Biophysical Journal, Volume 115

Supplemental Information

Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions

Lei Jin, Ya-Zhou Shi, Chen-Jie Feng, Ya-Lan Tan, and Zhi-Jie Tan

1 The energy functions of the coarse-grained model

2 The force field in the present coarse-grained (CG) model contains two parts, the bonded
3 potential and nonbonded potential:

4

$$U_{total} = U_{bonded} + U_{nonbonded}.$$
 (S1)

5 The bonded potential U_{bonded} including energies of bond length U_b , bond angle U_a and 6 dihedral angle U_d , is used to describe the local connectivity between CG beads:

$$U_{bonded} = U_b + U_a + U_d, \tag{S2}$$

7 where

$$U_b = \sum_{bonds} K_b (r - r_0)^2,$$
 (S3)

$$U_a = \sum_{angles} K_{\theta} (\theta - \theta_0)^2, \qquad (S4)$$

$$U_{d} = \sum_{dihedrals} \left\{ K_{\varphi} [1 - \cos(\varphi - \varphi_{0})] + \frac{1}{2} K_{\varphi} [1 - \cos(\varphi - \varphi_{0})] \right\}.$$
 (S5)

In Eqs. S3-S5, K_b , K_{θ} and K_{φ} represent the energy strength; r_0 , θ_0 and φ_0 are the 8 corresponding values at energy minimum. The initial parameters of these three potentials were 9 derived from the Boltzmann inversion of corresponding atomistic distribution functions obtained 10 from the statistical analysis on the experimental structures in the Protein Data Bank (PDB, 11 https://www.rcsb.org/). The bonded potential works only on the CG beads in each single-stranded 12 chain, and two sets of parameters Parahelical and Paranonhelical are provided for CG beads in 13 14 base-pairing and non-base-pairing regions, respectively. It should be noted that the Paranonhelical is used in folding process and the Parahelical is used only for helical parts in structure refinement process; 15 see more details in Refs. 1 and 2. The nonbonded potential $U_{nonbonded}$ in Eq. S1 is used to describe 16 nonbonded interactions between CG beads intra- or inter-chains, and it includes hydrogen bond 17 potential U_{bp} , base pairs stacking potential U_{bc} , coaxial stacking potential U_{cs} , excluded volume 18 19 potential U_{exc} , and electrostatic potential U_{el} :

$$U_{nonbonded} = U_{bp} + U_{bc} + U_{cs} + U_{exc} + U_{el}.$$
 (S6)

1 The hydrogen bond potential is calculated for every possible base pair (G-C, A-U and G-U) and is

2 given by

$$U_{bp} = \sum_{i < j-3}^{N_{bp}} \frac{\varepsilon_{bp}}{1 + k_{NN} \left(r_{N_i N_j} - r_{NN} \right)^2 + k_{CN} \sum_{i(j)} \left(r_{C_i N_j} - r_{CN} \right)^2 + k_{PN} \sum_{i(j)} \left(r_{P_i N_j} - r_{PN} \right)^2} , \quad (S7)$$

where ε_{bp} ($\varepsilon_{GC} = 2\varepsilon_{AU} = 2\varepsilon_{GU}$) is the interaction strength. r_{NN} , r_{CN} and r_{PN} are three distances between the corresponding atoms of P, C and N in two paired nucleotides to determine whether the base-pair is well formed. k_{NN} , k_{CN} and k_{PN} are the corresponding energy strength. The base pairs stacking potential is calculated between every two nearest neighbor base pairs and is given by

$$U_{bs} = \frac{1}{2} \sum_{i,j}^{N_{bs}} |G_{i,i+1,j-1,j}| \left\{ \left[5 \left(\frac{\sigma_{st}}{r_{i,i+1}} \right)^{12} - 6 \left(\frac{\sigma_{st}}{r_{i,i+1}} \right)^{10} \right] + \left[5 \left(\frac{\sigma_{st}}{r_{j,j-1}} \right)^{12} - 6 \left(\frac{\sigma_{st}}{r_{j,j-1}} \right)^{10} \right] \right\},$$
(S8)

