HE Golden et al. Supporting Information

WebTable 3. Inventory of models for quantifying GIW connectivity or their downstream effects. The table is organized by model type. This table is not intended to be comprehensive but to provide examples of appropriate and relevant models. Most of the models presented here are processbased. Others, such as SWAT, are semi-processed based, which means they have a combination of physical processes and embedded empirical (eg statistical) relationships. Wetland parameterization means that model parameters or equations are specific to wetlands (eg wetland water depths).

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Fully distributed	Hydrogeosphere	SW and GW	No	Yes	Elevation, soil/surficial geology, stream discharge + weather data	Therrien <i>et al</i> . 2008
Fully distributed	Parflow	SW and GW	No	Yes	Elevation, soil/surficial geology, stream discharge + weather data	Ashby and Falgout 1996; Jones and Woodward 2001; Kollet and Maxwell 2006
Fully distributed	GSFlow	SW and GW	No	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Markstrom <i>et al.</i> 2008
Fully distributed	MIKESHE	SW and GW	No	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Refsgaard and Storm 1995

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Fully distributed	Hydrus	GW	No	Yes	Soil/surficial geology, water table depth or soil moisture + weather data	Simunek et al. 2006
Fully distributed	Series Solution	GW	No	Yes	Elevation, soil/surficial geology, stream discharge + weather data	Ameli and Craig 2014
Fully distributed	Puddle to puddle model (P2P)	SW	Yes	Yes	Elevation, soil/surficial geology + weather data	Chu <i>et al</i> . 2013
Fully distributed	Connectivity of runoff model (CRUM, agent-based version)	SW	No	No	Elevation, stream discharge + weather data	Reaney <i>et al.</i> 2007; Reaney 2008
Fully distributed	Connectivity of runoff model (versions CRUM2D and CRUM3 based on network index)	SW	Yes	No	Elevation, stream discharge + weather data	Lane <i>et al.</i> 2009

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Fully distributed	DRAINMOD for Watershed (DRAINWAT)	SW and GW	Yes	No	Land use/land cover, soil/surficial geology, stream discharge + weather data	Skaggs 1978; Amatya 1993; Amatya <i>et al</i> . 1997
Fully distributed	Visualizing Ecosystems for Land Management Assessment (VELMA)	SW and GW	No	Yes	Elevation, soil/surficial geology, stream discharge + weather data	Abdelnour <i>et al.</i> 2011; Golden <i>et al.</i> 2014
Fully distributed	VS2DI	GW	No	Yes	Elevation, soil/surficial geology, water table depth + weather data	Hsieh <i>et al</i> . 2000
Fully distributed	MODFLOW	GW	No	Yes	Elevation, soil/surficial geology, water table depth + weather data	Harbaugh 2005
Fully distributed	Basin-Scale Hydrologic Model (BSHM)	SW and GW	No	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Yu and Schwartz 1998
Fully distributed	WETLANDSCAPE (WLS) (successor to WETSIM)	SW and GW	No	Yes	Elevation (including wetland bathymetry), stream discharge + weather data	Johnson et al. 2010

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Fully distributed	TopoDrive	GW	No	Yes	Elevation, soil/surficial geology	Hsieh 2001
Fully distributed	Wetland Digital Elevation Ponding Model (WDPM)	SW	Yes	Yes	Elevation + weather data	Shook <i>et al</i> . 2013
Fully distributed	Pothole Cascade Model (PCM)	SW	Yes	Yes	Weather data (precipitation is forced onto synthetic wetlands)	Shook and Pomeroy 2011
Fully distributed	Catchment Connectivity Model (CCM)	GW	Yes	No	Elevation, stream discharge + weather data	Jencso <i>et al</i> . 2009; Smith <i>et al</i> . 2013
Semi-distributed	Prairie hydrological model-Cold Regions Hydrological Modelling (PHM- CRHM)	SW and GW	Yes	Yes	Elevation, land use/land cover + weather data	Pomeroy <i>et al</i> . 2010; Fang <i>et al</i> . 2010; Guo <i>et al</i> . 2012
Semi-distributed	Hydrologic Simulation Program- FORTRAN (HSPF)	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Bicknell <i>et al.</i> 2001; Golden <i>et al.</i> 2014

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Semi-distributed	Original SWAT model	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Neitsch et al. 2005
Semi-distributed	SWAT model with hydrologic equivalent wetland (HEW) concept	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Wang <i>et al</i> . 2008, 2010
Semi-distributed	SWAT with spatially distributed wetlands	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Evenson <i>et al.</i> 2015, 2016
Semi-distributed	SWAT with probability distributed landscape depressions (SWAT- PDLD)	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Mekonnen <i>et al.</i> 2016
Semi-distributed	APEX (Agricultural Policy/Environmental eXtender)	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge and/or tile flow + weather data	Williams <i>et al.</i> 2005, 2006, 2008; Gassman <i>et al.</i> 2010
Semi-distributed	TOPMODEL	SW and GW	Yes	No	Elevation, stream discharge + weather data	Beven and Kirkby 1979

