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Environmentally Controlled Curvature of Single
Collagen Proteins
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ABSTRACT The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and
connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular
collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental
techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric)
and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised,
we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein’s
mechanical properties. Our results show that types I, II, and III collagens—the key fibrillar varieties—exhibit similar molecular
flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl
concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests
that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals
that this modulation of collagen’s conformational behavior is not due to changes in flexibility but rather arises from the induction
of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include
innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within
the curved worm-like chain model shows that collagen’s curvature depends strongly on pH and salt, whereas its persistence
length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH,
and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid
rod, which may have implications for its cellular processing and secretion.
INTRODUCTION
Collagen is the predominant structural protein in verte-
brates, for whom it represents more than one quarter of
the total protein in our bodies (1,2). It is widely used as a
biomaterial and plays a vital physiological role in extracel-
lular matrix and connective tissue mechanics. Collagen can
assemble into many different higher-order forms, which
fulfill distinct structural and mechanical roles.

Over 28 different types of human collagen have been
identified (1,2), of which the most prevalent are fibrillar col-
lagens such as types I, II, and III. These collagens assemble
to create highly ordered fibrils, which in turn are the build-
ing blocks for the extracellular matrix and for fibers, which
act as load- and tension-bearing structures in connective tis-
sues. Not surprisingly, changes in collagen’s composition
are associated with a wide variety of diseases, including os-
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teogenesis imperfecta (3) and Ehlers-Danlos syndrome (4).
In addition to genetic mutations in collagen, physiological
dysfunction can arise from alterations in post-translational
modifications and aging via nonenzymatic glycation and
cross-link formation (5). Such chemical changes at the pro-
tein level correlate with altered tissue structure and me-
chanics and pathologically affect human health. Because
of the hierarchical nature of collagen structure, identifying
the mechanisms by which chemical changes modify tissue
mechanics requires understanding how they impact me-
chanics at the molecular level.

Collagen’s molecular structure is a right-handed triple he-
lix (Fig. 1 A), �300 nm long and 1–2 nm in diameter (2).
This triple helix comprises three left-handed polyproline-
II-like helices (a-chains) with a characteristic (Gly-X-Y)n
repeat amino acid sequence. Although frequently proline
or hydroxyproline, the X and Y amino acids are variable
and provide the sequence diversity that defines individual
collagen types. Different collagen types are also distin-
guished as homotrimeric (three identical a-chains) or heter-
otrimeric. Although the sequences of the different types of
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FIGURE 1 Imaging individual collagen proteins. (A) A schematic of tri-

ple-helical collagen. (B–E) Representative AFM images of each of the four

collagen samples investigated in this work. For each sample, collagen was

deposited from a solution of 100 mM KCl þ 1 mM HCl. Scale bars,

250 nm. (B) Rat tail-derived type I collagen. (C) Recombinant human

type I collagen. (D) Cartilage-derived human type II collagen. (E) Recom-

binant human type III collagen. (F) SmarTrace starts with user input points

along a collagen chain (left image). Initial splines connecting the three input

points (dashed lines) do not follow the chain. The SmarTrace algorithm

identifies both the center line of the chain (red) and its width (blue—used

for chain tracing but no further analysis), as shown in the right image. To

view this figure in color, go online.
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collagen are well established, their mechanical properties
are not.

One property commonly used to describe the mechanical
properties of chain-like biomolecules is the persistence
length—the length over which the orientation of the chain
remains correlated in the presence of thermal noise.
Although the persistence lengths of other biological poly-
mers such as DNA are well established and robust to exper-
imental technique, this is not the case for collagen (Table 1).
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Early solution-based studies found that collagen’s triple he-
lix should be considered semirigid, exhibiting a persistence
length of pz 130–180 nm (6–8). These values likely led to
the conventional description of collagen as a possessing a
stiff, rod-like structure (9,10). However, most recent sin-
gle-molecule experimental and simulation studies contra-
dict this description, finding persistence lengths for
collagen as short as pz 10 nm (11–17). These values imply
that collagen is highly flexible, adopting compact, coiled
configurations in solution. Other experimental and simula-
tion approaches have determined persistence lengths
throughout this range, with another cluster of values around
p z 40–60 nm (14,18–20). It is remarkable that this funda-
mental parameter of persistence length is so poorly estab-
lished for a protein of such mechanical importance and
ubiquity.

Examination of Table 1 suggests that there is diversity not
only in the approaches used to study collagen’s flexibility
but also in the types of collagen, their sources, and solution
conditions. A comparison of different tissue-derived
collagen types was performed in (18), which determined
the type I heterotrimer to be slightly more rigid than the
type III homotrimer. A similar difference between homo-
and heterotrimeric collagen sequences was found in recent
molecular dynamics simulations (16). Collagen’s remodel-
ing by MMP-1, a collagenase that unwinds the triple helix,
has been suggested to depend on the source of collagen
(e.g., recombinant, from cell culture, or from tissue) (21),
implying that post-translational enzymatic and age-related
nonenzymatic modifications may alter its mechanics at
the molecular level. A recent study found that collagen’s
flexibility is influenced by its solution environment,
with collagen appearing flexible at low salt in acidic condi-
tions and more rigid in high-ionic-strength, neutral pH
buffers (13). This result runs counter to the expectations
of the behavior of polyelectrolytes like DNA, which are ex-
pected to become more flexible as ionic strength is increased
(22,23). Understanding collagen’s response in different so-
lution conditions is relevant not only to its mechanical
role in distinct tissue environments but also to understanding
its intracellular compactness as it traverses a pH gradient
during cellular processing and secretion (24,25).

In this work, we use atomic force microscopy imaging
and characterization to investigate how composition, source,
and chemical environment affect the flexibility of collagen’s
triple helix. By comparing different fibrillar collagens (types
I, II, and III; tissue-derived and recombinantly expressed;
homo- and heterotrimeric triple helical structures), we find
that molecular composition does not significantly impact
collagen’s overall flexibility. In contrast, we find that both
ionic strength and pH independently impact the apparent
flexibility of collagen, providing estimates of persistence
length that span the range from flexible to semirigid depend-
ing on solution environment. Careful consideration of poly-
mer chain statistics shows, however, that treating collagen as



TABLE 1 Literature Estimates of Persistence Length for Fibrillar, Molecular Collagens

Persistence

Length, p (nm) Collagen Type and Source Solution Conditions Method Reference

10 57-residue segment of homotrimeric

mouse type I

water, neutral pH Molecular dynamics (16)

12 Bovine dermis type I water, pH �5 AFM imaging (13)

13 45-residue segment of rat type I 10 mM NaCl, neutral pH Molecular dynamics (17)

11–15 Cell-derived human type I

procollagen; recombinant human

type II procollagen

>10 mM buffer, neutral pH Optical tweezers stretching (11,12)

16 30-residue homotrimeric peptide water, neutral pH Steered molecular dynamics (15)

22 57-residue segment of heterotrimeric

mouse type I

water, neutral pH Molecular dynamics (16)

15–65 Recombinant human type II

procollagen

>10 mM buffer, neutral pH Optical tweezers stretching (14)

40 Fetal bovine type III 50 mM acetic acid þ equal volume

glycerol

Electron microscopy (18)

51 60-nm segment of human type I

collagen

water, neutral pH Coarse-grained molecular dynamics (20)

57 Calf dermis type I 50 mM acetic acid þ equal volume

glycerol

Electron microscopy (18)

130 Rat skin type I >10 mM buffer, pH �5 Viscometry (6)

135–165 Bovine dermis type I >10 mM buffer, neutral pH AFM imaging (13)

161 Rat skin type I 0.3 M acetate þ 6 mM NaCl, pH 4 Rheology (7,8)

160–165 Bovine dermis type I 1 mM HCl Dynamic light scattering (19)

167 Rat skin type I >10 mM buffer, neutral pH Rheology (8)

Collagen: A Curved Worm-like Chain
a standard worm-like chain does not describe its properties
in most of these chemical environments. Instead, we show
that a curved worm-like chain model that includes inherent
molecular curvature is a far more appropriate descriptor of
the observed conformations of collagen on mica. With this
model, collagen’s bending flexibility depends much less
on solution conditions; instead, salt concentration and pH
modulate its global curvature. We find that curvature does
not depend strongly on the type or source of collagen, nor
does the persistence length. To the best of our knowledge,
these results constitute the first experimental analysis of
curved worm-like chains and provide a new explanation
for the conflicting reports on the flexibility of triple-helical
collagen.
MATERIALS AND METHODS

Collagen sources

Recombinant human type I and recombinant human type III collagen were

expressed in yeast and obtained from FibroGen (San Francisco, CA)

(generous gifts of Alexander Dunn, Stanford University), rat tail tendon-

derived type I collagen (Cultrex 3440-100-01) was purchased from R&D

Systems (Oakville, Canada), and human cartilage-derived type II collagen

(CC052) was purchased from EMDMillipore (Burlington, MA). All stocks

are of pepsin-treated collagen and are have a concentration between 2 and

5 mg/mL in 20 mM acetic acid.
Sample preparation

The desired solution conditions were obtained by solution exchange using

Millipore Amicon Ultra-0.5 spin filters (50 kDa, UFC505096), then dilution

to �1 mg/mL collagen before deposition. 50 mL was deposited onto freshly
cleaved mica (Highest Grade V1 AFM Mica Discs, 10 mm; Ted Pella,

Redding, CA) for 20 s. After deposition, samples were rinsed five times

with 1 mL ultrapure water to remove unbound proteins, and the mica was

dried under a flow of filtered compressed air. It is important to note that

all collagen molecules were imaged in these dry conditions. Thus, solution

conditions quoted refer to the condition under which collagen was depos-

ited onto mica, at room temperature.
Atomic force microscopy imaging

Images of collagen adsorbed to mica were collected with an Asylum

Research MFP-3D atomic force microscope (Asylum Research, Santa Bar-

bara, CA) using tapping mode in air. AFM tips with a 325 kHz resonance

frequency and 40 N/m force constant (MikroMasch, HQ:NSC15/AL BS)

were used for image collection and were changed as necessary to preserve

image quality.
Chain tracing

The SmarTrace algorithm used to trace collagen chains from AFM images

was developed in MATLAB (26) and uses a graphical user interface adapted

from (27). It is available from the authors upon request. A detailed descrip-

tion of the SmarTrace workflow and validation can be found in the Support-

ing Materials and Methods. Briefly, the algorithm uses cross-correlation

analysis of a template cross section with the imaged chain to identify its

center line and width. Continuity constraints on the local directionality

and width enable the tracing of chains in noisy environments.
Data analysis

Traced chains were sampled using bootstrapping to extract statistics of the

chain for flexibility determination. Following the method of Faas et al. (28),

each chain was randomly divided into nonoverlapping segments of lengths

drawn from a set of input values (here, s ¼ 10, 20, 30, ..., 200 nm). The
Biophysical Journal 115, 1457–1469, October 16, 2018 1459
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maximal segment length does not need to be the same as the chain contour

length, so it allows the use of partially traced chains. This is particularly

useful when ends of a molecule are not clear or chains intersect, as it allows

subsections of the chain to be included in the analysis. hR2ðsÞi and

hcos qðsÞi were determined from all segments of each length s.

