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Derivation of the curved Worm-Like Chain (cWLC) model 

 

The standard WLC model assumes that there is an energetic cost to bend an intrinsically straight 

rod. Specifically, to bend a semi-flexible, intrinsically straight rod with length 𝛿𝑙 into a circular 

arc with central angle 𝛿𝜃, the energy required is (1) 

𝐸bend = 
𝛼𝛿𝜃2

2𝛿𝑙
=

𝑝𝛿𝜃2

2𝛿𝑙
𝑘B𝑇.                                 (S1) 

α is the bending rigidity of the chain, related to the persistence length 𝑝 through the relation 𝑝 =
 𝛼/𝑘B𝑇, where 𝑘B𝑇 is the product of the Boltzmann constant and the absolute temperature. The 

central angle of this arc, 𝛿𝜃, is equivalent to the angle between the tangents at the beginning and 

end of the segment. The lowest energy conformation of the segment is a straight line, with the 

energy increasing harmonically about this configuration. The Boltzmann distribution provides 

the distribution of angles that this segment adopts in the presence of thermal noise, which is 

given by 

𝑃(𝛿𝜃) =  √
𝑝

2𝜋𝛿𝑙
exp (−

𝑝(𝛿𝜃)2

2𝛿𝑙
).                                 (S2) 

This a normal distribution with mean 〈𝛿𝜃〉 = 0 and variance 𝜎𝛿𝜃
2 =

𝛿𝑙

𝑝
.  

 

If the chain is intrinsically curved, the bending energy is modified to reflect deviations 

from this bent state. 

𝐸bend = 
𝑝(𝛿𝜃−𝜅𝑜𝛿𝑙)2

2𝛿𝑙
𝑘B𝑇,                                         (S3) 

where 𝜅𝑜 is the intrinsic curvature of the chain, defined as 𝜅𝑜 = 〈
𝑑𝜃

𝑑𝑙
〉. The distribution of angles 

that this intrinsically curved segment adopts in the presence of thermal noise is given by 

𝑃(𝛿𝜃) =  √
𝑝

2𝜋𝛿𝑙
exp (−

𝑝(𝛿𝜃−𝜅𝑜𝛿𝑙)2

2𝛿𝑙
).                                 (S4) 

As before, this is a normal distribution with variance 𝜎𝛿𝜃
2 =

𝛿𝑙

𝑝
, but now centered about a mean 

〈𝛿𝜃〉 = 𝜅𝑜𝛿𝑙.  
 

We now consider a longer chain segment, comprised of N segments each of length 𝛿𝑙, 
such that the total length of this chain 𝑙 = 𝑁𝛿𝑙. This longer chain is not necessarily a circular arc, 

but is made up of 𝑁 short circular arc segments, each with angular difference δθ𝑖 distributed 

about 𝜅𝑜𝛿𝑙 as per equation (S4). The angular difference 𝜃 between the ends of this larger 

segment is given by the sum of the 𝑁 angles adopted by the smaller circular arcs:  

𝜃 = ∑ δθi
𝑁
𝑖=1 .                                              (S5) 
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Since the sum of normal random variables is normally distributed, the full distribution of θ is 

completely described by its mean and variance, given respectively by 

〈𝜃〉 = 𝑁〈𝛿𝜃〉 = 𝜅𝑜𝑁𝛿𝑙 = 𝜅𝑜𝑙                                 (S6) 

and 

𝜎𝜃
2 = 𝑁𝜎𝛿𝜃

2 =
𝑁𝛿𝑙

𝑝
=

𝑙

𝑝
.                                     (S7) 

The angular distribution of this segment of length 𝑙 is therefore given by 

𝑃(𝜃) = √
𝑝

2𝜋𝑙
𝑒−

𝑝(𝜃−𝜅𝑜𝑙)2

2𝑙 .                                            (S8) 

Note that, because 〈𝜃〉 ≠ 0, this chain exhibits a net global curvature. 

 

For any arbitrary segment length 𝑠, we can now calculate the average tangent vector 

correlation as 

〈�̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′)〉 = 〈𝑐𝑜𝑠𝜃(𝑠)〉 = √
𝑝

2𝜋𝑙
∫ exp (−

𝑝(𝜃−𝜅𝑜𝑠)2

2𝑠
) cos 𝜃 𝑑𝜃,

∞

−∞
        (S9) 

where 𝑠′ defines an arbitrary starting position of the segment along the contour. This simplifies 

to 

〈𝑐𝑜𝑠𝜃〉 = exp (−
𝑠

2𝑝
) cos(𝜅𝑜𝑠).                                       (S10) 

However, since �̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′) ≤ 1 always, then its average 〈�̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′)〉 ≤ 1.  This 

requires that 𝑠 ≥ 0, so we can write 

〈𝑐𝑜𝑠𝜃(𝑠)〉 = exp (−
|𝑠|

2𝑝
) cos(𝜅𝑜|𝑠|)                                 (S11) 

for all 𝑠. 