Model type	Model name	Flowpath type	Structural connectivity information as model input?	Wetland parameterization available?	Required input data and/or calibration data	References
Semi-distributed	SLURP (Semi- distributed Land Use- based Runoff Processes)	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Kite 1998; Su et al. 2000
Semi-distributed	Precipitation-Runoff Modeling System (PRMS)	SW and GW	Yes	Yes	Elevation, land use/land cover, soil/surficial geology, stream discharge + weather data	Vining 2002; Viger <i>et al.</i> 2010
Lumped	Wetland Hydrologic Capacitance (WHC) model	GW and SW	Typically yes but optional	Yes	Elevation, soil/surficial geology + weather data	McLaughlin <i>et al</i> . 2014
Lumped	Pothole Complex Hydrologic Model (PCHM)	SW and GW	No	Yes	Elevation (wetland bathymetry only), water table depth (i.e., wetland water levels) + weather data	Liu and Schwartz 2011

References

Abdelnour A, Stieglitz M, Pan F, et al. 2011. Catchment hydrological responses to forest harvest amount and spatial pattern. *Water Resour Res* **47**: W09521, doi:10.1029/2010WR010165.

Amatya DM. 1993. Hydrologic Modeling of Drained Forested Lands (Unpubl. Ph.D. dissertation). North Carolina State University, Raleigh, NC.

Amatya DM, Skaggs RW, and Gregory JD. 1997. Evaluation of a watershed scale forest hydrologic model. J Agric Water Manag 32: 239-258.

Ameli AA and Craig JR. 2014. Semianalytical series solutions for three-dimensional groundwater-surface water interaction. *Water Resour Res* **50**: 3893-3906.

Ashby SF and Falgout RD. 1996. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. *Nucl Sci Eng* **124**: 145-59.

Beven K and Kirkby M. 1979. A physically-based, variable contributing area model of basin hydrology. *Hydrol Sci Bull* 24: 43-69.

Chu X, Yang J, Chi Y, et al. 2013. Dynamic puddle delineation and modeling of puddle-to-puddle filling-spilling-merging-splitting overland flow processes. *Water Resour Res* **49**: 3825-3829.

Evenson GR, Golden HE, Lane CR, D'Amico E. 2015. Geographically isolated wetlands and watershed hydrology: A modified model analysis. *J Hydrol* **529**: 240–256.

Evenson GR, Golden HE, Lane CR, et al. 2016. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model. *Hydrol Process* doi: 10.1002/hyp.10930.

Fang X, Pomeroy JW, Westbrook CJ, et al. 2010. Prediction of snowmelt derived streamflow in a wetland dominated prairie basin. *Hydrol Earth Syst Sci* **14**: 991-1006.

Gassman PW, Williams JR, Wang X, et al. 2010. Policy Environmental EXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses. *Trans ASABE* **53**: 711-740.

Golden HE, Lane CR, Amatya DM, et al. 2014. Hydrologic connectivity between geographically isolated wetlands and surface water systems: a review of select modeling methods. *Environ Model Softw* **53**: 190-206.

Guo X, Pomeroy JW, Fang X, et al. 2012. Effects of classification approaches on CRHM model performance. Remote Sens Lett 3: 39-47

Harbaugh AW. 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: The ground-water flow process. U.S. Geological Survey Techniques and Methods 6-A16.

Hsieh PA, Wingle W, and Healy RW. 2000. VS2DI: A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. US Geological Survey Water-Resources Investigations Report 99-4130.

Hsieh PA. 2001. Topodrive and Particleflow: Two computer models for simulation and visualization of ground-water flow and transport of fluid

particles in two dimensions. US Geological Survey Open-File Report 01-286.

Jencso KG, McGlynn BL, Gooseff MN, et al. 2009. Hydrologic connectivity between landscapes and streams: Transferring reach- and plot-scale understanding to the catchment scale. *Water Resour Res* **45**: W04428, doi:10.1029/2008WR007225.

Johnson CW, Werner B, Guntenspergen GR, et al. 2010. Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate. *BioScience* **60**: 128-140.

Jones JE and Woodward CS. 2001. Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. *Adv Water Resour* 24: 763-74.

Kite G. 1998. Manual for the SLURP hydrological model. National Hydrology Research Institute, Saskatoon, Canada.

Kollet SJ and Maxwell MR. 2006. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. *Adv Water Resour* **29**: 945-958.

Liu G and Schwartz FW. 2011. An integrated observational and model-based analysis of the hydrologic response of prairie pothole systems to variability in climate. *Water Resour Res* **47**: W02504.