7 where σ_{st} is the optimum distance of two neighbor bases in the known helix structures and 8 $G_{i,i+1,j-1,j}$ is the strength of base stacking energy and can be estimated from the combination of the 9 experimental thermodynamics parameters (3) and Monte Carlo simulations; see more details in Refs. 10 1 and 2. The coaxial stacking potential is calculated between two discontinuous neighbor helices and 11 is given by

$$U_{cs} = \frac{1}{2} \sum_{i-j,k-l}^{N_{cs}} \left| G_{i-j,k-l} \right| \left\{ \left[1 - e^{-a(r_{ik} - r_{cs})} \right]^2 + \left[1 - e^{-a(r_{jl} - r_{cs})} \right]^2 - 2 \right\},$$
(S9)

where $G_{i\cdot j,k\cdot l}$ is the sequence-dependent base stacking strength, which is approximately taken as the stacking strength between the corresponding nearest neighbor base-pairs in an uninterrupted helix (3-5), and r_{cs} is the optimum distance between two coaxially stacked stems, which is directly obtained from the statistical analysis on the known structures in PDB; see more details in Ref. 2. The excluded volume potential represents the excluded volume interaction between the nonbonded CG beads and is given by

$$U_{exc} = \sum_{i < j}^{N} \begin{cases} 4\varepsilon \left[\left(\frac{\sigma_0}{r_{ij}} \right)^{12} - \left(\frac{\sigma_0}{r_{ij}} \right)^6 \right] & \text{if } r_{ij} \le \sigma_0, \\ 0 & \text{if } r_{ij} > \sigma_0 \end{cases}$$
(S10)

18 where $\varepsilon = 0.26$ kcal/mol and σ_0 is the sum of the radii of bead *i* and *j*.

19 The structure based electrostatic potential is newly introduced in the present model to represent

the electrostatic interactions between charged *P* beads, and it is treated as a combination of
Debye-Hückel approximation and the counterion condensation (CC) theory (1, 6):

$$U_{el} = \sum_{i
(S11)$$

Here, r_{ij} is the distance between the *i*-th and *j*-th P beads, and l_D is the Debye length. The reduced charge Q_i on the *i*-th P bead is

5

$$Q_i = 1 - f_i, \tag{S12}$$

6 where f_i is ion neutralization fraction. Here, beyond the assumption of uniform distribution of 7 binding ions along RNA chain, f_i is RNA structure-dependent and includes the contributions of 8 monovalent and divalent ions

$$f_i = x f_i^1 + (1 - x) f_i^2, (S13)$$

9 where f_i^{ν} ($\nu = 1,2$) is the binding fraction of ν -valent ions for the *i*-th P bead. x and (1 - x)10 represent the contribution fractions of monovalent and divalent ions which can be derived from the 11 Tightly Bound Ion (TBI) model (7-9). If we use Na⁺ and Mg²⁺ to represent monovalent and divalent 12 ions respectively, x can be given by the empirical formula

$$x = \frac{[Na^+]}{[Na^+] + \alpha[Mg^{2+}]},$$
(S14)

- 13 where $\alpha = (8.1 64.8/N)(5.2 \ln[Na^+])$, $[Na^+]$ and $[Mg^{2+}]$ are the corresponding bulk 14 concentrations and *N* is the chain length (7-10); see more details in Ref. 2.
- 15 To further refine the electrostatic potential based on RNA structure, f_i^{ν} is given by

$$f_i^{\nu} = \frac{N\bar{f}_i^{\nu}}{\sum_N e^{-\beta\nu\phi_i}} e^{-\beta\nu\phi_i}.$$
(S15)

Here, \bar{f}_i^{ν} represents the average neutralization fraction for the *i*-th P bead and can be given by the CC theory (6): $\bar{f}_i^{\nu} = 1 - (\frac{b}{\nu l_B})$, where *b* is the average charge spacing on RNA backbone and l_B is Bjerrum length. ϕ_i in Eq. S15 is the electrostatic potential at the *i*-th P bead and can be approximately calculated by

$$\phi_{i} = \sum_{i \neq j}^{N} \frac{l_{B}Q_{j}}{r_{ij}} e^{-\frac{r_{ij}}{l_{D}}}.$$
(S16)

Therefore, the structure-dependent Q_i needs to be obtained through an iteration process by Eqs. S12-S16.