Similarly, we can calculate the mean squared end-to-end distance of the segment as 

〈𝑅2(𝑠)〉 = 〈�⃑� (𝑠) ⋅ �⃑� (𝑠)〉 = 〈(∫ �̂�(𝑠′)𝑑𝑠′
𝑠

0
)(∫ �̂�(𝑠′′)𝑑𝑠′′

𝑠

0
)〉 =  ∫ ∫ 〈�̂�(𝑠′) ⋅ �̂�(𝑠′′)〉𝑑𝑠′𝑑𝑠′′

𝑠

0

𝑠

0
,  (S12) 

where the order of operations was interchanged because averaging and integrating are both linear 

operations.  Using 〈�̂�(𝑠′) ⋅ �̂�(𝑠′′)〉 = exp (−
|𝑠′′−𝑠′|

2𝑝
) cos(𝜅𝑜|𝑠

′′ − 𝑠′|) from equation (S11) gives  

                          〈𝑅2(𝑠)〉 =  ∫ {∫ exp [−
(𝑠′′−𝑠′)

2𝑝
] cos[𝜅𝑜(𝑠

′′ − 𝑠′)]
𝑠′′

0
𝑑𝑠′ +

𝑠

0

                                      ∫ exp [−
(𝑠′−𝑠′′)

2𝑝
] cos[𝜅𝑜(𝑠

′ − 𝑠′′)]
𝑠

𝑠′′
𝑑𝑠′} 𝑑𝑠′′.                           (S13) 

Evaluating this expression yields 
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⟨𝑅2(𝑠)⟩ =
4𝑠𝑝

(1+4𝜅0
2𝑝2)2

{1 −
2𝑝

𝑠
(1 − 4𝜅0

2𝑝2) [1 − cos(𝜅0𝑠) exp (−
𝑠

2𝑝
)]  +

4𝜅0𝑝2

𝑠
[𝜅0𝑠 − 2 sin(𝜅0𝑠) exp (−

𝑠

2𝑝
)]}.                  (S14) 

Once again, this expression is valid only for 𝑠 ≥ 0, as negative values of 𝑠 can produce values of 

⟨𝑅2(𝑠)⟩ that are negative. Thus, 

⟨𝑅2(𝑠)⟩ =
4|𝑠|𝑝

(1+4𝜅0
2𝑝2)2

{1 −
2𝑝

|𝑠|
(1 − 4𝜅0

2𝑝2) [1 − cos(𝜅0|𝑠|) 𝑒
−

|𝑠|

2𝑝] +

4𝜅0𝑝2

|𝑠|
[𝜅0|𝑠| − 2 sin(𝜅0|𝑠|) 𝑒

−
|𝑠|

2𝑝]}.                                       (S15) 

In the case where 𝜅𝑜 = 0, which corresponds to the standard two-dimensional worm-like chain, 

the expressions for the tangent vector correlation and mean squared end-to-end distance reduce 

to 

〈𝑐𝑜𝑠𝜃(𝑠)〉 = exp (−
|𝑠|

2𝑝
)                                             (S16) 

and 

⟨𝑅2(𝑠)⟩ = 4|𝑠|𝑝 {1 −
2𝑝

|𝑠|
[1 − exp (−

|𝑠|

2𝑝
)]}.                          (S17) 

These are identical to previously derived results (2), and to equations (2) and (1) in the main text, 

respectively. 

 

Because both ⟨𝑅2(𝑠)⟩ (equation S15) and 〈𝑐𝑜𝑠𝜃(𝑠)〉 (equation S11) are even functions of 

curvature 𝜅𝑜, we report only the magnitude of the curvature from our fits. 
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SmarTrace Algorithm 

 

From AFM images of biopolymers, we wished to analyze chain configurations and extract 

mechanical properties. For this purpose, we developed a robust and efficient chain tracing 

software in MATLAB, dubbed “SmarTrace”, which traces the centerline of each molecule with 

sub-pixel resolution and provides comprehensive statistical analysis of the chains.  

 

 

Chain tracing 

 

An overview of the SmarTrace workflow is discussed below. Details are available in reference 

(3).  

 

1. In a visual user interface (adapted from the EasyWorm package (4) within MATLAB (5)), 

the user selects a few points on or near the backbone of the chain to be traced. 