Lane, S. N. and Reaney, S. M. and Heathwaite, A. L. 2009. Representation of landscape hydrological connectivity using a topographically driven surface ow index. *Water Resour Res* **45**: W0842.

Markstrom SL, Niswonger RG, Regan RS, et al. 2008. GSFLOW-coupled Ground-water and Surface-water Flow Model Based on the Integration of the Precipitation-runoff Modeling System (PRMS) and the Modular Ground-water Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1, 240 p.

McLaughlin DL, Kaplan DA and Cohen MJ. 2014. A significant nexus: Geographically isolated wetlands influence landscape hydrology. *Water Resour Res* **50**: doi:10.1002/2013WR015002.

Mekonnen BA, Mazurek KA, and Putz G. 2016. Incorporating landscape depression heterogeneity into the Soil and Water Assessment Tool (SWAT) using a probability distribution. *Hydrol Process*, doi: 10.1002/hyp.10800.

Neitsch SL, Arnold JG, Kiniry JR, et al. 2005. Soil and Water Assessment Tool: Theoretical Documentation, Version 2005. Grassland, Soil and Water Research Center, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station, Temple, Texas.

Pomeroy J, Fang X, Westbrook C, et al. 2010. Prairie Hydrological Model Study Final Report Centre for Hydrology Report No. 7 Centre for

Hydrology, University of Saskatchewan, Saskatoon.

Reaney SM, Bracken LJ, and Kirkby MJ. 2007. Use of the connectivity of runoff model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semi-arid areas. *Hydrol Process* **21**, 894-906.

Reaney SM. 2008. The use of agent-based modelling techniques in hydrology: determining the spatial and temporal origin of channel flow in semi-arid catchments. *Earth Surf Process Landf* **33**: 317-327.

Refsgaard JC and Storm B. 1995. MIKE SHE. In: Singh, V.P. (Ed.). Computer Models of Watershed Hydrology. Water Resources Publications, Colorado, USA.

Shook KR and Pomeroy JW. 2011. Memory effects of depressional storage in Northern Prairie hydrology. *Hydrol Process* 25: 3890-3898.

Shook KR, Pomeroy JW, Spence C, et al. 2013. Storage dynamics simulations in prairie wetland hydrology models: evaluation and parameterization. *Hydrol Process* **27**: 1875-1889.

Simunek J, van Genuchten MT, and Sejna M. 2006. The HYDRUS Software Package for Simulating Two- and Three-dimensional Movement of Water, Heat, and Multiple Solutes Variably-Saturated Media: Technical Manual. Version 1.0. PC-Progress, Prague, Czech Republic.

Skaggs RW. 1978. A Water Management Model for Shallow Water Table Soils. Report No. 134. Water Res. Res. Inst. of The Univ. of North Carolina, NC State Univ., Raleigh, NC.

Smith T, Marshall L, McGlynn B, et al. 2013. Using field data to inform and evaluate a new model of catchment hydrologic connectivity. *Water Resour Res* **49**: 6834-6846.

Su M, Stolte WJ, and Van Der Kamp G. 2000. Modelling Canadian prairie wetland hydrology using a semi-distributed stream-flow model. *Hydrol Process* **14**: 2405-2422.

Therrien R, McLaren R, Sudicky E, et al. 2008. HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simul. Group, Waterloo, Ont., Canada.

Vining KC. 2002. Simulation of Streamflow and Wetland Storage, Starkweather Coulee Subbasin, North Dakota, Water Years 1981-98. US Geological Survey Water Resources Investigations Report 02-4113.

Viger RJ, Hay LE, Jones JW, et al. 2010. Effects of including surface depressions in the application of the Precipitation-Runoff Modeling System in the Upper Flint River Basin, Georgia. US Geological Survey Scientific Investigations Report 2010-5062.

Wang X, Shang S, Qu Z, et al. 2010. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. *J Environ Manage* **91**: 1511-1525.

Wang X, Yang W, and Melesse AM, 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. *Trans ASABE* **51**: 55-72.

Williams JR and Izaurralde RC. 2005. The APEX model. BREC Report No. 2005-02. Temple, Tex.: Texas A&M University, Texas, Agricultural Experiment Station, Blackland Research and Extension Center.

Williams JR and Izaurralde RC. 2006. The APEX model. In Watershed Models, 437-482. V. P. Singh and D. K. Frevert, eds. Boca Raton, Fla.: CRC Press.

Williams JR, Izaurralde RC, and Steglich EM. 2008. Agricultural Policy/Environmental Extender model: Theoretical Documentation. Version 0604. BREC Report 2008-17. Temple, Tex.: Texas A&M University, Texas AgriLIFE Research, Blackland Research and Extension Center.

Yu Z and Schwartz FW. 1998. Application of an integrated basin-scale hydrologic model to simulate surface-water and ground-water interactions. *J Am Water Resour Assoc* **4**: 409-425.