1 Calculating melting temperature at low experimental strand concentration

Since the experimental strand concentration of a dsRNA is generally very low, to improve the 2 3 computation efficiency, the simulations for dsRNAs are generally performed at high strand concentrations C_s^h (e.g. 10 mM) to calculate melting temperatures. Based on the equilibrium 4 conformations at each temperature T, the fraction $\Phi(T)$ of unfolded state characterized as 5 6 completely dissociated single-stranded chain can be obtained at T. Since the small system of the simulation (two strands in a simulational box) can lead to significant finite-size effect (11), the 7 predicted $\Phi(T)$ needs to be further corrected to the fraction $\theta_h(T)$ of unfolded state at the high 8 bulk strand concentration C_s^h (11): 9

$$\theta_h(T) = 1 - \left(1 + \frac{\Phi(T)}{2a(1 - \Phi(T))}\right) + \sqrt{\left(1 + \frac{\Phi(T)}{2a(1 - \Phi(T))}\right)^2 - 1},$$
 (S17)

where *a*=1 and 2 for nonself-complementary and self-complementary sequences, respectively (11).
Meanwhile, the ratio of folded to unfolded state φ(T) at each temperature can be written as

$$\phi(T) = \frac{Z_f}{Z_u} = e^{-\beta \Delta G_h} , \qquad (S18)$$

where Z_f and Z_u are the partition functions of the ensembles of folded and unfolded states, respectively. ΔG_h is the Helmholtz free energy change of the system due to the transition from unfolded state to folded state and $\beta = \frac{1}{k_{\rm B}T}$. Hence, $\theta_h(T)$ can also be written as

$$\theta_h(T) = 1 - \frac{\phi(T)}{1 + \phi(T)} = \frac{1}{1 + e^{-\beta \Delta G_h}}.$$
(S19)

15 Since the contribution of the translation entropy determined by the strand concentration can be 16 derived as $k_{\rm B} \ln C_s^h / \mu$ (12), ΔG_h can be derived as

$$\Delta G_h = \Delta G_0 - k_{\rm B} T \ln C_s^h / \mu, \qquad (S20)$$

where ΔG_0 is the free energy change only depending on sequence, and $\mu = 1$ for self-complementary sequences and $\mu = 4$ for nonself-complementary sequences (12). Similarly, For a low experimental strand concentration C_s (e.g., 0.1 mM), the fraction $\theta(T)$ of unfolded state can also be written as

$$\theta(T) = \frac{1}{1 + e^{-\beta \Delta G}},\tag{S21}$$

1 and

$$\Delta G = \Delta G_0 - k_{\rm B} T \ln C_s / \mu. \tag{S22}$$

2 Then, based on the Eqs. S18-S22, θ(T) at low experimental strand concentration can be calculated
3 by

$$\theta(T) = \frac{\lambda \theta_h(T)}{1 + \lambda \theta_h(T) - \theta_h(T)},$$
(S23)

4 where $\lambda = C_s^h/C_s$. Furthermore, based on the fraction $\theta(T)$ of unfolded state, the melting curve 5 can be obtained by fitting to

$$\theta(T) = 1 - \frac{1}{1 + e^{(T - T_m)/dT}},$$
(S24)

6 where dT is an adjustable parameter (1,2).

7

Bond U_b						
	K_b (kcal/mol/Å ²)		r_0 ((Å)		
	Para _{helical}	Paranonhelical	Para _{helical}	Paranonhelical		
P_iC_i	133.4	98.2	3.95	3.95		
$C_iP_{i+1} \\$	75.0	42.5	3.93	3.93		
$C_i N_i$	85.6	24.8	3.35	3.45		
Angle U_a						
	K_{θ} (kcal/mol/rad ²)		$ heta_0$ ((rad)		
	Para _{helical}	Paranonhelical	Para _{helical}	Paranonhelical		
$P_i C_i P_{i+1} \\$	18.3	9.3	1.74	1.75		
$C_{i-1}P_iC_i$	43.9	21.3	1.76	1.78		
$P_iC_iN_i$	35.5	9.7	1.63	1.64		
$N_i C_i P_{i+1} \\$	99.8	15.2	1.66	1.66		
Dihedral U_d						
	$K\varphi$ (kcal/mol)		φ_0	φ_0 (rad)		
	Para _{helical}	Paranonhelical	Para _{helical}	Paranonhelical		
$P_iC_i \ P_{i+1}C_{i+1}$	2.8	1.1	2.56	2.51		
$C_{i\text{-}1}P_iC_iP_{i+1}$	10.5	4.3	-2.94	-2.92		
$C_{i\text{-}1}P_iC_iN_i$	3.8	0.8	-1.16	-1.18		
$N_{i-1}C_{i-1}P_iC_i$	4.2	0.7	0.88	0.78		