2. SmarTrace fits an initial spline to these user-defined points and extracts points along the 

spline separated by one nanometer.  

3. The program uses top-hat and median filtering (6) to improve the signal-to-noise ratio of 

the region surrounding the chain. 

4. To detect the best path describing the chain, a search window is defined for each point on 

the spline curve along the tangential direction of the initial spline. A search grid with sub-

pixel resolution determines (interpolated) intensity values of the image for each grid point. 

5. For each point on the initial spline, a template pattern is matched with each point in the 

grid within the search window. The template resembles the intensity pattern of a cross-

section of the chain with varying widths.   

6. A matching score is calculated for each possible width and location of this pattern. Cross-

correlation scores are used to determine the best centerline position and width of the 

chain.   

7. To ensure stable results, a penalty term is added for sudden changes in width and/or 

direction of the chain.  

8. After the scores are finalized, the re-weighted maximum scores are used to extract the 

width and center of the chain at points spaced approximately 1 nanometer apart. A B-

spline is fit to these points, resulting in a piecewise smooth polynomial that represents the 

polymer chain.  

 

This method is not very sensitive to image quality and can successfully detect the chain 

backbone in noisy images; even if parts of the chain are slightly faded, the code is still able to 

trace the entire chain. The results also do not depend on where the user selects the points 

(validated by having different users trace the same set of experimental chains, and finding the 

same persistence length), and the initially selected points do not need to be located exactly on the 

chain centerline. These features, along with an efficient computation algorithm, make the code 

fast and easy to use for tracing and analyzing images of single polymers, as obtained for example 

by atomic force microscopy, electron microscopy or fluorescence microscopy.  
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Statistical analysis of chain properties 

   

After the chains have been traced, statistical approaches are used to analyze their flexibility. First, 

the traced chains are partitioned into segments of varying lengths. Utilizing a method introduced 

in reference (7), each molecule is divided into multiple segments, with lengths drawn randomly 

from a pre-defined set of input values (here, 10 nm, 20 nm, 30 nm, ..., 200 nm). Once the lengths 

of these segments have been determined, their positions on the chain are shuffled to avoid 

accumulating shorter lengths towards one end of the chain. This process is repeated 50 times for 

each chain, allowing different regions of the chain to contribute to the statistics of different 

segment lengths. Within each draw, the sampled chain segments are nonoverlapping. As rare, 

longer segments are less useful for mathematical fitting and persistence length calculations, 

choosing a relatively short maximum segment length provides more samples in each bin. This 

method also allows for the use of partially traced chains, which is particularly helpful when ends 

of a molecule are not clear or chains intersect. In the current work, end regions (5 pixels ≈ 19.5 

nm) of the chains were excluded from further analysis. 

 

Several statistics are then calculated from the samples at each segment length 𝑠: the mean-

squared end-to-end distance, ⟨𝑅2(𝑠)⟩, and the mean cosine of the angle between the start and end 

of the segment, 〈cos 𝜃(𝑠)〉. 
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Validation of SmarTrace and analysis procedures  

 
Validation with DNA images 

  

DNA molecules of ~1 µm contour length were prepared by digestion of the pBluescript KS(+) 

plasmid with SspI, then purifying the longer linear, blunt-ended 2828 bp fragment. For imaging, 

DNA was deposited from a buffer containing 4 mM HEPES, 10 mM NaCl, 2 mM MgCl2 at pH 

7.4, then dried before imaging (Figure S1A). Note that Mg2+ is required for DNA deposition due 

to its negatively charged backbone; in contrast, at the pH values we have studied collagen, the 

protein has positively charged residues and thus does not require bridging cations for deposition. 

 

DNA images were traced and analyzed with SmarTrace. Analysis of the angular distributions 

showed that they exhibit a kurtosis of 3 at all but the shortest segment length analysed (Figure 

S1B), consistent with a Gaussian distribution and equilibration. The mean squared end-to-end 

distance, 〈𝑅2(𝑠)〉, is shown in Figure S1C along with a 2D worm-like chain fit (Equation 1). 

Figure S1D shows the experimental data for tangent vector correlation, 〈cos 𝜃 (𝑠)〉, and the 2D 

WLC fit (Equation 2). A persistence length of 𝑝 = 62 ± 3 nm was obtained from these analyses 

(Table S1), consistent with previous results (8). Statistical analysis demonstrates that DNA 

deposited and imaged under these conditions is better described by the standard WLC than by 

the curved WLC (Table S2), and with a fit to the cWLC returning 𝜅𝑜 = 0 and 𝑝 = 62 nm, i.e., 

reducing to the standard WLC model. 

