh 𝜂 𝜙 − 𝜙e MIN
𝑘%→$ 𝜙
𝑘$→% 𝜙

𝑒𝑥𝑝 −𝛽 𝑈% − 𝑈$ − 𝜖$% , 1 	→ 𝑅$→% 

𝐾%→$ = 	𝑘%→$e 0.5 − 0.5 tanh 𝜂 𝜙 − 𝜙e MIN
𝑘$→% 𝜙
𝑘%→$ 𝜙

𝑒𝑥𝑝 −𝛽 𝑈$ − 𝑈% + 𝜖$% , 1 → 𝑅%→$	 

 𝑝$→% = MIN
𝑘%→$ 𝜙
𝑘$→% 𝜙

exp −𝛽 𝑈% − 𝑈$ − 𝜖$% , 1 → 0.1 (8) 
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Figure S3: Iterations to obtain the UCG parameters for the reaction F-ATP ⇌	F-ADP-Pi, for 𝜂 = 0.125. 

 

Let 𝑥{ be the fraction of the number of times in a simulation run that MIN |}→~ �
|~→} �

exp −𝛽 𝑈% −

𝑈$ − 𝜖$% , 1 = 1, and 𝑥, be the fraction otherwise. The above equations give the following 
update rules for parameter optimization, 

 
𝑘$→%
e,∗ = 	 𝑘$→%

e,� 𝑅$→%
𝐾$→%

 

𝑘%→$
e,∗ = 	 𝑘%→$

e,� 𝑅%→$
𝐾%→$

 
(9) 

 𝜖$%∗ = 𝜖$%� + ln
0.1 − 𝑥{

𝑥,
𝑘%→$ 𝜙
𝑘$→% 𝜙

𝑒𝑥𝑝 −𝛽 𝑈% − 𝑈$ − 𝜖$%�

�{

 (10) 

 
These equations provided a way of performing iterations to optimize the UCG parameters.  At 
iteration 𝑛, the following set of update rules was used to obtain a new guess for the parameters. 
 

 
𝑘$→%
e,��, = 	𝜔𝑘$→%

e,∗ + (1 − 𝜔)𝑘$→%
e,�  

 
𝑘%→$
e,��, = 	𝜔𝑘%→$

e,∗ + (1 − 𝜔)𝑘%→$
e,�  

(11) 

Similarly, 

 𝜖$%��{ = 	𝜔𝜖$%∗ + (1 − 𝜔)𝜖$%�  
 

(12) 

For efficiency, we skipped iterating for 𝑘$→%e  and 𝑘%→$e  in every odd numbered iteration. 
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Figure S4: Iterations to obtain UCG parameters for the reaction F-ADP-Pi ⇌	F-ADP + Pi, for 𝜂 = 0. 

 
ATP hydrolysis 
 
For the reaction F-ATP ⇌	F-ADP-Pi, we constructed a long (1040 subunits) F-ATP filament. An 
initial guess for the UCG parameters was made, making sure that 𝑝$→% < 0.1. For the first 
iteration 𝑛 = 1, the UCG simulation was run for a sufficiently long time such that all the subunits 
underwent the forward state transition from ATP (denoted by 0) to ADP-Pi (denoted by 1) at least 
once, and about ~𝑂(10) subunits also underwent the reverse state transition. The mean first 
passage time for the forward and reverse transitions was calculated from these transitions, and was 
used as an estimate for the inverse of the average transition rates of the corresponding reactions in 
Equation (4), 𝐾$→% �{ and 𝐾%→$ �{ respectively. For faster sampling, a pseudo-UCG simulation 
was run, such that at each step in the simulation, the term in the denominator of Equation (10) was 
evaluated for the state transition. However, instead of changing the state of the subunit to ADP-Pi 
like in regular UCG simulations, it was kept unchanged in the pseudo-UCG simulations. 
 
For efficient sampling of both forward and reverse transition events, we carefully scaled our target 
macroscopic rates as follows. We used a common scaling factor of 50×10�I to convert the 
forward and reverse rates from s-1 to step-1. Thus, the target forward macroscopic rate was 𝑅$→% =
1.5×10�� transitions per step, while the target reverse macroscopic rate was  𝑅%→$ = 8.8×10�� 
transitions per step (Figure S3). 
 
Pi release 
 
A similar procedure was followed to obtain UCG parameters for the Pi release reaction. A common 
scaling factor of 50×10�� was used to convert the forward and reverse rates from s-1 to step-1 in 
our simulations, for efficient sampling of both forward and reverse transition events. The resulting 
target values were 𝑅$→% = 3.4×10�� transitions per step for the forward macroscopic rate and 
𝑅%→$ = 4.5×10�� transitions per step for the reverse macroscopic rate (Figure S4). 
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(a) (b) 

  
 

Figure S5: Multi-body effect in ATP hydrolysis, plotted as a ratio of the conditional rate with the average rate. Combinations of 
neighboring monomer states are indicated using a key on the x-axis, that denotes the state (0=unhydrolyzed, 1=hydrolyzed, 
X=either) of each of the neighboring subunits, starting from the third neighbor in the pointed-end direction to the third neighbor in 
the barbed-end direction. (a) Specific combinations of neighbors and (b) all 64 possible combinations of neighbors. Different colors 
and symbols correspond to different choices of the dihedral angle dependence parameter 𝜂 and average acceptance probability 𝑝, 
as indicated in the legend. The multi-body effect in ATP hydrolysis is symmetric with respect to the two ends of the filament. Thus, 
for example, the enhancement in rate for 111000 is approximately equal to that for 000111. 