Table S1. The parameters of bonded potential

		-	—	
U_{exc}	ε (kcal/mol)	0.26	σ_{st} (Å)	$R_i + R_j$
	$\mathcal{E}_{bp}(GC)$ (kcal/mol)	-3.5		
T	$k_{NN}(\text{\AA}^{-2})$ 3.6		r_{NN} (Å)	8.9
U_{bp}	k_{CN} (Å ⁻²) 1.9		r_{CN} (Å)	12.2
	$k_{PN}(\text{\AA}^{-2})$	0.7	r_{PN} (Å)	13.9
U_{bs}	$G_{i,i+1,j-1,j}$ (kcal/mol)	Sequence-dependent	σ_{st} (Å)	4.8
U_{el}	$Q_{ m i}$	Structure-dependent	<i>b</i> (Å)	5.5
T	$G_{i\cdot j,k\cdot l}$ (kcal/mol)	Sequence-dependent	<i>a</i> (Å ⁻¹)	0.4
U_{cs}			$r_{cs}(\text{\AA})$	5.0

 Table S2. The parameters of nonbonded potential

PDB code	Description ^a	Length (nt)	Base pairs ^b (bp)	RMSD (Å)	RMSD + (Å)
T DD code	Description	Length (IIt)	Dase pairs (op)	RNDD mean (II)	RMSD _{min} (II)
472d	Н	16	8	1.6	0.6
259d	Н	16	8	1.5	0.7
1dqf	В	19	9	2.5	1.6
2ao5	Н	20	10	2.9	1.2
1kd5	Ι	22	6	4.1	2.1
1qcu	Н	22	11	2.1	1.1
1yyk	Н	24	12	2.5	1.1
353d	Н	24	12	2.9	1.2
157d	Ι	24	10	2.4	1.1
255d	Ι	24	10	2.1	1.4
283d	Ι	24	8	2.5	1.6
1i9x	В	26	12	3.8	1.7
1mhk	Т	26	6	1.9 (9.8) ^c	1.2 (5.6) ^c
1csl	B&I	28	9	4.2	2.2
3wbm	B&I	50	20	5.4	2.3
2f8t	Т	50	22	5.2	2.7

 Table S3. 16 dsRNAs in X-ray set for structure prediction at 1 M [Na⁺]

^a H stands for dsRNAs of complementary duplex, B stands for dsRNAs with bulge loop, I stands for dsRNAs with internal loop, and T stands for dsRNAs with single-stranded tail.
 ^b Only Watson-Crick base pairs (G-C and A-U) and Wobble base pairs (G-U) are concluded.
 ^c The RMSD in bracket is calculated with the involvement of dangling tails.

2

DDD anda	Description ^a	Length	$\frac{[Na^{+}/K^{+}]}{[Mg^{2+}]^{b}}$	mean/minimum RMSDs ^c (Å)	
PDB code		(nt)	mM/mM	Previous version ^d	New version ^e
2gm0	D,I	70	250/0.1	7.3/3.9	6.1/3.1
2m1o	D,H	14	80/0.1	2.2/0.7	2.0/0.7
1tut	D,I	22	80/3	3.5/1.9	3.2/1.7
2kyd	D,H	40	150/10	3.9/1.2	3.7/1.2
2d1a	D,I	78	50/0	7.3/3.9	6.9/3.8
2dd1	D,I	20	90/0	3.5/1.7	3.3/1.5
2k7e	D,I	24	110/0	2.8/1.4	2.4/1.3
21x1	D,I	22	90/0	5.4/2.8	4.8/2.4
2jxq	D,H	20	60/0	2.1/0.8	2.0/0.8
1f5g	D,I	20	80/0	3.0 /1.8	2.8/1.7
1j4y	S	17	20/0	3.9/1.9	3.8/1.9
1d0u	S,B	21	50/0	3.8/1.5	3.5/1.4
215z	S,I	26	50/5	4.0/2.6	3.6/2.2
1p5o	S,B,I	77	100/5	11.0/8.7	9.8/6.6
2g1w	S,P	22	50/0	4.8/3.3	4.1/2.2
2rp1	S,P	27	110/5	4.1/2.7	3.9/2,4
1kpy	S,P	33	100/5	4.2/2.4	3.9/2.2
2ap5	S,P	28	100/5	5.6/3.8	4.9/3.3

 Table S4. The comparison between the present model and its previous version in RNA

 structure predictions

^a D stands for dsRNA, S stands for ssRNA, H stands for complementary duplex, B stands for bulge loop, I stands for internal loop, and P stands for pseudoknot.