 

We also traced and analysed images of DNA molecules with 1 µm contour length (N=24), which 

were provided with the software package Easyworm (4). A persistence length of 52 ± 2 nm was 

obtained from these analyses, consistent with expectations for DNA (2, 4). 

 

 

Validation with simulated worm-like chains 

 

To validate the methodology used for chain tracing and analysis within SmarTrace, two-

dimensional worm-like chains were simulated and converted into pseudo-AFM images. These 

images were then traced with SmarTrace to ensure that the algorithm was able to accurately 

recover the input persistence length and curvature. The workflow for the simulation is as 

follows: 

 

1. The desired persistence length 𝑝, curvature 𝜅0, contour length 𝐿 and width of the chains 

𝑤 – as well as the average number of chains per image – are input by the user. 

2. For the first chain, an angle 𝜃0 between 0 and 360°, as well as two values 𝑥0 and 𝑦0 
between 0 and 2000 nm are sampled randomly from a uniform distribution. These 
values represent the starting angle and initial 𝑥𝑦-coordinates of the chain, 
respectively. 

3. The curvature of the chain is chosen to be either 𝜅0 or −𝜅0 with equal chance; this 
represents the ability of the chain to “lie down” on the mica surface with either a 
left-handed or right-handed curvature. 

4. Using a step size 𝛿𝑠 = 0.5 nm, an angle 𝛿𝜃 is sampled from a normal distribution 

with mean ±𝜅𝑜𝛿𝑠 and variance 
𝛿𝑠

𝑝
. 
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5. The next point on the chain is placed at 𝑥1 = 𝑥0 + 𝛿𝑠 cos(𝜃1) and 𝑦1 = 𝑦0 + 𝛿𝑠 sin(𝜃1), 

where 𝜃1 = 𝜃0 + 𝛿𝜃. 

6. This process is repeated, choosing a random 𝛿𝜃 as above, generating 𝜃𝑖+1 = 𝜃𝑖 + 𝛿𝜃 and 

placing the next point on the chain at 𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑠 cos(𝜃𝑖+1) and 𝑦𝑖+1 + 𝛿𝑠 sin(𝜃𝑖+1).  

7. This process is terminated after 𝑛 steps, where 𝑛𝛿𝑠 = 𝐿. 

8. Steps 2 through 7 are repeated for every chain in the image. 

9. A 512-by-512 array of pixels is overlaid on top of the image, discretizing the image into 

square pixels with a side length of 3.90625 nm, the same as all experimental images used 

in this work. 

10. The intensity of each pixel is populated by considering every point on each chain as an 

intensity source, which contributes an intensity  

𝐼(𝑥, 𝑦) = 𝐼𝑜 exp (−
(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2

2𝑤2
)                                  (S18) 

to the pixel centered at (𝑥, 𝑦). The intensity contributions from every point on every 

chain are then summed to yield the overall intensity of this pixel. 

11. At this point, a 512-by-512 pixel noise matrix is generated and overlaid with the image 

containing the simulated chains. This noise matrix contains experimentally realistic 

correlated noise, obtained as described in the following subsection.  

12. The matrix containing the intensities from the simulated chains is then scaled and 

summed with the noise matrix, with the scaling factor being chosen to visually match the 

signal-to-noise ratio of our experimental AFM images. 

13. This noisy image is then converted to an 8-bit grayscale image, allowing it to be traced 

with SmarTrace. 

 

We generated two sets of images with parameters chosen to emulate experimentally gathered 

AFM images of collagen: both sets were given a width parameter of 7 nm and a contour length 

of 300 nm – chosen to replicate AFM images of collagen. For simplicity, background noise was 

not included in these simulations. 

 

The first set was generated with a persistence length of 85 nm and zero curvature. An example 

image and standard WLC model fits to the data (Equations 1, 2 from the main text) are shown in 

Figures S2A-C. Results from fits with both the WLC and cWLC are included in Table S1, in 

which it is clear that no intrinsic curvature is found in these chains (see also Table S2).  The 

traced data also reproduce the Gaussian properties of the simulated chains, as shown by the 

kurtosis and normality of the angular distributions at different segment lengths (Figures S2D and 

S2E). The standard error in the kurtosis (SEK), used to generate the error bars in Figure S2D, is 

given by (9)  

SEK =  √
24𝑛(𝑛−1)2

(𝑛−3)(𝑛−2)(𝑛+3)(𝑛+5)
,                                         (S19) 

where 𝑛 is the number of observations comprising the distribution. The expected distribution 

shown in Figure S2E is given by Eq. S8 with 𝑝 = 85 nm, 𝑠 = 50 nm and 𝜅𝑜 = 0 nm-1. 
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The second set of chains was generated with 𝑝 = 50 nm and an intrinsic curvature of 𝜅𝑜 = 0.02 

nm-1; an image of these chains is shown in Figure S3A. Due to the presence of chains with both 

positive and negative curvature (see step 3, above), the angular distributions extracted from these 

curved chains will be a sum of two Gaussian distributions, with mean ±𝜅𝑜𝑠 and variance 
𝑠

𝑝
. 

