Appendix
The proof of Theorem proceeds by a series of lemmas.

Lemma 1 If the random indicator A; that is conditional on X; = x; is
Bernoulli(l — Wo(.l‘i)), then E(\I/(zz,xz)\Xz = xl) = mo(x;).

Proof 1 We have
By taking the expectation with respect to the density of Z; that is conditional on
X; = x;, we obtain
E(E(AJZZ = zi,Xi = 372)|Xz = SL'Z') :E(l — \I/(Zi; xi)|Xi = .’L’i),
E(Alez = l‘l) =1- E(\I/(Zi; xi)|Xi = Jﬁi),
and the result follows.

Lemma 2 For x; € Ri(xo, ), the bootstrap estimator fi(Ag, B) is a weakly
consistent estimator of mo1. That is,

lim lim P(|(Ao, B) — mo1| > €|X; = 2;) =0 for any e > 0.
B—oo

N—o0

Proof 2 By Markov’s inequality, it holds for any € > 0 that

E[fil(Ao, B) — o1 X; = 2
P((20, B) — 7on] > el X, = ) < 20 B) ~ o[ Xs = ]

€
<EU/7(A0, B) — pa, (z:)]| Xi = ]

€
Ellpa, (2:) — 11| | Xi = 2]
€

+

(Ao, B) is an unbiased estimator of pa,(x;), and has zero variance as B becomes
large. That is,

(72 xX;

lim E[(fi(Ao, B) — MAO(%‘))ZUQ =z;] = lim 7a,(2:)

B—oo B—oo

=0. (1)
Hence,

. —~ . —~ 2 1
lim E[|i(Ao, B) — pa, (x:)]| X = 23] < lim E[(1i(Ao, B) — pia, (2)) 7| Xs = 2] 2 = 0.
B—oo B—oo
On the other hand, when xz; € Ri(xo, Ag) the expected dimension of the reference class
zf‘“ as N becomes large is limpy_, oo aliA(J = 00. By applying the consistency assumption
of U,; on the reference class ziA", we have that

lim P(|0;(220) — U(z;2)| > €| X; = ;) = 0.

N—o00
Because |\/I;Z-(zf‘0) —U(z;;24)] <1, the dominated convergence Theorem implies that

lim E[\Tli(zf(’) — Uz 2)|Xi = Sﬂz] =0.

N—oc0
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For z; € Ri(x0,Ay), E(\Il(zi;xi)|X¢ = xl) = mo1 and

1i E[|MAU (w5) — 7T01||Xi = zi]
im
N—oo €

=0.

Lemma 3 If x; € R1(xo,Ao), then the bootstrap estimator g(A, Ay, B) is a weakly
consistent estimator of the prediction bias Ba(x;). That is,

lim lim P(|Z§(A,A0,B) — Ba(zi)| > €|X; = ;) =0 for anye > 0.

N—o00 B—oo

Proof 3 By Markov’s inequality, we have for any € > 0 that

E[|B(A, Ao, B) — Ba(z)|| Xi = ;]
€

_E[EA, B) — pa ()] X; = 2]

P(lg(A,Ao,B) — BA(SCZ)l > E‘Xi = .’El) <

€
+E[|ﬁ(A07 B) - 7701|’Xz' = xl]
€

Because i(A, B) is an unbiased estimator of pua(x;) whose variance is asymptotically
zero, the result follows from Lemma[d and the fact that

lim E[|(A, B) — pa(:)|| X = 2] < Aim E[(a(A, B) - HA(%))2|X1: = l’i]% =0.

B—oo

Lemma 4 For x; € Ryi(xg, Ao), the bootstrap estimator 361 is a weakly consistent
estimator of Af;. That is,

lim lim P(|361 — A}| > €| X; =2;) =0 for anye > 0.

N—o0c0 B—oo
Proof 4 The bootstrap sample variance is a weakly consistent estimator of the variance
of U;(25) and it follows from Lemma@ that

lim lim P(|err(A, Ao, B) — 6TT(\/I\/(ZiA)|Xi =a;)| > €|X; = ;) = 0.

N—o00 B—oo

Therefore, the result follows from the continuous mapping Theorem and the fact that

. . e B - TV Y. — ) =
lim lim P(|argA1§£Oerr(A7Ao,B) argAglgOerr(\Il(zzﬂXz z;)| > €| X; =x;) = 0.

N—o0c0 B—oo
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Proof of Theorem:

Proof 5 We know that

MSE(T(22%) Ry (0, Ag)) = / MSE(V,(220)|X; = ;) P,
Ri(zo,A0)
MSE(W;(2)|R1 (0, Ao)) = / MSE(W,;(2)|X; = z;) dPx,.
Ri1(x0,A0)

It suffices to show that

lim lim [MSE(\T/i(z?Si)

N—0c0 B—oo

X; = i) = MSE(¥y(2)|X; = 2;)| <o0.

MSE(\T/i(z?‘j"') X; = xl) — MSE(\/I}Z-(Z)|XZ- = xz) :err((f!i(zig‘s"')|Xi = CEZ)
ferr(\fli(zfaiﬂXi = ;)
+err(\fli(zfai) X, =uw;)
—err({I\/i(z)\Xi = xl)

From Lemma the weak consistency of 361 implies that

- = R
1 1 Wz,
i, g, ez

X, = xl) - err(\f/i(zf‘*”)

Xi :in) =0.

On the other hand, because Ay, is optimal tuning parameter, it follows that

err \f/l z»ASi X, =x;)—err \f/i 2)|X; =x;) < err ‘Tll 28 X, =x;)—err \TJZ 2)|X; = x;
(Wi(z") )—err(Wi(2)| ) (Wi (=) (2)]

for any A € [Ag, 00), which indicates that

lim lim [MSE((I}i(ZZESZNXZ = SCl) - MSE(@Z(Z”XZ = Il)]

N—0c0 B—oo

< lim lim [err’((l\fi(zfﬂXi = zi)—err(\fli(zﬂXi =x;)]

~ N—oco B—oo
_ 1 : U.(2A R Y . C— )| =
= ngnoo BlgnOO [MSE(W;(22)|X; = 2;) —MSE(¥,(2)| X; = z;)] =0.
The facts that both limpy_s o MSE'(\TI,(z)|X7 = xz) =0 and
IImpy 00 MSE(\TJ,»(ziAHXi = a:l) =0 follow from the consistency and the dominated
convergence Theorem.
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