 

PARAMETER CHOICE AND COOPERATIVITY 
 
In the following section, we demonstrate the effect of choices we made for remaining parameters 
on the cooperativity observed. 
 
ATP hydrolysis 
 
Figure S5 shows the variation in the multi-body cooperative effect predicted by the UCG model 
for the ATP hydrolysis reaction, as a function of (a) the presence or absence of the explicit dihedral 
angle dependence, modulated using 𝜂, and (b) the target value of 𝑝$→%  used for UCG parameter 
estimation. While the former does not significantly affect the predicted cooperativity, the latter 
was expected to serve as a handle to control the extent of cooperativity. As expected from the form 
of Equation (8), decreasing 𝑝$→%  increased the model’s sensitivity towards multi-body effects. 
 
Figure S6 shows similar variation in the multi-body cooperative effect predicted by the UCG 
model for the Pi release reaction, as a function of the value of 𝑝$→%  used for UCG parameter 
estimation. Figure S7 shows the Pi release rate variation for all the combinations of neighboring 
states studied. 
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Figure S6: Multi-body effect in Pi release plotted as a ratio of the conditional rate to the average rate. The key on the x-axis is 
similar to that described in Figure S5 (except for the new definitions 0=ADP-Pi, 1=ADP). Different colors and symbols indicate 
different values of the average acceptance probability 𝑝 as indicated in the legend. 

 

 
 

Figure S7: Multi-body effect in Pi release plotted as a ratio of the conditional rate to the average rate for all 64 possible combination 
of nucleotide states of neighboring subunits. The key on the x-axis is similar to that described in Figure S5. Error bars indicate the 
standard error for each data-point. The multi-body effect in Pi release is symmetric with respect to the two ends of the filament. 

 

MARKOV STATE MODEL 
 
The kinetic model used in this work is similar to that commonly used in the literature (32, 33), and 
consisted of the following elementary reactions. 
 

1. Polymerization at the barbed end 
2. De-polymerization at the barbed end 
3. De-polymerization at the pointed end (only in the conserved system) 
4. ATP hydrolysis 
5. Pi release 
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We assumed that transitions associated with (de-)polymerization reactions at the barbed end, de-
polymerization reactions at the pointed end, and internal reaction events at each monomer were 
independent when considering single transitions through the MSM state space. The rates of these 
transitions, however, each depended on the state vector itself. Let 𝐾�l�. denote the polymerization 
rate, 𝐾���.,��m��� denote the de-polymerization rate at the barbed end, while 𝐾���.,�l����� denote that 
at the pointed end. Also let 𝐾���. and 𝐾m��. denote rates of ATP hydrolysis and Pi release 
respectively.  𝐾���.,��m���  and 𝐾���.,�l�����  are dependent on the state of the terminal subunit at the 
barbed end and the pointed end respectively. Using the values of these reaction rates provided in 
Table 1 of the manuscript, the system evolved using a Monte Carlo algorithm with a constant time-
step. 
 
The initial condition was chosen such that there are 𝑛esubunits present in the filament. The 
corresponding sequence of states of the nucleotides was stored in a state vector 𝑠[𝑛e] of size 𝑛e. 
The initial free actin monomer concentration was chosen to be 𝑐e. Let 𝑛 deote the length of the 
filament and 𝑐 denote the free actin monomer concentration at time 𝑡. The time-step was chosen 
as 𝑑𝑡 and the system is updated at time 𝑡 + 𝑑𝑡 based on its state at time 𝑡, as follows: 
 

1. A random number uniformly distributed between the interval [0,1] was generated for the 
barbed-end of the filament.  

a. If the random number was between 0 and 𝑑𝑡×𝑐×𝐾�l�., the polymerization reaction 
was selected. The length of the filament was updated to 𝑛 + 1 The vector 𝑠[𝑛] was 
expanded to 𝑠[𝑛 + 1], with the new sequence of states of the nucleotide stored in 
it.  

b. If the random number was between 𝑑𝑡×𝑐×𝐾�l�. and 𝑑𝑡×𝑐×𝐾�l�. + 𝑑𝑡×
𝐾���.,��m���, then the de-polymerization reaction was chosen. The length of the 
filament was changed to 𝑛 − 1 The vector 𝑠[𝑛] was reduced to 𝑠[𝑛 − 1], with the 
new sequence of states of the nucleotide stored in it. 