These two distributions may not have equal amplitude (for a small number of sampled chains), 

making the properties of the expected distribution difficult to calculate. However, the expected 

distribution of the absolute-values of the angles is given by 

𝑃(|𝜃|) = √
𝑝

2𝜋𝑠
[exp (−

𝑝(|𝜃|−𝜅𝑜𝑠)2

2𝑠
) + exp (−

𝑝(|𝜃|+𝜅𝑜𝑠)2

2𝑠
)]                   (S20) 

regardless of the proportion of the two distributions. Figure S3B shows the expected distribution 

for 𝑝 = 50 nm, 𝜅𝑜 = 0.02 nm-1 and 𝑠 = 50 nm, plotted with a histogram of the angles extracted 

from the simulated chains at a 50 nm segment length, demonstrating good agreement between 

the two distributions. Figures S3C and S3D show fits of the curved WLC expressions (Equations 

3, 4) to the traced data, both of which yield persistence lengths and curvatures close to the input 

parameters. Fitting with the standard WLC model results in an underestimate of persistence 

length (Table S1), and is a poorer model for these chains (Table S2). 

 

 

Simulation of AFM Image Noise  

 

In order to model to noise present in the background of our AFM images, we characterized the 

intensity fluctuations in typical images, then used this information to produce simulated images 

of chains with realistic noise.  

 

We wished to simulate a row of the image by the vector 𝑋 = (𝑋1, … , 𝑋𝑛)
𝑇, where each element 

𝑋𝑖 of the vector is a normally distributed random variable with mean 𝜇𝑖 and variance 𝜎𝑖
2. Here, 

𝑋1 refers to the intensity of the leftmost pixel in the row, 𝑋2 to the intensity of the pixel second 

from the left, and so on. We allowed correlation between nearby pixels within a row, i.e., we 

allowed for 〈𝑋𝑖𝑋𝑗〉 ≠ 0.  This is similar to experimental observations of correlated noise in the 

scanning direction. We calculated the intensity of each row by 

𝑋 = 𝑳𝑍 + 𝜇 ,      (S21) 

where the elements 𝜇𝑖 represent the average intensity of the pixels in the 𝑖th column; 𝑍 =
(𝑍1, … , 𝑍𝑛), where the 𝑍𝑖 are independently distributed normal random variables with zero mean 

and unit variance (〈𝑍𝑖𝑍𝑗〉 = 𝛿𝑖𝑗); and 𝑳 is an n-by-n matrix determined from experimental images 

that introduces correlations in the simulated noise.  

 

To construct 𝑳 and 𝜇 , we used three scarcely populated 2000 nm-by-2000 nm AFM images 

(containing fewer than 6 chains per image) and assumed the intensities to be uncorrelated 

between rows. 𝜇𝑖 was given by the average intensity of the n pixels in the 𝑖th column. We also 

determined the correlation matrix 𝑪, in which the correlation matrix elements 〈𝑐𝑖𝑐𝑗〉 represent the 

covariance between the intensities of columns 𝑖 and 𝑗, averaged over all rows, while diagonal 
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elements comprise the variance of intensities within each column (𝑐𝑖𝑖 = 〈𝑐𝑖𝑐𝑖〉 = 𝜎𝑖
2). Because 𝑪 

is Hermitian and positive-definite, 𝑳 can be found from 𝑪 = 𝑳𝑳𝑇. Practically, we determine 𝑳 by 

Cholesky decomposition of 𝑪, implemented using the MATLAB function chol(C) (5).   

 

Realizations of 𝑋  are then generated by simulating a vector 𝑍  of normal variables with zero mean 

and unit variance, matrix multiplying by 𝑳, and adding 𝜇 . These values are then used to populate 

the first row of pixel intensities in the noise matrix, after which new realizations of 𝑋  are 

simulated to populate the subsequent rows. 
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Bayesian Information Criterion (BIC) 

 

The Bayesian Information Criterion (BIC) (10) was used to assess whether the standard or 

curved WLC better describes the data:  

𝐵𝐼𝐶 =  −2 ln �̂� + 𝑘 ln𝑁.                      (S22) 

�̂� represents the maximum likelihood, k the number of parameters in the model (k = 1 for the 

WLC and k = 2 for the cWLC), and N the number of data points to be fit (N = 20 for each data 

set in our study).  