Resultant hR2ðsÞi and hcos qðsÞiwere fitted to equations derived from the

inextensible two-dimensional worm-like chain (WLC) model with (Eqs. 3

and 4) or without (Eqs. 1 and 2) intrinsic curvature. Derivations for Eqs. 3

and 4 are presented in the Supporting Materials and Methods.

The kurtosis of each angular distribution was calculated at each segment

length s asn½Piðqi � hqiÞ4�=½Piðqi � hqiÞ2�2, for a distribution across

n values of qi. The standard error of the kurtosis was determined using

Eq. S19.

Values for p and ko presented in Table 2 are an average of the results

from independent fits to hR2ðsÞi and to hcos qðsÞi. Reported errors, D,

represent the propagated error of the 95% confidence intervals of the

respective fit parameters or half of the difference between the hR2ðsÞi
and hcos qðsÞi fit parameters, whichever is larger. A full list of fitting pa-

rameters from all models and samples is provided in Table S1. The total

length of collagen chains traced in each sample condition is also included

in Table S1.

Model selection used a likelihood-based approach, the Bayesian Infor-

mation Criterion (BIC) (29). Details are provided in the Supporting Mate-

rials and Methods, with results provided in Table S2.
Validation tests

The performance of the SmarTrace algorithm and data analysis code was

evaluated by tests on simulated polymers and on images of DNA. Details

are provided in the Supporting Materials and Methods.
RESULTS AND DISCUSSION

Atomic force microscopy (AFM) is a well-established tool
for imaging the conformations of flexible biopolymers (30).
We have used the technique to image collagens of different
types and sources deposited from a range of solution condi-
tions and have characterized how these parameters influence
the flexibility of collagen’s triple helix.
TABLE 2 Summary of Fitting Parameters Determined in This Work

Collagen Type Solvent Condition

Standard Model Fi

p (nm) Dp (

Rat I water 59 17

Rat I 100 mM KCl 40 8

Rat I 1 mM KCl 70 15

Rat I 10 mM KCl 91 9

Rat I 100 mM KCl 120 22

Rat I 1 mM HCl 39 8

Rat I 10 mM KCl þ 1 mM HCl 75 15

Rat I 100 mM KCl þ 1 mM HCl 103 10

Human I 100 mM KCl þ 1 mM HCl 86 8

Human II 100 mM KCl þ 1 mM HCl 98 7

Human III 100 mM KCl þ 1 mM HCl 84 7

Rat I 20 mM acetic acid 33 7

Human I 20 mM acetic acid 38 9

Human II 20 mM acetic acid 57 18

Human III 20 mM acetic acid 44 11

Fit parameters are averages of the values from independent hR2ðsÞi and hcos q
indicates uncertainties that are unphysically large. The total contour lengths of

list of fitting parameters and c2 values in Table S1.
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Collagen type and source

To investigate how collagen’s flexibility depends on its
source, we compared four different samples of collagen.
These represent three types of fibrillar collagens (types I,
II, and III) of either rat (type I) or human (all three) genetic
origin. Although all of these samples are capable of self-
assembly into highly ordered fibrils, they were imaged
under sufficiently dilute conditions such that assembly did
not occur. Type I collagen is a heterotrimer (a1(I)2a2(I)1),
whereas types II and III are each homotrimeric (a1(II/
III)3). Additionally, to explore how collagen’s source influ-
ences its flexibility, our samples encompass both tissue-
derived (rat type I and human type II) and cell-derived
(human types I and III) sources. The latter were recom-
binantly expressed in yeast and possess only prolyl hy-
droxylation as a post-translational modification (31). This
contrasts with mammalian-produced collagens, which
have extensive post-translational modifications including
hydroxylation of prolines and lysines as well as O-glycosyl-
ation of hydroxylysines (14,24).

Representative AFM images of each of the four collagen
samples are shown in Fig. 1, B–E. Each image was obtained
by depositing collagen from a room-temperature solution of
100 mM KCl þ 1 mM HCl onto freshly cleaved mica, then
rinsing with water and drying before imaging. For all four
collagen samples, the chains appear semiflexible, with con-
tour lengths of �300 nm, as expected (32). There are no
obvious qualitative differences in flexibility among these
samples.

To quantify the flexibility of each collagen type, the
imaged chains were traced to provide backbone contours
for conformational analysis. Existing chain-tracing algo-
rithms proved problematic for many of our images, in some
cases because of the background levels of noise (28) or in
ts Curved Model Fits

nm) p (nm) Dp (nm) ko (nm
�1) Dko (nm

�1)

102 21 0.015 0.003

57 14 0.014 0.003

105 21 0.011 0.001

89 11 0.000 N/A

120 46 0.000 N/A

57 11 0.016 0.002

117 26 0.010 0.001

101 18 0.000 N/A

88 14 0.000 N/A

101 10 0.002 N/A

83 11 0.001 N/A

49 8 0.018 0.002

59 10 0.017 0.001

97 17 0.017 0.002

69 14 0.017 0.002

ðsÞi fits of the data; errors, D, represent the error in these estimates. N/A

collagen traced in each condition is provided along with a comprehensive
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others from the sensitivity of the algorithm to the locations of
user-input starting points (27). Hence, we developed a new
chain-tracing program, dubbed SmarTrace. The algorithm
incorporates pattern matching to identify the best centerline
of a chain and refines an initial guess at this centerline by
using direction and width continuity constraints. Required
user input is minimal: backbone contours are identified
from only a few clicks near the chain (see Fig. 1 F). Details
of SmarTrace’s methodology and workflow are provided in
the Supporting Materials and Methods.

From traced chains, we implemented tools of polymer
physics to analyze the statistical properties of chain confor-
mations and determine persistence lengths (33). To perform
this analysis, chains were segmented randomly into nonover-
lapping pieces of different contour lengths (e.g., s ¼ 10,
20,., 200 nm). This approach allows partially traced chains
to be included in the analysis (28). For each segment, we
calculated its squared end-to-end distance R2(s) and the
change in orientation between its starting and ending tangent
vectors btðsÞ,btð0Þ ¼ cos qðsÞ; these quantities were then
averaged over all segments of length swithin the population.
Length-dependent trends in mean-square end-to-end dis-
tance, hR2ðsÞi; and tangent vector correlation, hcos qðsÞi,
were compared with the predictions of the WLC model for
polymers equilibrated in two dimensions:

�
R2ðsÞ� ¼ 4sp

�
1� 2p

s

�
1� e

� s
2p
��

(1)

and

hcos qðsÞi ¼ e
� s
2p: (2)

The validity of the SmarTrace chain-tracing algorithm
and analysis approaches was established by testing their per-
formance on AFM images of DNA and on simulated chains
(see Supporting Materials and Methods; Figs. S1–S3).

We first investigated whether collagen molecules are
equilibrated on the mica and are well described by the
WLC model. For type I collagen from rat deposited from
100 mM KCl þ 1 mM HCl, both mean-square end-to-end
distance hR2ðsÞi and tangent vector correlation hcos qðsÞi
are well described by the WLC model (Fig. 2, A and B).
The agreement between persistence lengths from the fits
to Eqs. 1 and 2, p ¼ 106 5 6 nm and p ¼ 101 5 8 nm,
respectively, further suggest that collagen deposited from
this solution condition behaves as an equilibrated two-
dimensional WLC. This assumption is corroborated by
Gaussian distributions of bending angles (Fig. 2 C). The
kurtosis of the bending angle distribution is �3 (the value
characteristic of a normal distribution) at all contour lengths
(Fig. 2 D). These measures all indicate that the conforma-
tions of collagen on mica represent a sample equilibrated
in two dimensions and that rat type I collagen has a persis-
tence length of �100 nm.
The persistence lengths were similarly determined for the
other collagen samples (Fig. 2E). The data and fits are shown
in Fig. S4, and persistence lengths are presented in Fig. 2 F.
Table 2 provides a summary of the fit parameters, represent-
ing an average of the hR2ðsÞi- and hcos qðsÞi-derived results;
the complete summary of parameters from each fit is given in
Table S1, along with reduced c2 values used to assess good-
ness of fit. All four collagen samples exhibit similar persis-
tence lengths, within the range of 84–103 nm in these
solution conditions. We do not observe significant differ-
ences in flexibility for homotrimeric (II, III) collagen versus
heterotrimeric (I) collagen, in contrast with previous findings
(18,34). Tissue-derived collagens (rat I, human II) appear to
be slightly more rigid than the yeast-expressed recombinant
(human I, III) collagens, which correlates with their increase
in post-translational modifications. However, these differ-
ences are small in the context of the wide range of values
in the literature (Table 1). Thus, differences in type, source,
and extent of post-translational modifications do not appear
to cause substantial differences in molecular flexibility.
Influences of salt and pH

Given a previous report of significantly different collagen
flexibility in buffers with high salt concentration and neutral
pH, compared with low-ionic-strength, acidic solutions (13),
we next investigated how pH and salt concentration indepen-
dently impact the flexibility of collagen. Rat type I collagen
was deposited onto mica from a range of different solution
conditions in a controlled ionic environment. In one set of
experiments, solutions contained only varying concentra-
tions of potassium chloride, from 0 mM (water) to 100 mM
KCl. In a second set of experiments, solutions again con-
tained varying concentrations of KCl but were acidified to
pH z 3 by 1 mM HCl.