2. A uniform random number was generated for the pointed-end of the filament. 
a. If the random number was between 0 and 𝑑𝑡×𝐾���.,�l�����, then the de-

polymerization reaction at the pointed end was chosen. The length of the filament 
was changed to 𝑛 − 1. The vector 𝑠[𝑛] was reduced to 𝑠[𝑛 − 1], with the new 
sequence of states of the nucleotide stored in it. 

3. A set of 𝑛 − 2 uniform random numbers was generated, one for each of the interior subunits 
in the filament. For each subunit 𝑚, the entry 𝑠[𝑚] was updated if the random number was 
between 0 and 𝑑𝑡×𝐾m��k�, where 𝐾m��k� = 𝐾���. if the state of the subunit was ATP, and 
𝐾m��k� = 𝐾m��. if the state of the subunit was ADP-Pi. 
 

In the above, the rates 𝐾���. and 𝐾m��. were modulated according to state of neighboring monomers, 
depending on the degree of cooperativity considered. The cooperativity was not considered for the 
two terminal monomers (excluding the filament ends) on each side of the filament. In other words, 
these monomers reacted with the average rates of ATP hydrolysis and Pi release. In the conserved 
system, the value of 𝑐 was updated after each de-polymerization reaction took place. 
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Figure S8: A transition event corresponding to phosphate release in a single subunit from a short simulation run. The simulation 
setup is similar to that used in obtaining Figure 4 and Figure S7.  The root-mean square displacement (RMSD) in positions of CG 
beads 1-4 of subunit 100 in the filament is shown as a function of simulation steps. The transition corresponding to phosphate 
release in subunit 100 takes place at step 12232. The RMSD before (black curve) and after (red curve) the transition are shown. 
The average RMSD before (green line) and after (blue line) the transition are also shown for clarity, along with the range of their 
variation (±1 standard deviation, shown as dotted lines with corresponding colors). Inset shows the same data, highlighting the 
details near the transition event. Steps corresponding to unsuccessful transition attempts by subunit 100 are also shown (inset: black 
triangles). The subunit configuration reaches a new equilibrium at a faster rate compared to the rates of transition.  

 
The value of 𝑑𝑡 was carefully chosen to be small enough such that all of the values (𝑑𝑡×𝑐×𝐾�l�. +
𝑑𝑡×𝐾���.,��m���, 𝑑𝑡×𝐾���.,�l����� and 𝑑𝑡×𝐾m��k�  were significantly less than one at all times. 
Further modifications were made to the above model depending on the system being simulated, as 
explained in the manuscript. 
 

MARKOV STATE MODEL DISCRETIZATION AND 
INTERPRETATION OF KINETICS 
 
Many modern empirically parameterized Markov State Models use state space discretizations 
which are much finer than the model presented here (34, 35). Systematic analysis of said models 
has often focused on the quality of this discretization, i.e. the quality and accuracy of the MSM 
created with respect to the system it approximates. An intuitive metric for a high quality MSM is 
that the system loses memory when present in a single discrete state: transitions out of a discrete 
MSM state should not depend on the manner in which one entered said state. It can be seen that 
the CG configurational dynamics do decouple from the rate of large scale transitions relevant to 
the MSM derived (Figure S8). This decoupling also legitimizes the use of highly nonequilibrium 
trajectories for parametrization, as the system is effectively always in conditional equilibrium (36). 
 
The model produced in this work solely aims to capture relaxation timescales which are 
characterized by the progression of hydrolysis, phosphate release, and (de-)polymerization, which 
are on the order of seconds or minutes. It is natural to ask how a model which takes into account 
molecular motions, even at a relatively coarse-grained level, can be propagated using molecular 
dynamics to see such kinetics. Specifically, we have assumed that the true behavior of the atomistic 
fluctuations in an actin filament orthogonal to the slow timescale events described in the previous  
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Figure S9: Average number of total subunits and subunits bound to nucleotides ADP-Pi and ADP in the filament as a function of 
time, for 𝑋 = 0 (left panel, 𝑐 = 0.116 µM) and above (right panel, 𝑐 = 0.120 µM). 

 
paragraph are effectively decoupled: The true biological polymer is assumed to achieve an 
equilibrium state conditional on the progress of these reactions. As result, the underlying detailed 
dynamics of the system conditional on these reactions is relatively unimportant: the system obeys 
laws similar to those underpinning transition state theory. Critically, while the CG conformational 
dynamics are likely dynamically inaccurate with respect to the discrete transitions simulated, they 
are still decoupled in their relaxation times. As a result, assuming the CG model is parameterized 
to reproduce equilibrium properties, we argue that configurational dependence on the observed 
hydrolysis rates are still valid.  
 

FILAMENT DYNAMICS AT CONSTANT FREE ACTIN 
CONCENTRATION 
 
Figure S9 shows the average contents (ADP-Pi bound and ADP bound subunits) of the filaments, 
obtained from 1000 statistical runs, as implied by the random hydrolysis mechanism. The initial 
filament consists of 2/3rd fraction of the filament near the pointed end being ADP bound and the 
reminder tip near the barbed end made of ATP bound subunits. After a quick initial transient from 
the chosen initial condition, a steady growth rate with a constant slope for the filament contents is 
obtained. 
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