 

To determine the BIC, we need to obtain the maximum likelihood, by determining the fit 

parameters 𝜃 (e.g. 𝑝 for the WLC or 𝑝 and 𝜅𝑜 for the cWLC) that maximize the likelihood 

function 𝐿(𝜃; 𝑦𝑖 , 𝜎𝑖
2, 𝑓) for each model description f, given our data. We assume that our 

observed data are independent and sampled from normal distribution with means 𝑦𝑖 and 

variances 𝜎𝑖
2. In this case, the likelihood function is given by 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) = ∏

1

√2𝜋𝜎𝑖
2

𝑛
𝑖=1 exp (

−(𝑦𝑖−𝑓(𝑠𝑖,𝜃))
2

2𝜎𝑖
2 ).    (S23) 

This can be rewritten as 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
1

2
∑

(𝑦𝑖−𝑓(𝑠𝑖,𝜃))
2

𝜎𝑖
2

𝑛
𝑖=1 ).   (S24) 

The sum within the exponential is the chi-squared statistic 

𝜒2(𝜃) = ∑
(𝑦𝑖−𝑓(𝑠𝑖,𝜃))

2

𝜎𝑖
2

𝑛
𝑖=1 ,     (S25) 

allowing us to further simplify the likelihood function to 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
𝜒2(𝜃)

2
).     (S26) 

Since 𝜒2 is strictly positive, and the variable parameters 𝜃 appear only within 𝜒2(𝜃), we simply 

need to choose the parameters such that the chi-squared value is minimized, as this will 

maximize the value of 𝐿. This is precisely what has been done in the fitting, where 𝜃 have been 

determined to minimize 𝜒2(𝜃). The maximum value of the likelihood function is then just 

�̂�(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
𝜒𝑚𝑖𝑛

2

2
).     (S27) 

 

Now, the BIC can be determined from equation (S21): 
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𝐵𝐼𝐶 =  𝜒𝑚𝑖𝑛
2 + 𝑛 ln(2𝜋) + 2∑ ln(𝜎𝑖)

𝑛
𝑖=1 + 𝑘 ln𝑁.             (S28) 

Since the second and third terms are independent of the model tested, for comparison purposes 

we need to calculate only 

𝐵𝐼𝐶 =  𝜒𝑚𝑖𝑛
2 + 𝑘 ln𝑁.               (S29) 

 

The model with the lower BIC is more likely; the probability that the other model describes the 

data is given by  

𝑃𝑜𝑡ℎ𝑒𝑟 = exp [−
1

2
(BIClarger − BICsmaller)].   (S30) 

 

The results of this analysis are tabulated in Table S2 for experimental data on collagen and DNA 

and for simulated chains. Because often the best fit with the cWLC model results in zero 

curvature, 𝜒𝑚𝑖𝑛
2  is identical between the WLC and cWLC models. In this case, the values of BIC 

differ by ~3 due to the difference in number of model parameters k, and thus by equation (S30) 

have a probability of ~0.2 that the cWLC model better describes the data.  

 



Table S1 - Comprehensive list of fitting parameters obtained for different collagen types and co-solute conditions.  Persistence lengths, p, are given 

in nm, while curvature κ0 is in units of nm-1. Reported errors, Δ, represent 95% confidence intervals in the fitting parameters. 𝜒𝑟𝑒𝑑
2  values are 

determined by dividing the minimized 𝜒𝑚𝑖𝑛
2  values by the number of degrees of freedom, N-k, where N is the number of points in each data set 

(N = 20) and k is the number of model parameters (k = 1 for the WLC and k = 2 for the cWLC).  

 

  

Collagen 
Type 

Solution 
Length 
Traced 
(µm) 

Standard Model Fits Curved Model Fits 

〈𝑅2〉 〈cos 𝜃〉 〈𝑅2〉 〈cos 𝜃〉 

𝑝 ∆𝑝 𝜒red
2  𝑝 ∆𝑝 𝜒red

2  𝑝 ∆𝑝 𝜅𝑜 Δ𝜅𝑜 𝜒red
2  𝑝 ∆𝑝 𝜅𝑜 Δ𝜅𝑜 𝜒red

2  

Rat I Water 14.7 64 13 111 53 11 55 117 10 0.0165 0.0007 3.1 87 6 0.0125 0.0005 1.6 