Images of collagen at different KCl concentrations and pH
are shown in Fig. 3 A. It is immediately apparent that salt
affects the conformations of collagen: the protein transitions
from more compact structures at low ionic strength to much
more extended conformations at high ionic strength. A
similar trend is seen in the acidic conditions. Conformations
were analyzed to obtain mean-square end-to-end distances
and tangent correlations as a function of contour length and
were fitted to Eqs. 1 and 2, respectively. This analysis finds
persistence length to increase significantly with ionic
strength at both neutral and acidic pH (Fig. 3 B; Table 2).
Our results corroborate and elaborate on the previous find-
ings of increased flexibility at low pH and salt compared
with neutral pH and high salt (13).

The dependence of persistence length on salt concentra-
tion is striking. In neutral solutions, the determined persis-
tence length increases approximately threefold as the KCl
concentration is increased to 100 mM. In acidic solutions,
persistence lengths are shorter but still increase, more than
doubling as the concentration of KCl increases from 1 to
Biophysical Journal 115, 1457–1469, October 16, 2018 1461



FIGURE 2 Determination of collagen’s persis-

tence length using the standard worm-like chain

(WLC) model. (A–D) Analysis for rat type I

collagen deposited from a solution of 100 mM

KCl þ 1 mM HCl. (A) Mean-square end-to-end

distance as a function of segment length, hR2ðsÞi.
Points represent mean values determined at

10 nm segment-length intervals, with error bars

representing standard errors of the mean. The red

line is a fit with Eq. 1, yielding a persistence length

of p ¼ 106 5 6 nm (error represents 95% confi-

dence interval of the fit). (B) Tangent vector corre-

lation as a function of segment length, hcos qðsÞi.
Points and errors are similarly represented as

in (A). The blue line is a fit with Eq. 2, yielding

p ¼ 101 5 8 nm. Fits to the WLC model in (A)

and (B) capture the trends in the data and yield

comparable persistence lengths. (C) An angular

histogram for s ¼ 50 nm segment lengths (blue

bars). Error bars represent
ffiffiffiffi
N

p
counting error.

This distribution agrees well with that expected

for a WLC of persistence length p ¼ 103 nm (the

average of the results from (A) to (B)), which is a

normal distribution with a mean of zero and a

variance of s/p (red line). (D) Kurtosis of the

angular distributions extracted from the traced col-

lagens at different segment lengths is shown. Error

bars represent the standard error in the kurtosis

(Eq. S19). The kurtosis of the angular distributions

is close to three (red line) for all segment lengths,

indicating that the collagens behave as equilibrated

Gaussian chains on the mica surface. (E) A Venn

diagram illustrating the similarities and differences

between the different collagen samples tested,

including trimeric identity and source. (F) Persis-

tence length for each collagen sample deposited

from a solution of 100 mM KCl þ 1 mM HCl,

obtained using hR2ðsÞi and hcos qðsÞi analyses.

The similarity among these samples suggests that

collagen type and source have little impact on the

mechanical properties of collagen at the molecular

level. To view this figure in color, go online.
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100 mM. Intriguingly, the range of persistence lengths ex-
hibited here spans a significant portion of values reported
and unreconciled in the literature (Table 1).

The trend of increasing stiffness with increasing ionic
strength is unexpected, as it is opposite to predictions for
polyelectrolytes and to observations for biopolymers such
as DNA (22,23). However, examination of the data and
fits in some of the solution conditions, particularly at lower
salt concentrations, reveals that the experimental data are
not well described by the standard WLC model (e.g.,
Fig. 4; see also Figs. S5 and S6). For hR2ðsÞi, the agreement
between model and data is reasonable at shorter segment
lengths (e.g., s < 100 nm), but longer segments exhibit
shorter-than-expected end-to-end distances. The disagree-
ment with the standard WLC model is even more apparent
when considering the hcos qðsÞi behavior. There appears
1462 Biophysical Journal 115, 1457–1469, October 16, 2018
to be an oscillatory modulation of the tangent vector corre-
lation whereby chains maintain directionality at small
segment lengths, reorient substantially at intermediate
lengths, and in many cases, exhibit anticorrelated tangent
vectors at longer contour lengths. These are not features
of a well-equilibrated WLC. Instead, the oscillatory char-
acter of the tangent vector decorrelation suggests that curva-
ture may play a role in the observed conformations of
collagen.
Curved WLC

To describe an intrinsically curved WLC (cWLC), we as-
sume that the lowest-energy conformation of the chain is
curved (bent) rather than straight. The extent of angular
fluctuations about this curved state is determined by the



FIGURE 3 Effects of ionic strength on persistence length. (A) AFM im-

ages of rat type I collagen deposited from solutions covering a range of KCl

concentration, for both neutral and acidic (�3) pH. Scale bars, 250 nm. As

salt concentration increases, the collagen chains appear to straighten.

(B) Persistence lengths in these conditions. The reported values are the

average of p extracted from fits to hR2ðsÞi and to hcos qðsÞi, and errors

are the larger of the propagated error in this mean or half the separation be-

tween the two values of p. For the purposes of graphical representation, wa-

ter was assumed to have an ionic strength of 10�7 M. Increasing the ionic

strength causes a large increase in the apparent persistence length, an effect

that is reduced slightly in the acidic condition for the same ionic strengths.

To view this figure in color, go online.
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angular bending potential and the thermal energy of the
system, which relate to persistence length as for the stan-
dard WLC. From this cWLC model, equations for the
mean-square end-to-end distance and mean tangent vector
correlation can be derived (see Supporting Materials and
Methods):

�
R2ðsÞ�

c
¼ 4sp�

1þ 4k2op
2
�2
	
1� 2p

s

�
1� 4k2op

2
�

�
�
1� cosðkosÞe�

s
2p

�

þ 4kop
2

s

�
kos� 2 sinðkosÞe�

s
2p

�

(3)

and
 �
cos q sð Þc

� ¼ cos kosð Þe�
s
2p: (4)
Here, ko represents the inherent curvature of the chain,
which is the inverse of its inherent radius of curvature:
ko ¼ R�1

o . Eqs. 3 and 4 describe the expected behavior of
an intrinsically curved, inextensible WLC equilibrated in
two dimensions and are two-dimensional versions of
three-dimensional results derived previously (35). Of note,
the cWLC model is distinct from approaches that assume
a random local curvature (28): in the cWLC model, the
lowest-energy conformation of the chain is globally curved,
i.e., bends always in the same direction.

Fig. 4, A and B show fits of the cWLC model to
the hR2ðsÞi and hcos qðsÞi data from rat type I collagen
deposited from 1 mM HCl. The cWLC captures trends
in both hR2ðsÞi and hcos qðsÞi significantly better than
the standard model. Notably, the cWLC model captures
the longer-length anticorrelation of the tangent vectors
ðhcos q< 0iÞ, which under the standard WLC model is
unphysical. Additionally, the cWLC fits provide a distinct
interpretation of the compact structures observed at low
ionic strength (Fig. 3): rather than being more flexible
at lower salt concentration, collagen is instead more
curved.

Salt-dependent trends in persistence length and curva-
ture obtained from the cWLC model are shown in Fig. 4,
C and D. In contrast to the monotonic increase in persis-
tence length with increasing KCl concentrations found
when using the standard WLC model (Fig. 3), the results
from the cWLC fits indicate that persistence length varies
only modestly over the range of concentrations used here
(Fig. 4 C). Instead, the curvature depends strongly on
ionic strength, decreasing from ko ¼ 0.02 nm�1 to
0 (i.e., straightening) as the concentration of KCl is
increased (Fig. 4 D). This effect is shown schematically
in Fig. 4 E.

Statistical considerations demonstrate that the cWLC is
a better model than the WLC for collagen in almost all of
the tested solution conditions. In lower-concentration KCl
conditions, c2 is significantly lower when the data are
fitted with the cWLC model than with the WLC model
(Table S1). In contrast, the WLC model produces a lower
c2 than the cWLC in only three conditions (10 mM KCl,
100 mM KCl, and 1 mM HCl þ 100 mM KCl). In these
three solution conditions, we find that fitting with the
cWLC model gives the same persistence length and zero
curvature, i.e., the cWLC model reduces to the same re-
sults as the standard WLC model. We further assessed
these two models using the BIC, which uses likelihood
analysis to assess the probability that one model is a better
descriptor of the data than another. The BIC incorporates a
stronger penalty for additional fit parameters than does
c2 analysis (Eq. S29), thereby challenging more strongly
the ability of a model with additional fit parameter(s) to
describe the data. Even so, the BIC also indicates a strong
preference for the cWLC model in the lower-salt condi-
tions (Table S2).
Biophysical Journal 115, 1457–1469, October 16, 2018 1463



FIGURE 4 At low ionic strength, collagen is

better described as a cWLC. (A) Fits of the

mean-square end-to-end distance using both the

standard (Eq. 1, dashed red line) and curved

(Eq. 3, solid red line) WLC models to data

extracted from rat tail type I collagen deposited

from 1 mMHCl. (B) Corresponding fits of the stan-

dard (Eq. 2, dashed blue line) and curved (Eq. 4,

solid blue line) WLC tangent vector correlation

functions. The data are more accurately described

by the curved model equations, as shown statisti-

cally by a significant improvement in reduced

c2 values (see text). The standard WLC underesti-

mates the persistence length of the collagens in this

condition, presumably interpreting the induced

curvature as additional fluctuation. (C) Persistence

lengths for the different cosolute conditions pre-

sented in Fig. 3 Rather than the trend with ionic

strength seen with the standard WLC fits, there is

a less significant and less obviously monotonic

variation in persistence length as a function of

ionic strength. Instead, the observed systematic

conformational changes are attributed to a varia-

tion in innate curvature, which drops as the ionic

strength of the solution is increased (D). For the

purposes of graphical representation, water was

assumed to have an ionic strength of 10�7 M. Error

bars on hR2ðsÞi and hcos qðsÞi values are as

described for Fig. 2, and error bars on p and ko
are obtained as described for Fig. 3. (E) A sche-

matic illustrating the transition of collagen from

a molecule with a curved backbone at low ionic

strength and pH �3 (left) to one with a straight

backbone at higher ionic strength and neutral pH

(right). The persistence length characterizes fluctu-

ations about this lowest-energy conformation. To

view this figure in color, go online.
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Origins of collagen curvature