^b The experimental ion conditions for structure determination by NMR method.

^c The RMSDs are calculated over all three CG beads of predicted structures by the present model from the corresponding atoms of the native structures.

^d Using electrostatic potential described in Refs. 2 and 13.

^e Using electrostatic potential described in this work.

3

1

FIGURE S1. (A, B) The normalized populations of formed base pair number $P(N_{bp})$ (A) and the free energy barrier ΔG (B) as functions of the number of base pairs of three sequences at T_m . (C, D) The normalized populations of formed base pair number $P(N_{bp})$ (C) and the free energy barrier ΔG (D) of the sequence CCAUAUGG at T_m at different $[Na^+]$'s. Here, the free energies are calculated by $\Delta G = -k_B T \ln[P(N_{bp})]$.

Figure S2. The time-evolution of the radius of gyration for the 40-bp dsRNA helix at different Na⁺
concentration.

Figure S3. The calculated ion charge neutralization fraction f (left) along P beads of the corresponding structures (right) with the end-to-end distances Ree of ~116 Å (A), ~108 Å (B) and ~100 Å (C) of the 40-bp dsRNA at 0.1 M [Na⁺]. The P beads in the bending region of the structures are labeled with a and b corresponding to the peaks of ion charge neutralization fraction, and the ends of the helix are labeled with e corresponding to the ion charge neutralization fraction troughs.

1 References:

- Shi, Y. Z., Wang, F. F., Wu, Y. Y., and Tan, Z. J. 2014. A coarse-grained model with implicit salt for RNAs:
 Predicting 3D structure, stability and salt effect. *J. Chem. Phys.*, 141. 105102.
- Shi, Y. Z., Jin, L., Wang, F. F., Zhu, X. L., and Tan, Z. J. 2015. Predicting 3D Structure, Flexibility, and
 Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. *Biophys. J.*, 109. 2654-2665.
- Xia, T., SantaLucia, J., Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., and Turner, D. H. 1998.
 Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with
 Watson-Crick Base Pairs. *Biochemistry*, 37. 14719-14735.
- Walter, A. E., Turner, D. H., Kim, J., Lyttle, M. H., Muller, P., Mathews, D. H., and Zuker, M. 1994. Coaxial
 stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. *Proc. Natl. Acad. Sci. USA*, 91. 9218-22.
- Walter, A. E. and Turner, D. H. 1994. Sequence dependence of stability for coaxial stacking of RNA helixes
 with Watson-Crick base paired interfaces. *Biochemistry*, 33. 12715-9.
- Manning, G. S. 1978. The molecular theory of polyelectrolyte solutions with applications to the electrostatic
 properties of polynucleotides. *Q. Rev. Biophys.*, 11. 179-246.
- Tan, Z. J. and Chen, S. J. 2005. Electrostatic correlations and fluctuations for ion binding to a finite length
 polyelectrolyte. *J. Chem. Phys.*, 122. 044903.
- 18 8 Tan, Z. J. and Chen, S. J. 2011. Salt Contribution to RNA Tertiary Structure Folding Stability. *Biophys. J.*,
 101. 176-187.
- Wang, F. H., Wu, Y. Y. and Tan, Z. J. 2013. Salt Contribution to the Flexibility of Single-Stranded Nucleic
 Acid of Finite Length. *Biopolymers*, 99. 370-381.
- Xi, K., Wang, F. H., Xiong, G., Zhang, Z. L. and Tan, Z. J. 2018. Competitive binding of Mg²⁺ and Na⁺ ions
 to nucleic acids: from helices to tertiary structures. *Biophys. J.*, 114. 1776-1790.
- Ouldridge, T. E., Louis, A. A. and Doye, J. P. 2010. Extracting bulk properties of self-assembling systems
 from small simulations. *J. Phys. Condens. Matt.*, 22, 104102.
- 26 12 Borer, P. N., Dengler, B., Tinoco, I. J., and Uhlenbeck, O. C. 1974. Stability of ribonucleic acid
 27 double-stranded helices. *J. Mol. Biol.*, 86. 843-53.
- Shi, Y. Z, Jin, L., Feng, C. J., Tan, Y. L. and Tan, Z. J. 2018. Predicting 3D structure and stability of RNA
 pseudoknots in monovalent and divalent ion solutions. *PLoS Comput. Biol.*, 14(6), e1006222.