Rat I 100 µM KCl 6.3 41 5 19 38 7 19 56 7 0.0150 0.0023 6.1 59 12 0.0134 0.0022 7.2 

Rat I 1 mM KCl 12.4 78 12 42 61 10 30 119 9 0.0125 0.0007 2.2 90 6 0.0105 0.0006 1.7 

Rat I 10 mM KCl 17.2 97 5 5.6 85 4 1.9 95 10 0.0 0.3 6.3 83 6 0.0 0.4 2.2 

Rat I 100 mM KCl 19.9 123 13 27 118 18 23 121 29 0.0 4.2 29 118 36 0.0 100.8 25 

Rat I 1 mM HCl 20.4 43 6 94 36 5 38 65 4 0.0175 0.0008 3.8 49 3 0.0145 0.0011 3.6 

Rat I 
10 mM KCl + 

1 mM HCl 
33.6 83 11 70 66 10 57 135 10 0.0115 0.0006 3.1 99 4 0.0094 0.0003 1.2 

Rat I 
100 mM KCl + 

1 mM HCl 
20.9 106 6 13 101 8 12 102 11 0.0 0.4 16 100 13 0.0 6.5 13 

Human I 
100 mM KCl + 

1 mM HCl 
20.7 89 4 7.4 84 6 8.8 87 7 0.0 0.2 8.0 88 12 0.0 0.3 10 

Human II 
100 mM KCl + 

1 mM HCl 
12 100 4 3.0 96 5 2.2 106 6 0.0047 0.0016 2.1 95 8 0.0 0.1 2.4 

Human III 
100 mM KCl + 

1 mM HCl 
16.7 85 2 2.1 83 7 8.5 85 4 0.0014 0.0054 2.2 81 11 0.0 0.3 9.1 

Rat I 20 mM Acetic Acid 24.7 35 5 101 31 4 39 55 3 0.0195 0.0008 3.1 43 2 0.0161 0.0008 2.0 

Human I 20 mM Acetic Acid 50.4 42 6 186 34 6 132 66 3 0.0180 0.0006 4.1 52 2 0.0166 0.0005 2.1 

Human II 20 mM Acetic Acid 13.2 64 14 120 50 12 78 109 9 0.0180 0.0008 3.9 85 5 0.0150 0.0005 1.3 

Human III 20 mM Acetic Acid 40.4 50 9 229 39 7 130 79 6 0.0181 0.0008 8.3 59 2 0.0160 0.0005 1.9 

Simulated 
WLC 

p=85 nm 24.5 83 5 17 87 2 1.5 84 9 0.0000 0.3635 18 87 4 0.0010 0.0034 1.5 

Simulated 
cWLC 

p=50 nm, κo=0.02 
nm-1 

17.7 41 5 68 36 9 118 58 2 0.0178 0.0006 1.2 65 4 0.0192 0.0008 2.6 

2828 bp 
dsDNA 

See supporting 
text 

19.6 61 1 1.7 62 2 1.6 61 3 0.0000 1.6412 1.8 62 4 0.0 0.6 1.7 
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Table S2.  Model selection using the Bayesian Information Criterion (BIC).  BIC was calculated for the straight (WLC) and curved (cWLC) models 

using equation (S29).  

  〈𝑅2〉 〈cos 𝜃〉 

Sample Condition BIC straight BIC curved 
More 

probable? 
P other? BIC straight BIC curved 

More 
probable? 

P other? 