To determine whether the induction of curvature is ion spe-
cific, images of rat type I collagen deposited from 20 mM
acetic acid were collected and analyzed with the standard
and cWLC models (Fig. 5, A–D). Conformations of
collagen deposited from acetic acid are better described
by the cWLC model, consistent with observations at low
ionic strengths of KCl. Again, naı̈ve application of the
standard WLC model results in persistence lengths smaller
than those obtained from cWLC fits. To test for equilibra-
tion of the samples, we considered the distribution of bend
angles. Because of chain curvature, these distributions
should not be represented by a single Gaussian centered
at q(s) ¼ 0. Rather, the distributions are expected to be
described by two Gaussians, centered symmetrically about
zero at an angle q(s) ¼ kos and with standard deviation
sðsÞ ¼ ffiffiffiffiffiffiffi

s=p
p

(Eq. S20). The experimental angular distribu-
tion is indeed well described by this bimodal function
(Fig. 5 D). The agreement between predicted and measured
angular distributions is strong evidence of collagen equili-
bration on the mica surface in this low-salt condition. The
fit parameters in acetic acid (p ¼ 49 nm, ko ¼ 0.018 nm�1)
1464 Biophysical Journal 115, 1457–1469, October 16, 2018
are similar to those from the 1 mM HCl solution (Table 2),
which has comparable ionic strength and pH. Thus, at low
ionic strength, there does not seem to be a strong effect of
chloride versus acetate anions on collagen’s mechanical
properties.

It is possible that the observed curvature is an effect spe-
cific to heterotrimeric collagen. Because type I collagen has
one a-chain which is different than the other two, a larger or
smaller propensity for surface interactions with this chain
could produce a surface-induced curvature to minimize its
energy (36). To address this possibility, types I, II, and III
human collagens were also imaged in 20 mM acetic acid
and analyzed with the cWLC model (Fig. S7). The results
of this analysis are shown in Fig. 5, E and F. Although the
different types vary somewhat in their persistence lengths,
their curvatures are nearly identical under these solution
conditions, regardless of their trimeric identity. Thus, sur-
face interactions with a unique chain in heterotrimeric
collagen are not responsible for the observed curvature.

The curvature observed at low ionic strengths may none-
theless result from molecular interactions with the surface.
Intrinsically straight, chiral semiflexible chains may adopt
curved conformations at an interface (36). The extent to



FIGURE 5 Behavior of different collagen types

in acetic acid. (A) A representative image of rat

tail type I collagen deposited from 20 mM acetic

acid. (B) Standard (Eq. 1, dashed red line) and

curved (Eq. 3, solid red line) WLC model are

shown fitted to the mean-square end-to-end dis-

tance, hR2ðsÞi. (C) Standard (Eq. 2, dashed blue

line) and curved (Eq. 4, solid blue line) WLC

models are shown fitted to the tangent vector cor-

relation, hcos qðsÞi. Data in both (A) and (B) are

described more accurately by the cWLC model,

as seen also by the reduced c2 values (Table S1)

and the BIC (Table S2). (D) The absolute-valued

angular distribution of the same collagen mole-

cules at a segment length of s ¼ 50 nm.

The red line represents the expected distri-

bution (Eq. S3) for a cWLC using a persis-

tence length p ¼ 51 nm and intrinsic curvature

ko ¼ 0.0182 nm�1, the average values of each

parameter extracted from the fits shown in

(B) and (C). The dashed red lines are the two

Gaussian components that make up this distribu-

tion, as discussed in the Supporting Materials and

Methods. (E and F) Persistence lengths and curva-

tures, respectively, of different collagen types

deposited from 20 mM acetic acid. As with the

different collagen types deposited from 100 mM

KCl þ 1 mM HCl (Fig. 2 F), there is only modest

variation among the different samples, demon-

strating that, also at lower ionic strength and

different cosolute conditions, only minor mechan-

ical differences exist between different collagen

types and sources. To view this figure in color,

go online.

Collagen: A Curved Worm-like Chain
which the chain curves at an interface will be determined by
a competition between the free energy of surface-molecular
interactions and the torsional twist energy of the chain. Spe-
cifically, curvature in this model requires a chiral organiza-
tion of sites on the chain that interact differentially at the
interface compared with the rest of the chain sites. In the
current context, these could be the side chains of the three
individual a-chains of collagen, which are arranged in a
right-handed superhelical structure about the central axis
of the collagen molecule (2). If these sites interact strongly
with the mica surface, the free energy gained by adhering to
the surface could outweigh the energetic cost of altering the
twist (local helical pitch) of the triple helix. In this scenario,
the observed trends in curvature with salt concentration
(Fig. 4 F) imply a salt dependence of collagen’s torsional
stiffness and/or its interactions with the surface. Salt-depen-
dent interactions with mica are well established for other
biopolymers (e.g (33)) and could be expected to contribute
here (37). In particular, Kþ affects the interactions of self-
assembling collagen with a mica surface (37–39).

Collagen’s stability in solution is also influenced by salt
and pH. Collagen has a lower thermal stability at low ionic
strength and acidic pH than at high ionic strength and neutral
pH (40), and its thermal stability and helicity decrease at
lower concentrations of KCl (41). The conditions found to
destabilize collagen in solution are the same as those promot-
ing increased curvature in our measurements. It is thus
possible that this destabilization of the triple helix reduces
the torsional stiffness of collagen, enabling it more easily
to adopt curved conformations on mica.

In addition to the ionic-strength dependence of curvature,
our images and conformational analysis demonstrate a
Biophysical Journal 115, 1457–1469, October 16, 2018 1465
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dependence on pH: collagen appears more curved in acidic
conditions (Fig. 4 F). At a pH of 3, collagen carries a net
positive charge. At neutral pH, collagen instead has a
roughly equal balance of positively and negatively charged
residues. The increased curvature at acidic pH could result
from stronger electrostatic affinity to the negatively charged
mica surface (37). Alternatively, electrostatic repulsion be-
tween a-chains could destabilize the triple helix and reduce
its torsional stiffness, particularly at low ionic strength when
shielding from cosolute anions is weak (at 1 mM ionic
strength, the Debye lengthz 10 nm). At neutral pH, the po-
tential for salt bridge formation could strengthen attractions
between a-chains (41,42), thereby increasing the torsional
stiffness of the triple helix.

It is also possible that collagen itself is intrinsically bent,
even in solution (43). Certainly within the fibrillar super-
structure, collagen molecules display conformations that
are locally bent (44). Studying how salt influences confor-
mations in solution would be key to discriminating which
interactions are surface specific in our study. A change in
torsional stiffness and/or alteration of preferred twist angle
at lower ionic strength would be expected to alter the
average shape of collagen in solution. Light scattering or
other solution-based techniques could be used to study
how collagen’s compactness in solution depends on salt
concentration and thereby determine how the triple helix it-
self responds to changes in ionic strength.
Comparison with other estimates of collagen
flexibility

Taken together, our results indicate that collagen should be
regarded as a semiflexible polymer at room temperature
with a persistence length in the range of 50–120 nm. This
is more flexible than solution-based estimates yet more rigid
than found in almost all previous single-molecule ap-
proaches (Table 1). Inherent biases and assumptions built
into data interpretation within each methodology may
contribute to the range of results reported in the literature.
Here, we describe possible reasons for the discrepancies.

With AFM imaging, one must play particular heed to
molecule-surface interactions and to the possibility of kinet-
ically trapping polymers in nonequilibrium configurations on
the surface. In our measurements, the observed conforma-
tions appear well equilibrated in two dimensions (Figs. 2,
C and D and 5 D). Furthermore, although electrostatic inter-
actionswithmicamay play a role in the apparent curvature of
collagen on the surface, we have found that the persistence
length is not strongly affected.

In single-molecule stretching experiments, one source of
bias is the underestimation of persistence length when the
contour length L < 20p (45), as is the case for collagen.
Any structural changes in the triple helix that occur during
stretching may also modify the bending energy: such
changes have been inferred from enzymatic cleavage assays
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of collagen under force (21,46–48) and may contribute to
softening of collagen’s force-extension response (14).

Many of the simulations of collagen have used steered
molecular dynamics, which may not investigate its equilib-
rium flexibility. Additionally, the results of molecular dy-
namics simulations depend on the force fields used (49),
which have been developed predominantly for globular pro-
teins rather than the unique fold of collagen.

Interpretations of light-scattering data require a model
(such as an ellipsoidal scatterer (19)), and it is possible to
describe decay curves equally well assuming both compact
and more extended molecular geometries (50). Furthermore,
the effective size of the protein, as deduced from solution-
based studies such as light scattering and rheology, is often
affected by intermolecular interactions; thus, concentration-
dependent studies are essential to determine the spatial
extent of a given molecule in isolation (51). Given colla-
gen’s propensity to self-associate (52,53), intermolecular in-
teractions may contribute to larger estimates of collagen’s
size in solution. The rheological studies of (8) found that
pH does not have a significant effect on collagen’s flexi-
bility; however, to reach this conclusion, the authors had
to assume that type I collagen exhibited a nonuniform flex-
ibility at neutral pH, with ends considerably more flexible
than the central region of the triple helix.

The two studies most similar to ours, which used AFM
imaging (13) and electron microscopy (18) to analyze colla-
gen’s flexibility, based their estimates of persistence length
on the distance between the endpoints of the collagen chain.
As we have shown (Figs. 4 and 5), naı̈ve application of Eq. 1
can lead to significant underestimation of persistence length
for curved chains. Consistently, our estimates of collagen’s
persistence length are greater than theirs obtained at low
ionic strength. At high ionic strength and neutral pH, our re-
sults and those of the previous AFM imaging study (13) are
in reasonable agreement: in this condition, collagen is well
described by the standardWLCmodel and curvature may be
disregarded. In general, however, our findings demonstrate
the importance of mapping the functional forms of hR2ðsÞi
and hcos qðsÞi and caution against determining persistence
length by using only chain end-point separations.

