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S1. Method for Aggregation Kinetics Experiment

For the TRDLS experiments, 2 mL of solution containing ~1 mg/L SWNT aqueous
suspensions was added to pre-cleaned disposable borosilicate glass vials (Fisher Scientific,
Pittsburg, PA); that were soaked in 2% cleaning solution (Extran MAQO1, EMD Chemicals,
Gibbstown, NJ), and thoroughly rinsed with deionized water and oven dried (Fisher Scientific,
Pittsburg, PA) under dust free conditions (1-3). Salt solutions were added to initiate aggregation
and laser was directed to the sample immediately after the vial insertion to the toluene filled
refractive index matched chamber. The scattered light intensity was detected at 90° by a photon
counting module operating at 1.2 amperes and 5 volts (Perkin Elmer, Dumberry, Canada). The
hydrodynamic radii of the particle clusters were determined through second-order cumulant
analysis (ALV software) and average particle cluster size (Ryp) was calculated in every 15 s

corrected by auto correlation function for at least 30 min for each condition.

S2. Method for ab initio Calculations

The initial geometry of a repeating unit of an SG65 and SG76 SWNT molecule were
obtained from visual molecular dynamics (VMD) (4). The ends of the SWNTSs were terminated
with hydrogen atoms; while the resulting molecular structures used in simulation were CggqH22
and CsogHos for SG65 and SG76, respectively. The coordinates of each SWNT molecule were
optimized (5) with dispersion corrected Density Functional Theory (DFT-D3) (6-7) using with
the BLYP functional and the 6-31G basis set, implemented through TeraChem (8). The
optimized SWNT molecule was re-oriented to its principal axis configuration using MacMolPIt
(9); while a rigid-molecule potential energy surface scan was performed with the second SWNT
molecule oriented 90° from the first and rotated 180° degrees along its longitudinal axis (Figure
S1).
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TABLE S1. Chiral angles and diameters for major and minor chiralities present in SG65 and SG76
SWNTs. ‘X’ symbol denotes presence of the chirality in respective sample

Chirality Diameter | Chiral Angle | SG65 | SG76
(nm) (degree)

(6, 5) 0.756 27.0 X X
(7.3) 0.704 17.1 X

(7,5) 0.827 24.5 X X
(7,6) 0.893 275 X
(8,4) 0.838 19.1 X

9, 4) 0.914 17.5 X
(10,3) 0.934 12.8 X
(12,2) 0.993 3.6 X
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FIGURE S1. Orientation of the SG76 pair during a surface scan for rigid-molecule potential

energy (a) perpendicular and (b) parallel.

FIGURE S2. SG76 showing half of the middle third section that was run with 6-31+G(d) basis

set, while the remaining atoms were run with a 6-31G basis set.
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FIGURE S3. Fluorescence absorbance spectra of (a) SG65 (b) SG76 SWNTs. The measurements
were performed at 782 nm excitation.



FIGURE S4. Chirality chart of SWNTSs showing semiconducting (blue hexagons) and metallic
(grey hexagons) chiral indices through color coding. The two arrows represent boundaries of
atomic arrangements; horizontal arrow is the zig-zag and angular arrow is the armchair extreme

for chiral arrangements.
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FIGURE S5. XPS spectra showing Cls and Ols peaks for pristine (a) SG65 and (b) SG76
SWNTSs.
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FIGURE S6. XPS spectra showing C1s and O1s peaks for functionalized (a) SG65 and (b) SG76
SWNTSs.
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FIGURE S7. Raman spectra of pristine and oxidized SWNTs presenting the higher Raman
frequency regions with defect representing ‘D’ band (near 1320 cm™) and graphitic signature
containing ‘G’ band (near 1590 cm™). Intensity for each spectrum is relevant to that specific

measurement and shows relative D/G intensities for that specific case.
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FIGURE S8. Aggregation profile of functionalized SWNTSs in presence of (a-b) NaCl and (c-d)

CaCl; salt. Measurements were carried out at pH of ~6.5 and a temperature of 20 °C.
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FIGURE S9: Aggregation profiles with (a) 10 mM NaCl and (b) 7 mM NaCl + 1 mM CaCl; in
presence of 2.5 mg TOC/L SRHA.
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FIGURE S10. Electrophoretic mobility (EPM) of functionalized SWNTSs under (a) 10 mM NacCl
and (b) and 7 mM NaCl and 1 mM CaCl,. Measurements were carried out at a pH of ~6.5 and a
temperature of 20 °C.
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