Rat Type-I Water 2112 62 curved < 1E-7 1040 36 curved < 1E-7 

Rat Type-I 100 µM KCl 366 116 curved < 1E-7 358 136 curved < 1E-7 

Rat Type-I 1 mM KCl 804 46 curved < 1E-7 579 37 curved < 1E-7 

Rat Type-I 10 mM KCl 109 119 straight 7E-3 39 45 straight 5E-2 

Rat Type-I 100 mM KCl 516 523 straight 5E-2 444 447 straight 2E-1 

Rat Type-I 1 mM HCl 1798 75 curved < 1E-7 730 70 curved < 1E-7 

Rat Type-I 10 mM KCl + 1 mM HCl 1334 62 curved < 1E-7 1082 27 curved < 1E-7 

Rat Type-I 100 mM KCl + 1 mM HCl 259 285 straight 2E-6 237 240 straight 2E-1 

Human Type-I 100 mM KCl + 1 mM HCl 144 150 straight 5E-2 171 186 straight 6E-4 

Human Type-II 100 mM KCl + 1 mM HCl 60 44 curved 3E-4 45 48 straight 2E-1 

Human Type-III 100 mM KCl + 1 mM HCl 43 46 straight 2E-1 165 169 straight 1E-1 

Rat Type-I 20 mM Acetic Acid 1916 61 curved < 1E-7 752 41 curved < 1E-7 

Human Type-I 20 mM Acetic Acid 3533 79 curved < 1E-7 2519 44 curved < 1E-7 

Human Type-II 20 mM Acetic Acid 2283 76 curved < 1E-7 1480 29 curved < 1E-7 

Human Type-III 20 mM Acetic Acid 4348 156 curved < 1E-7 2477 41 curved < 1E-7 

Simulated WLC p = 85 nm 332 337 straight 8E-2 31 34 straight 2E-1 

Simulated cWLC 
p = 50 nm 

κo = 0.02 nm-1 
1304 27 curved < 1E-7 2253 52 curved < 1E-7 

2828 bp dsDNA 
4 mM HEPES, 10 mM NaCl, 

2 mM MgCl2 (pH 7.4) 
36 39 straight 2E-1 33 36 straight 2E-1 

  

 



 
 

Figure S1.  Quantifying the flexibility of dsDNA.  (A) Example AFM image of 2828 bp linear 

dsDNA. (B) Kurtosis of angle distributions is close to 3 for all segment lengths, indicating that 

angles are normally distributed. (C) Mean squared end-to-end distance versus length along DNA 

molecules. Symbols represent the mean for each segment length while error bars show the 

standard error of the mean. The persistence length from the fit (red line; Equation 1) is 62 ± 2 nm.  

(D) Average tangent-tangent correlation vs. length along DNA molecules. The persistence length 

from the fit (red line; Equation 2) is 62 ± 2 nm. These values for persistence length are internally 

consistent and are in agreement with previous measurements of DNA deposited onto mica and 

imaged in air (8). 
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Figure S2.  Test of SmarTrace analysis procedures using simulated worm-like chains. (A) 

Example image of simulated worm-like chains with a persistence length of 𝑝 = 85 nm. After 

being traced, the data were fit with the standard WLC expressions for mean squared end-to-end 

distance (Eq. 1) and mean tangent vector correlation (Eq. 2), as shown in (B) and (C), 

respectively. Both fits yield persistence lengths consistent with the value input into the 

simulations. (D) Kurtosis of the angular distributions extracted from the simulated chains at 

different segment lengths. A kurtosis near the expected value of 3 is achieved at all length scales. 

Errors in the kurtosis are determined using Eq. S19. (E) Individual angular distributions are also 

well described as Gaussian, as shown by good agreement between the expected and extracted 

angular distributions at a 50 nm segment length.  
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Figure S3.  Analysis of simulated curved worm-like chains. (A) Example image of simulated 

curved worm-like chains with a persistence length of 𝑝 = 50 nm and curvature of 𝜅𝑜 = 0.02 nm-1. 

(B) Histogram of the absolute-valued angles extracted from the traces of these simulated chains 

at a segment length of 𝑠 = 50 nm, as well as the expected probability distribution (solid red line, 

Eq. S20) and the two Gaussian components that comprise it. (C, D) Fits of data from these 

simulated chains to the curved worm-like chain expectations for mean squared end-to-end 

distance (Eq. 3) and mean tangent vector correlation (Eq. 4), respectively. Both fits yield 

parameters close to those input in the chain simulations. 
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Figure S4.  Standard WLC model fits to human collagens (A) type I, (B) type II, and (C) type III, 

all deposited from 100 mM KCl with 1 mM HCl. 〈𝑅2〉 fits (Eq. 1) are shown in the left column 

in red, and 〈cos 𝜃〉 fits (Eq. 2) are shown in the right column in blue. 
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Figure S5.  Standard (dashed lines) and curved (solid lines) WLC model fits to rat tail collagen 

type I data deposited from (A) 0.1 mM KCl, (B) 1 mM KCl, (C) 10 mM KCl and (D) 100 mM 

KCl. 〈𝑅2〉 fits are shown in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column 

in blue. As the KCl concentration is increased, the standard and curved fits converge to the same 

result. 
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Figure S6.  Standard (dashed lines) and curved (solid lines) WLC model fits to rat tail collagen 

type I data from (A) water, (B) 10 mM KCl + 1 mM HCl and (C) 100 mM KCl + 1 mM HCl. 

〈𝑅2〉 fits are shown in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column in 

blue. 
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Figure S7.  Standard (dashed lines) and curved (solid lines) WLC model fits to (A) type I, (B) 

type II and (C) type III human collagens deposited from 20 mM acetic acid. 〈𝑅2〉 fits are shown 

in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column in blue. 
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