In our description and analysis of collagen, we have made
two major assumptions. First, neither the WLC nor cWLC
model takes into account the helical nature of collagen.
Thus, flexibility of the chain derives only from bending de-
formations. If the intrinsic curvature described by our model
arises because of a surface-collagen interaction inducing
altered twist in the protein, then torsional stiffness of the tri-
ple helix (54) is an important parameter, and twist-bend
coupling (55) may be required to fully describe collagen’s
flexibility.

Second, our analysis procedures treat collagen as an apo-
lar, homogenous WLC. We are not able to discriminate be-
tween N / C and C / N directionality in the imaged
chains. Furthermore, persistence lengths and curvatures
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reported in this work represent average values for the entire
collagen sequence. In adopting this approach, we have
implicitly assumed that the (Gly-X-Y)n triple-helix-form-
ing motif dominates collagen’s response, with local
sequence variations (e.g., fraction of prolines occupying
the X and Y positions) viewed as introducing only minor
perturbations. The flexibility of fibrillar collagen triple he-
lices appears approximately uniform in electron micro-
scopy images (18), supporting this assumption. However,
molecular dynamics simulations (56) and modeling of
atomistic collagen structures (54) suggest that collagen
possesses a sequence-dependent flexibility commensurate
with the expected variations in pitch observed for different
triple helical sequences (2,44). It is interesting to speculate
how a sequence-dependent mechanical signature may pro-
vide additional physical cues to interaction partners (48).
Experimentally elucidating the detailed sequence-depen-
dent flexibility of collagen is an exciting future prospect
that will require higher-precision algorithms than applied
thus far to this mechanically important protein.
CONCLUSIONS

Using AFM, we determined the persistence length of
different types and sources of collagen in the presence of
different cosolutes (Kþ, Cl�, acetate). Although collagens
of different type and source exhibited only minor differ-
ences in persistence length, our initial findings implied
that ionic strength and to a lesser extent pH modulate colla-
gen’s flexibility. Closer inspection of these results, however,
revealed this interpretation to be an artifact of the model
used for analysis. Rather than behaving as an intrinsically
straight WLC, collagen deposited in low salt conditions
was found to adopt preferentially curved conformations on
the mica surface. Statistical analysis of chain conformations
demonstrates that this curvature is a thermodynamic prop-
erty, with chains appearing equilibrated in two dimensions.
The extent of curvature depends strongly on salt concentra-
tion and pH, with persistence length remaining roughly con-
stant across all KCl conditions. Thus, collagen possesses an
experimentally tunable curvature and is to our knowledge
the first such example of a cWLC.

Our findings provide a possible explanation for the range
of persistence lengths reported for collagen in the literature:
rather than a direct modulation of its flexibility, the presence
of certain cosolutes may induce curvature along the collagen
backbone. Whether or not the curvature seen in our results is
intrinsic to collagen or is caused by cosolute-dependent in-
teractions with the imaging surface remains to be deter-
mined. If intrinsic, then the modulation of collagen’s
conformation by salt and pH has potentially broad implica-
tions. The acidification experienced along the secretory
pathway (25) may play a heretofore unexplored role in con-
trolling collagen’s intracellular compactness. Changes in
salt concentration experienced upon secretion may also
contribute to extracellular self-assembly of fibrillar colla-
gens; for example, chloride ions are essential for the distinct
network assembly of type IV collagen (57). Such changes in
pH and cosolute concentrations could therefore influence
collagen self-assembly through modification of its confor-
mational properties: collagen does not assemble into
fibrillar structures at low pH or at low ionic strength
(38,58), precisely those conditions in which we observe its
strongest curvature.

The strong agreement between measures of chain flexi-
bility and the predictions of the cWLC model suggest that
this formalism may be useful for interpreting the mechani-
cal properties of other biological filaments. The intrinsic
curvature of certain DNA sequences (59–61) is important
for gene regulation (62), and amyloid fibrils (36) and
coiled-coil proteins (63) have been found to exhibit prefer-
entially curved conformations at interfaces. Applying the
cWLC model to describe these systems and others is likely
to provide further insight into their equilibrium structures
and the energies governing their mechanical properties.

The datasets generated and analyzed during the current
study are available from the corresponding author on
request.
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Derivation of the curved Worm-Like Chain (cWLC) model 

 

The standard WLC model assumes that there is an energetic cost to bend an intrinsically straight 

rod. Specifically, to bend a semi-flexible, intrinsically straight rod with length 𝛿𝑙 into a circular 

arc with central angle 𝛿𝜃, the energy required is (1) 

𝐸bend = 
𝛼𝛿𝜃2

2𝛿𝑙
=

𝑝𝛿𝜃2

2𝛿𝑙
𝑘B𝑇.                                 (S1) 

α is the bending rigidity of the chain, related to the persistence length 𝑝 through the relation 𝑝 =
 𝛼/𝑘B𝑇, where 𝑘B𝑇 is the product of the Boltzmann constant and the absolute temperature. The 

central angle of this arc, 𝛿𝜃, is equivalent to the angle between the tangents at the beginning and 

end of the segment. The lowest energy conformation of the segment is a straight line, with the 

energy increasing harmonically about this configuration. The Boltzmann distribution provides 

the distribution of angles that this segment adopts in the presence of thermal noise, which is 

given by 

𝑃(𝛿𝜃) =  √
𝑝

2𝜋𝛿𝑙
exp (−

𝑝(𝛿𝜃)2

2𝛿𝑙
).                                 (S2) 

This a normal distribution with mean 〈𝛿𝜃〉 = 0 and variance 𝜎𝛿𝜃
2 =

𝛿𝑙

𝑝
.  

 

If the chain is intrinsically curved, the bending energy is modified to reflect deviations 

from this bent state. 

𝐸bend = 
𝑝(𝛿𝜃−𝜅𝑜𝛿𝑙)2

2𝛿𝑙
𝑘B𝑇,                                         (S3) 

where 𝜅𝑜 is the intrinsic curvature of the chain, defined as 𝜅𝑜 = 〈
𝑑𝜃

𝑑𝑙
〉. The distribution of angles 

that this intrinsically curved segment adopts in the presence of thermal noise is given by 

𝑃(𝛿𝜃) =  √
𝑝

2𝜋𝛿𝑙
exp (−

𝑝(𝛿𝜃−𝜅𝑜𝛿𝑙)2

2𝛿𝑙
).                                 (S4) 

As before, this is a normal distribution with variance 𝜎𝛿𝜃
2 =

𝛿𝑙

𝑝
, but now centered about a mean 

〈𝛿𝜃〉 = 𝜅𝑜𝛿𝑙.  
 

We now consider a longer chain segment, comprised of N segments each of length 𝛿𝑙, 
such that the total length of this chain 𝑙 = 𝑁𝛿𝑙. This longer chain is not necessarily a circular arc, 

but is made up of 𝑁 short circular arc segments, each with angular difference δθ𝑖 distributed 

about 𝜅𝑜𝛿𝑙 as per equation (S4). The angular difference 𝜃 between the ends of this larger 

segment is given by the sum of the 𝑁 angles adopted by the smaller circular arcs:  

𝜃 = ∑ δθi
𝑁
𝑖=1 .                                              (S5) 
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Since the sum of normal random variables is normally distributed, the full distribution of θ is 

completely described by its mean and variance, given respectively by 

〈𝜃〉 = 𝑁〈𝛿𝜃〉 = 𝜅𝑜𝑁𝛿𝑙 = 𝜅𝑜𝑙                                 (S6) 

and 

𝜎𝜃
2 = 𝑁𝜎𝛿𝜃

2 =
𝑁𝛿𝑙

𝑝
=

𝑙

𝑝
.                                     (S7) 

The angular distribution of this segment of length 𝑙 is therefore given by 

𝑃(𝜃) = √
𝑝

2𝜋𝑙
𝑒−

𝑝(𝜃−𝜅𝑜𝑙)2

2𝑙 .                                            (S8) 

Note that, because 〈𝜃〉 ≠ 0, this chain exhibits a net global curvature. 

 

For any arbitrary segment length 𝑠, we can now calculate the average tangent vector 

correlation as 

〈�̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′)〉 = 〈𝑐𝑜𝑠𝜃(𝑠)〉 = √
𝑝

2𝜋𝑙
∫ exp (−

𝑝(𝜃−𝜅𝑜𝑠)2

2𝑠
) cos 𝜃 𝑑𝜃,

∞

−∞
        (S9) 

where 𝑠′ defines an arbitrary starting position of the segment along the contour. This simplifies 

to 

〈𝑐𝑜𝑠𝜃〉 = exp (−
𝑠

2𝑝
) cos(𝜅𝑜𝑠).                                       (S10) 

However, since �̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′) ≤ 1 always, then its average 〈�̂�(𝑠 + 𝑠′) ⋅ �̂�(𝑠′)〉 ≤ 1.  This 

requires that 𝑠 ≥ 0, so we can write 

〈𝑐𝑜𝑠𝜃(𝑠)〉 = exp (−
|𝑠|

2𝑝
) cos(𝜅𝑜|𝑠|)                                 (S11) 

for all 𝑠. 

Similarly, we can calculate the mean squared end-to-end distance of the segment as 

〈𝑅2(𝑠)〉 = 〈�⃑� (𝑠) ⋅ �⃑� (𝑠)〉 = 〈(∫ �̂�(𝑠′)𝑑𝑠′
𝑠

0
)(∫ �̂�(𝑠′′)𝑑𝑠′′

𝑠

0
)〉 =  ∫ ∫ 〈�̂�(𝑠′) ⋅ �̂�(𝑠′′)〉𝑑𝑠′𝑑𝑠′′

𝑠

0

𝑠

0
,  (S12) 

where the order of operations was interchanged because averaging and integrating are both linear 

operations.  Using 〈�̂�(𝑠′) ⋅ �̂�(𝑠′′)〉 = exp (−
|𝑠′′−𝑠′|

2𝑝
) cos(𝜅𝑜|𝑠

′′ − 𝑠′|) from equation (S11) gives  

                          〈𝑅2(𝑠)〉 =  ∫ {∫ exp [−
(𝑠′′−𝑠′)

2𝑝
] cos[𝜅𝑜(𝑠

′′ − 𝑠′)]
𝑠′′

0
𝑑𝑠′ +

𝑠

0

                                      ∫ exp [−
(𝑠′−𝑠′′)

2𝑝
] cos[𝜅𝑜(𝑠

′ − 𝑠′′)]
𝑠

𝑠′′
𝑑𝑠′} 𝑑𝑠′′.                           (S13) 

Evaluating this expression yields 
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⟨𝑅2(𝑠)⟩ =
4𝑠𝑝

(1+4𝜅0
2𝑝2)2

{1 −
2𝑝

𝑠
(1 − 4𝜅0

2𝑝2) [1 − cos(𝜅0𝑠) exp (−
𝑠

2𝑝
)]  +

4𝜅0𝑝2

𝑠
[𝜅0𝑠 − 2 sin(𝜅0𝑠) exp (−

𝑠

2𝑝
)]}.                  (S14) 

Once again, this expression is valid only for 𝑠 ≥ 0, as negative values of 𝑠 can produce values of 

⟨𝑅2(𝑠)⟩ that are negative. Thus, 

⟨𝑅2(𝑠)⟩ =
4|𝑠|𝑝

(1+4𝜅0
2𝑝2)2

{1 −
2𝑝

|𝑠|
(1 − 4𝜅0

2𝑝2) [1 − cos(𝜅0|𝑠|) 𝑒
−

|𝑠|

2𝑝] +

4𝜅0𝑝2

|𝑠|
[𝜅0|𝑠| − 2 sin(𝜅0|𝑠|) 𝑒

−
|𝑠|

2𝑝]}.                                       (S15) 

In the case where 𝜅𝑜 = 0, which corresponds to the standard two-dimensional worm-like chain, 

the expressions for the tangent vector correlation and mean squared end-to-end distance reduce 

to 

〈𝑐𝑜𝑠𝜃(𝑠)〉 = exp (−
|𝑠|

2𝑝
)                                             (S16) 

and 

⟨𝑅2(𝑠)⟩ = 4|𝑠|𝑝 {1 −
2𝑝

|𝑠|
[1 − exp (−

|𝑠|

2𝑝
)]}.                          (S17) 

These are identical to previously derived results (2), and to equations (2) and (1) in the main text, 

respectively. 

 

Because both ⟨𝑅2(𝑠)⟩ (equation S15) and 〈𝑐𝑜𝑠𝜃(𝑠)〉 (equation S11) are even functions of 

curvature 𝜅𝑜, we report only the magnitude of the curvature from our fits. 
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SmarTrace Algorithm 

 

From AFM images of biopolymers, we wished to analyze chain configurations and extract 

mechanical properties. For this purpose, we developed a robust and efficient chain tracing 

software in MATLAB, dubbed “SmarTrace”, which traces the centerline of each molecule with 

sub-pixel resolution and provides comprehensive statistical analysis of the chains.  

 

 

Chain tracing 

 

An overview of the SmarTrace workflow is discussed below. Details are available in reference 

(3).  

 

1. In a visual user interface (adapted from the EasyWorm package (4) within MATLAB (5)), 

the user selects a few points on or near the backbone of the chain to be traced. 

2. SmarTrace fits an initial spline to these user-defined points and extracts points along the 

spline separated by one nanometer.  

3. The program uses top-hat and median filtering (6) to improve the signal-to-noise ratio of 

the region surrounding the chain. 

4. To detect the best path describing the chain, a search window is defined for each point on 

the spline curve along the tangential direction of the initial spline. A search grid with sub-

pixel resolution determines (interpolated) intensity values of the image for each grid point. 

5. For each point on the initial spline, a template pattern is matched with each point in the 

grid within the search window. The template resembles the intensity pattern of a cross-

section of the chain with varying widths.   

6. A matching score is calculated for each possible width and location of this pattern. Cross-

correlation scores are used to determine the best centerline position and width of the 

chain.   

7. To ensure stable results, a penalty term is added for sudden changes in width and/or 

direction of the chain.  

8. After the scores are finalized, the re-weighted maximum scores are used to extract the 

width and center of the chain at points spaced approximately 1 nanometer apart. A B-

spline is fit to these points, resulting in a piecewise smooth polynomial that represents the 

polymer chain.  

 

This method is not very sensitive to image quality and can successfully detect the chain 

backbone in noisy images; even if parts of the chain are slightly faded, the code is still able to 

trace the entire chain. The results also do not depend on where the user selects the points 

(validated by having different users trace the same set of experimental chains, and finding the 

same persistence length), and the initially selected points do not need to be located exactly on the 

chain centerline. These features, along with an efficient computation algorithm, make the code 

fast and easy to use for tracing and analyzing images of single polymers, as obtained for example 

by atomic force microscopy, electron microscopy or fluorescence microscopy.  
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Statistical analysis of chain properties 

   

After the chains have been traced, statistical approaches are used to analyze their flexibility. First, 

the traced chains are partitioned into segments of varying lengths. Utilizing a method introduced 

in reference (7), each molecule is divided into multiple segments, with lengths drawn randomly 

from a pre-defined set of input values (here, 10 nm, 20 nm, 30 nm, ..., 200 nm). Once the lengths 

of these segments have been determined, their positions on the chain are shuffled to avoid 

accumulating shorter lengths towards one end of the chain. This process is repeated 50 times for 

each chain, allowing different regions of the chain to contribute to the statistics of different 

segment lengths. Within each draw, the sampled chain segments are nonoverlapping. As rare, 

longer segments are less useful for mathematical fitting and persistence length calculations, 

choosing a relatively short maximum segment length provides more samples in each bin. This 

method also allows for the use of partially traced chains, which is particularly helpful when ends 

of a molecule are not clear or chains intersect. In the current work, end regions (5 pixels ≈ 19.5 

nm) of the chains were excluded from further analysis. 

 

Several statistics are then calculated from the samples at each segment length 𝑠: the mean-

squared end-to-end distance, ⟨𝑅2(𝑠)⟩, and the mean cosine of the angle between the start and end 

of the segment, 〈cos 𝜃(𝑠)〉. 
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Validation of SmarTrace and analysis procedures  

 
Validation with DNA images 

  

DNA molecules of ~1 µm contour length were prepared by digestion of the pBluescript KS(+) 

plasmid with SspI, then purifying the longer linear, blunt-ended 2828 bp fragment. For imaging, 

DNA was deposited from a buffer containing 4 mM HEPES, 10 mM NaCl, 2 mM MgCl2 at pH 

7.4, then dried before imaging (Figure S1A). Note that Mg2+ is required for DNA deposition due 

to its negatively charged backbone; in contrast, at the pH values we have studied collagen, the 

protein has positively charged residues and thus does not require bridging cations for deposition. 

 

DNA images were traced and analyzed with SmarTrace. Analysis of the angular distributions 

showed that they exhibit a kurtosis of 3 at all but the shortest segment length analysed (Figure 

S1B), consistent with a Gaussian distribution and equilibration. The mean squared end-to-end 

distance, 〈𝑅2(𝑠)〉, is shown in Figure S1C along with a 2D worm-like chain fit (Equation 1). 

Figure S1D shows the experimental data for tangent vector correlation, 〈cos 𝜃 (𝑠)〉, and the 2D 

WLC fit (Equation 2). A persistence length of 𝑝 = 62 ± 3 nm was obtained from these analyses 

(Table S1), consistent with previous results (8). Statistical analysis demonstrates that DNA 

deposited and imaged under these conditions is better described by the standard WLC than by 

the curved WLC (Table S2), and with a fit to the cWLC returning 𝜅𝑜 = 0 and 𝑝 = 62 nm, i.e., 

reducing to the standard WLC model. 

 

We also traced and analysed images of DNA molecules with 1 µm contour length (N=24), which 

were provided with the software package Easyworm (4). A persistence length of 52 ± 2 nm was 

obtained from these analyses, consistent with expectations for DNA (2, 4). 

 

 

Validation with simulated worm-like chains 

 

To validate the methodology used for chain tracing and analysis within SmarTrace, two-

dimensional worm-like chains were simulated and converted into pseudo-AFM images. These 

images were then traced with SmarTrace to ensure that the algorithm was able to accurately 

recover the input persistence length and curvature. The workflow for the simulation is as 

follows: 

 

1. The desired persistence length 𝑝, curvature 𝜅0, contour length 𝐿 and width of the chains 

𝑤 – as well as the average number of chains per image – are input by the user. 

2. For the first chain, an angle 𝜃0 between 0 and 360°, as well as two values 𝑥0 and 𝑦0 
between 0 and 2000 nm are sampled randomly from a uniform distribution. These 
values represent the starting angle and initial 𝑥𝑦-coordinates of the chain, 
respectively. 

3. The curvature of the chain is chosen to be either 𝜅0 or −𝜅0 with equal chance; this 
represents the ability of the chain to “lie down” on the mica surface with either a 
left-handed or right-handed curvature. 

4. Using a step size 𝛿𝑠 = 0.5 nm, an angle 𝛿𝜃 is sampled from a normal distribution 

with mean ±𝜅𝑜𝛿𝑠 and variance 
𝛿𝑠

𝑝
. 
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5. The next point on the chain is placed at 𝑥1 = 𝑥0 + 𝛿𝑠 cos(𝜃1) and 𝑦1 = 𝑦0 + 𝛿𝑠 sin(𝜃1), 

where 𝜃1 = 𝜃0 + 𝛿𝜃. 

6. This process is repeated, choosing a random 𝛿𝜃 as above, generating 𝜃𝑖+1 = 𝜃𝑖 + 𝛿𝜃 and 

placing the next point on the chain at 𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑠 cos(𝜃𝑖+1) and 𝑦𝑖+1 + 𝛿𝑠 sin(𝜃𝑖+1).  

7. This process is terminated after 𝑛 steps, where 𝑛𝛿𝑠 = 𝐿. 

8. Steps 2 through 7 are repeated for every chain in the image. 

9. A 512-by-512 array of pixels is overlaid on top of the image, discretizing the image into 

square pixels with a side length of 3.90625 nm, the same as all experimental images used 

in this work. 

10. The intensity of each pixel is populated by considering every point on each chain as an 

intensity source, which contributes an intensity  

𝐼(𝑥, 𝑦) = 𝐼𝑜 exp (−
(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2

2𝑤2
)                                  (S18) 

to the pixel centered at (𝑥, 𝑦). The intensity contributions from every point on every 

chain are then summed to yield the overall intensity of this pixel. 

11. At this point, a 512-by-512 pixel noise matrix is generated and overlaid with the image 

containing the simulated chains. This noise matrix contains experimentally realistic 

correlated noise, obtained as described in the following subsection.  

12. The matrix containing the intensities from the simulated chains is then scaled and 

summed with the noise matrix, with the scaling factor being chosen to visually match the 

signal-to-noise ratio of our experimental AFM images. 

13. This noisy image is then converted to an 8-bit grayscale image, allowing it to be traced 

with SmarTrace. 

 

We generated two sets of images with parameters chosen to emulate experimentally gathered 

AFM images of collagen: both sets were given a width parameter of 7 nm and a contour length 

of 300 nm – chosen to replicate AFM images of collagen. For simplicity, background noise was 

not included in these simulations. 

 

The first set was generated with a persistence length of 85 nm and zero curvature. An example 

image and standard WLC model fits to the data (Equations 1, 2 from the main text) are shown in 

Figures S2A-C. Results from fits with both the WLC and cWLC are included in Table S1, in 

which it is clear that no intrinsic curvature is found in these chains (see also Table S2).  The 

traced data also reproduce the Gaussian properties of the simulated chains, as shown by the 

kurtosis and normality of the angular distributions at different segment lengths (Figures S2D and 

S2E). The standard error in the kurtosis (SEK), used to generate the error bars in Figure S2D, is 

given by (9)  

SEK =  √
24𝑛(𝑛−1)2

(𝑛−3)(𝑛−2)(𝑛+3)(𝑛+5)
,                                         (S19) 

where 𝑛 is the number of observations comprising the distribution. The expected distribution 

shown in Figure S2E is given by Eq. S8 with 𝑝 = 85 nm, 𝑠 = 50 nm and 𝜅𝑜 = 0 nm-1. 
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The second set of chains was generated with 𝑝 = 50 nm and an intrinsic curvature of 𝜅𝑜 = 0.02 

nm-1; an image of these chains is shown in Figure S3A. Due to the presence of chains with both 

positive and negative curvature (see step 3, above), the angular distributions extracted from these 

curved chains will be a sum of two Gaussian distributions, with mean ±𝜅𝑜𝑠 and variance 
𝑠

𝑝
. 

These two distributions may not have equal amplitude (for a small number of sampled chains), 

making the properties of the expected distribution difficult to calculate. However, the expected 

distribution of the absolute-values of the angles is given by 

𝑃(|𝜃|) = √
𝑝

2𝜋𝑠
[exp (−

𝑝(|𝜃|−𝜅𝑜𝑠)2

2𝑠
) + exp (−

𝑝(|𝜃|+𝜅𝑜𝑠)2

2𝑠
)]                   (S20) 

regardless of the proportion of the two distributions. Figure S3B shows the expected distribution 

for 𝑝 = 50 nm, 𝜅𝑜 = 0.02 nm-1 and 𝑠 = 50 nm, plotted with a histogram of the angles extracted 

from the simulated chains at a 50 nm segment length, demonstrating good agreement between 

the two distributions. Figures S3C and S3D show fits of the curved WLC expressions (Equations 

3, 4) to the traced data, both of which yield persistence lengths and curvatures close to the input 

parameters. Fitting with the standard WLC model results in an underestimate of persistence 

length (Table S1), and is a poorer model for these chains (Table S2). 

 

 

Simulation of AFM Image Noise  

 

In order to model to noise present in the background of our AFM images, we characterized the 

intensity fluctuations in typical images, then used this information to produce simulated images 

of chains with realistic noise.  

 

We wished to simulate a row of the image by the vector 𝑋 = (𝑋1, … , 𝑋𝑛)
𝑇, where each element 

𝑋𝑖 of the vector is a normally distributed random variable with mean 𝜇𝑖 and variance 𝜎𝑖
2. Here, 

𝑋1 refers to the intensity of the leftmost pixel in the row, 𝑋2 to the intensity of the pixel second 

from the left, and so on. We allowed correlation between nearby pixels within a row, i.e., we 

allowed for 〈𝑋𝑖𝑋𝑗〉 ≠ 0.  This is similar to experimental observations of correlated noise in the 

scanning direction. We calculated the intensity of each row by 

𝑋 = 𝑳𝑍 + 𝜇 ,      (S21) 

where the elements 𝜇𝑖 represent the average intensity of the pixels in the 𝑖th column; 𝑍 =
(𝑍1, … , 𝑍𝑛), where the 𝑍𝑖 are independently distributed normal random variables with zero mean 

and unit variance (〈𝑍𝑖𝑍𝑗〉 = 𝛿𝑖𝑗); and 𝑳 is an n-by-n matrix determined from experimental images 

that introduces correlations in the simulated noise.  

 

To construct 𝑳 and 𝜇 , we used three scarcely populated 2000 nm-by-2000 nm AFM images 

(containing fewer than 6 chains per image) and assumed the intensities to be uncorrelated 

between rows. 𝜇𝑖 was given by the average intensity of the n pixels in the 𝑖th column. We also 

determined the correlation matrix 𝑪, in which the correlation matrix elements 〈𝑐𝑖𝑐𝑗〉 represent the 

covariance between the intensities of columns 𝑖 and 𝑗, averaged over all rows, while diagonal 
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elements comprise the variance of intensities within each column (𝑐𝑖𝑖 = 〈𝑐𝑖𝑐𝑖〉 = 𝜎𝑖
2). Because 𝑪 

is Hermitian and positive-definite, 𝑳 can be found from 𝑪 = 𝑳𝑳𝑇. Practically, we determine 𝑳 by 

Cholesky decomposition of 𝑪, implemented using the MATLAB function chol(C) (5).   

 

Realizations of 𝑋  are then generated by simulating a vector 𝑍  of normal variables with zero mean 

and unit variance, matrix multiplying by 𝑳, and adding 𝜇 . These values are then used to populate 

the first row of pixel intensities in the noise matrix, after which new realizations of 𝑋  are 

simulated to populate the subsequent rows. 
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Bayesian Information Criterion (BIC) 

 

The Bayesian Information Criterion (BIC) (10) was used to assess whether the standard or 

curved WLC better describes the data:  

𝐵𝐼𝐶 =  −2 ln �̂� + 𝑘 ln𝑁.                      (S22) 

�̂� represents the maximum likelihood, k the number of parameters in the model (k = 1 for the 

WLC and k = 2 for the cWLC), and N the number of data points to be fit (N = 20 for each data 

set in our study).  

 

To determine the BIC, we need to obtain the maximum likelihood, by determining the fit 

parameters 𝜃 (e.g. 𝑝 for the WLC or 𝑝 and 𝜅𝑜 for the cWLC) that maximize the likelihood 

function 𝐿(𝜃; 𝑦𝑖 , 𝜎𝑖
2, 𝑓) for each model description f, given our data. We assume that our 

observed data are independent and sampled from normal distribution with means 𝑦𝑖 and 

variances 𝜎𝑖
2. In this case, the likelihood function is given by 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) = ∏

1

√2𝜋𝜎𝑖
2

𝑛
𝑖=1 exp (

−(𝑦𝑖−𝑓(𝑠𝑖,𝜃))
2

2𝜎𝑖
2 ).    (S23) 

This can be rewritten as 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
1

2
∑

(𝑦𝑖−𝑓(𝑠𝑖,𝜃))
2

𝜎𝑖
2

𝑛
𝑖=1 ).   (S24) 

The sum within the exponential is the chi-squared statistic 

𝜒2(𝜃) = ∑
(𝑦𝑖−𝑓(𝑠𝑖,𝜃))

2

𝜎𝑖
2

𝑛
𝑖=1 ,     (S25) 

allowing us to further simplify the likelihood function to 

𝐿(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
𝜒2(𝜃)

2
).     (S26) 

Since 𝜒2 is strictly positive, and the variable parameters 𝜃 appear only within 𝜒2(𝜃), we simply 

need to choose the parameters such that the chi-squared value is minimized, as this will 

maximize the value of 𝐿. This is precisely what has been done in the fitting, where 𝜃 have been 

determined to minimize 𝜒2(𝜃). The maximum value of the likelihood function is then just 

�̂�(𝜃; 𝑦𝑖, 𝜎𝑖
2, 𝑓) =

1

(2𝜋)
𝑛
2 ∏ 𝜎𝑖

𝑛
𝑖=1

exp (−
𝜒𝑚𝑖𝑛

2

2
).     (S27) 

 

Now, the BIC can be determined from equation (S21): 
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𝐵𝐼𝐶 =  𝜒𝑚𝑖𝑛
2 + 𝑛 ln(2𝜋) + 2∑ ln(𝜎𝑖)

𝑛
𝑖=1 + 𝑘 ln𝑁.             (S28) 

Since the second and third terms are independent of the model tested, for comparison purposes 

we need to calculate only 

𝐵𝐼𝐶 =  𝜒𝑚𝑖𝑛
2 + 𝑘 ln𝑁.               (S29) 

 

The model with the lower BIC is more likely; the probability that the other model describes the 

data is given by  

𝑃𝑜𝑡ℎ𝑒𝑟 = exp [−
1

2
(BIClarger − BICsmaller)].   (S30) 

 

The results of this analysis are tabulated in Table S2 for experimental data on collagen and DNA 

and for simulated chains. Because often the best fit with the cWLC model results in zero 

curvature, 𝜒𝑚𝑖𝑛
2  is identical between the WLC and cWLC models. In this case, the values of BIC 

differ by ~3 due to the difference in number of model parameters k, and thus by equation (S30) 

have a probability of ~0.2 that the cWLC model better describes the data.  

 



Table S1 - Comprehensive list of fitting parameters obtained for different collagen types and co-solute conditions.  Persistence lengths, p, are given 

in nm, while curvature κ0 is in units of nm-1. Reported errors, Δ, represent 95% confidence intervals in the fitting parameters. 𝜒𝑟𝑒𝑑
2  values are 

determined by dividing the minimized 𝜒𝑚𝑖𝑛
2  values by the number of degrees of freedom, N-k, where N is the number of points in each data set 

(N = 20) and k is the number of model parameters (k = 1 for the WLC and k = 2 for the cWLC).  

 

  

Collagen 
Type 

Solution 
Length 
Traced 
(µm) 

Standard Model Fits Curved Model Fits 

〈𝑅2〉 〈cos 𝜃〉 〈𝑅2〉 〈cos 𝜃〉 

𝑝 ∆𝑝 𝜒red
2  𝑝 ∆𝑝 𝜒red

2  𝑝 ∆𝑝 𝜅𝑜 Δ𝜅𝑜 𝜒red
2  𝑝 ∆𝑝 𝜅𝑜 Δ𝜅𝑜 𝜒red

2  

Rat I Water 14.7 64 13 111 53 11 55 117 10 0.0165 0.0007 3.1 87 6 0.0125 0.0005 1.6 

Rat I 100 µM KCl 6.3 41 5 19 38 7 19 56 7 0.0150 0.0023 6.1 59 12 0.0134 0.0022 7.2 

Rat I 1 mM KCl 12.4 78 12 42 61 10 30 119 9 0.0125 0.0007 2.2 90 6 0.0105 0.0006 1.7 

Rat I 10 mM KCl 17.2 97 5 5.6 85 4 1.9 95 10 0.0 0.3 6.3 83 6 0.0 0.4 2.2 

Rat I 100 mM KCl 19.9 123 13 27 118 18 23 121 29 0.0 4.2 29 118 36 0.0 100.8 25 

Rat I 1 mM HCl 20.4 43 6 94 36 5 38 65 4 0.0175 0.0008 3.8 49 3 0.0145 0.0011 3.6 

Rat I 
10 mM KCl + 

1 mM HCl 
33.6 83 11 70 66 10 57 135 10 0.0115 0.0006 3.1 99 4 0.0094 0.0003 1.2 

Rat I 
100 mM KCl + 

1 mM HCl 
20.9 106 6 13 101 8 12 102 11 0.0 0.4 16 100 13 0.0 6.5 13 

Human I 
100 mM KCl + 

1 mM HCl 
20.7 89 4 7.4 84 6 8.8 87 7 0.0 0.2 8.0 88 12 0.0 0.3 10 

Human II 
100 mM KCl + 

1 mM HCl 
12 100 4 3.0 96 5 2.2 106 6 0.0047 0.0016 2.1 95 8 0.0 0.1 2.4 

Human III 
100 mM KCl + 

1 mM HCl 
16.7 85 2 2.1 83 7 8.5 85 4 0.0014 0.0054 2.2 81 11 0.0 0.3 9.1 

Rat I 20 mM Acetic Acid 24.7 35 5 101 31 4 39 55 3 0.0195 0.0008 3.1 43 2 0.0161 0.0008 2.0 

Human I 20 mM Acetic Acid 50.4 42 6 186 34 6 132 66 3 0.0180 0.0006 4.1 52 2 0.0166 0.0005 2.1 

Human II 20 mM Acetic Acid 13.2 64 14 120 50 12 78 109 9 0.0180 0.0008 3.9 85 5 0.0150 0.0005 1.3 

Human III 20 mM Acetic Acid 40.4 50 9 229 39 7 130 79 6 0.0181 0.0008 8.3 59 2 0.0160 0.0005 1.9 

Simulated 
WLC 

p=85 nm 24.5 83 5 17 87 2 1.5 84 9 0.0000 0.3635 18 87 4 0.0010 0.0034 1.5 

Simulated 
cWLC 

p=50 nm, κo=0.02 
nm-1 

17.7 41 5 68 36 9 118 58 2 0.0178 0.0006 1.2 65 4 0.0192 0.0008 2.6 

2828 bp 
dsDNA 

See supporting 
text 

19.6 61 1 1.7 62 2 1.6 61 3 0.0000 1.6412 1.8 62 4 0.0 0.6 1.7 
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Table S2.  Model selection using the Bayesian Information Criterion (BIC).  BIC was calculated for the straight (WLC) and curved (cWLC) models 

using equation (S29).  

  〈𝑅2〉 〈cos 𝜃〉 

Sample Condition BIC straight BIC curved 
More 

probable? 
P other? BIC straight BIC curved 

More 
probable? 

P other? 

Rat Type-I Water 2112 62 curved < 1E-7 1040 36 curved < 1E-7 

Rat Type-I 100 µM KCl 366 116 curved < 1E-7 358 136 curved < 1E-7 

Rat Type-I 1 mM KCl 804 46 curved < 1E-7 579 37 curved < 1E-7 

Rat Type-I 10 mM KCl 109 119 straight 7E-3 39 45 straight 5E-2 

Rat Type-I 100 mM KCl 516 523 straight 5E-2 444 447 straight 2E-1 

Rat Type-I 1 mM HCl 1798 75 curved < 1E-7 730 70 curved < 1E-7 

Rat Type-I 10 mM KCl + 1 mM HCl 1334 62 curved < 1E-7 1082 27 curved < 1E-7 

Rat Type-I 100 mM KCl + 1 mM HCl 259 285 straight 2E-6 237 240 straight 2E-1 

Human Type-I 100 mM KCl + 1 mM HCl 144 150 straight 5E-2 171 186 straight 6E-4 

Human Type-II 100 mM KCl + 1 mM HCl 60 44 curved 3E-4 45 48 straight 2E-1 

Human Type-III 100 mM KCl + 1 mM HCl 43 46 straight 2E-1 165 169 straight 1E-1 

Rat Type-I 20 mM Acetic Acid 1916 61 curved < 1E-7 752 41 curved < 1E-7 

Human Type-I 20 mM Acetic Acid 3533 79 curved < 1E-7 2519 44 curved < 1E-7 

Human Type-II 20 mM Acetic Acid 2283 76 curved < 1E-7 1480 29 curved < 1E-7 

Human Type-III 20 mM Acetic Acid 4348 156 curved < 1E-7 2477 41 curved < 1E-7 

Simulated WLC p = 85 nm 332 337 straight 8E-2 31 34 straight 2E-1 

Simulated cWLC 
p = 50 nm 

κo = 0.02 nm-1 
1304 27 curved < 1E-7 2253 52 curved < 1E-7 

2828 bp dsDNA 
4 mM HEPES, 10 mM NaCl, 

2 mM MgCl2 (pH 7.4) 
36 39 straight 2E-1 33 36 straight 2E-1 

  

 



 
 

Figure S1.  Quantifying the flexibility of dsDNA.  (A) Example AFM image of 2828 bp linear 

dsDNA. (B) Kurtosis of angle distributions is close to 3 for all segment lengths, indicating that 

angles are normally distributed. (C) Mean squared end-to-end distance versus length along DNA 

molecules. Symbols represent the mean for each segment length while error bars show the 

standard error of the mean. The persistence length from the fit (red line; Equation 1) is 62 ± 2 nm.  

(D) Average tangent-tangent correlation vs. length along DNA molecules. The persistence length 

from the fit (red line; Equation 2) is 62 ± 2 nm. These values for persistence length are internally 

consistent and are in agreement with previous measurements of DNA deposited onto mica and 

imaged in air (8). 
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Figure S2.  Test of SmarTrace analysis procedures using simulated worm-like chains. (A) 

Example image of simulated worm-like chains with a persistence length of 𝑝 = 85 nm. After 

being traced, the data were fit with the standard WLC expressions for mean squared end-to-end 

distance (Eq. 1) and mean tangent vector correlation (Eq. 2), as shown in (B) and (C), 

respectively. Both fits yield persistence lengths consistent with the value input into the 

simulations. (D) Kurtosis of the angular distributions extracted from the simulated chains at 

different segment lengths. A kurtosis near the expected value of 3 is achieved at all length scales. 

Errors in the kurtosis are determined using Eq. S19. (E) Individual angular distributions are also 

well described as Gaussian, as shown by good agreement between the expected and extracted 

angular distributions at a 50 nm segment length.  
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Figure S3.  Analysis of simulated curved worm-like chains. (A) Example image of simulated 

curved worm-like chains with a persistence length of 𝑝 = 50 nm and curvature of 𝜅𝑜 = 0.02 nm-1. 

(B) Histogram of the absolute-valued angles extracted from the traces of these simulated chains 

at a segment length of 𝑠 = 50 nm, as well as the expected probability distribution (solid red line, 

Eq. S20) and the two Gaussian components that comprise it. (C, D) Fits of data from these 

simulated chains to the curved worm-like chain expectations for mean squared end-to-end 

distance (Eq. 3) and mean tangent vector correlation (Eq. 4), respectively. Both fits yield 

parameters close to those input in the chain simulations. 
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Figure S4.  Standard WLC model fits to human collagens (A) type I, (B) type II, and (C) type III, 

all deposited from 100 mM KCl with 1 mM HCl. 〈𝑅2〉 fits (Eq. 1) are shown in the left column 

in red, and 〈cos 𝜃〉 fits (Eq. 2) are shown in the right column in blue. 
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Figure S5.  Standard (dashed lines) and curved (solid lines) WLC model fits to rat tail collagen 

type I data deposited from (A) 0.1 mM KCl, (B) 1 mM KCl, (C) 10 mM KCl and (D) 100 mM 

KCl. 〈𝑅2〉 fits are shown in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column 

in blue. As the KCl concentration is increased, the standard and curved fits converge to the same 

result. 
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Figure S6.  Standard (dashed lines) and curved (solid lines) WLC model fits to rat tail collagen 

type I data from (A) water, (B) 10 mM KCl + 1 mM HCl and (C) 100 mM KCl + 1 mM HCl. 

〈𝑅2〉 fits are shown in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column in 

blue. 
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Figure S7.  Standard (dashed lines) and curved (solid lines) WLC model fits to (A) type I, (B) 

type II and (C) type III human collagens deposited from 20 mM acetic acid. 〈𝑅2〉 fits are shown 

in the left column in red, and 〈cos 𝜃〉 fits are shown in the right column in blue. 
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