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Supplementary data 
 

Radiomic features adopted in this study 
All the radiomic features used in this study are listed in table S1, and more details could be 
found at http://pyradiomics.readthedocs.io/en/1.1.1/features.html. 
 
Table S1. Radiomic features adopted in this study. 

Morphometry Volume (𝑉) 

Elongation  
𝜆𝑙𝑜𝑛𝑔𝑒𝑠𝑡

𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
 

Spherical Disproportion  
𝐴

√36𝜋𝑉2
3  

Sphericity  
√36𝜋𝑉2
3

𝐴
 

Surface Volume Ratio  
𝐴

𝑉
 

Flatness  
𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒

𝜆𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡
 

Surface Area (𝐴) 
Maximum 3D Diameter 
Maximum 2D Diameter axial 
Maximum 2D Diameter coronal 
Maximum 2D Diameter sagittal 
 
where 𝜆𝑙𝑜𝑛𝑔𝑒𝑠𝑡, 𝜆𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 , and 𝜆𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 are the lengths of the largest, 

second largest and smallest principal component axes.  

First-order statistics Minimum  𝑚𝑖𝑛(𝑋) 
Maximum  𝑚𝑎𝑥(𝑋) 

Mean  𝑋̅ =
1

𝑁
∑ 𝑋(𝑖)𝑁
𝑖=1  

Standard Deviation  √
1

𝑁
∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1   

Variance  
1

𝑁
∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1  

Skewness  
1

𝑁
∑ (𝑋(𝑖)−𝑋̅)3𝑁
𝑖=1

(√
1

𝑁
∑ (𝑋(𝑖)−𝑋̅)2𝑁
𝑖=1 )3

 

Kurtosis  
1

𝑁
∑ (𝑋(𝑖)−𝑋̅)4𝑁
𝑖=1

(
1

𝑁
∑ (𝑋(𝑖)−𝑋̅)2𝑁
𝑖=1 )2

 

Median  
Range  𝑚𝑎𝑥(𝑋) −𝑚𝑖𝑛(𝑋) 
10-th Percentile  𝑃10 

90-th Percentile  𝑃90 
Interquartile Range  𝑃75 − 𝑃25 

Mean Absolute Deviation  
1

𝑁
∑ |𝑋(𝑖) − 𝑋̅|𝑁
𝑖=1  
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Robust Mean Absolute Deviation  
1

𝑁10−90
∑ |𝑋10−90(𝑖) − 𝑋̅10−90|
𝑁10−90
𝑖=1  

Root Mean Squared  √
1

𝑁
∑ 𝑋(𝑖)2𝑁
𝑖=1  

Uniformity  ∑ 𝑝(𝑖)2
𝑁𝑙
𝑖=1  

Energy  ∑ 𝑋(𝑖)2𝑁
𝑖=1  

Total Energy  𝑉𝑣𝑜𝑥𝑒𝑙 ∑ 𝑋(𝑖)2𝑁
𝑖=1  

Entropy  −∑ 𝑝(𝑖) log2(𝑝(𝑖) + 𝜖)
𝑁𝑙
𝑖=1  

 
where 𝑋 denotes the 3D image matrix with 𝑁 voxels, 𝑝(𝑖) is the 

normalized first order histogram with 𝑁𝑙 intensity levels, 𝑉𝑣𝑜𝑥𝑒𝑙  is the 

volume of the voxel in 𝑚𝑚3, 𝑃𝑑 is the 𝑑-th percentile of the image matrix, 

𝑋10−90 denotes the subset of image matrix with intensity levels in between 

the 10-th and 90-th percentile, and 𝜖 is an arbitrary small positive number. 

Gray level co-occurrence 
matrix (GLCM) 

Energy  ∑ ∑ 𝑝(𝑖, 𝑗)2
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Contrast  ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Entropy  −∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Homogeneity 1  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Correlation  
∑ ∑ 𝑝(𝑖,𝑗)𝑖𝑗

𝑁𝑔
𝑗=1

−𝑢𝑥𝑢𝑦
𝑁𝑔
𝑖=1

𝜎𝑥𝜎𝑦
 

Sum Average (SA)  ∑ 𝑘𝑝𝑥+𝑦(𝑘)
2𝑁𝑔
𝑘=2  

Autocorrelation  ∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Sum Variance  ∑ (𝑘 − 𝑆𝐸)2𝑝𝑥+𝑦(𝑘)
2𝑁𝑔
𝑘=2  

Homogeneity 2  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Cluster Shade  ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
3𝑝(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Maximum Probability  𝑚𝑎𝑥(𝑝(𝑖, 𝑗)) 

Inverse Difference Moment Normalized  ∑ ∑
𝑝(𝑖,𝑗)

1+
|𝑖−𝑗|2

𝑁𝑔
2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Difference Entropy  ∑ 𝑝𝑥−𝑦(𝑘)
𝑁𝑔−1

𝑘=0 log2(𝑝𝑥−𝑦(𝑘) + 𝜖) 

Inverse Variance  ∑ ∑
𝑝(𝑖,𝑗)

|𝑖−𝑗|2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝑖 ≠ 𝑗 

Dissimilarity  ∑ ∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Difference Variance  ∑ (1 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)
𝑁𝑔−1

𝑘=0
 

Inverse Difference Normalized  ∑ ∑
𝑝(𝑖,𝑗)

1+
|𝑖−𝑗|

𝑁𝑔

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Inverse Difference moment  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|2

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Sum Entropy (SE)  ∑ 𝑝𝑥+𝑦(𝑘)
2𝑁𝑔
𝑘=2 log2(𝑝𝑥+𝑦(𝑘) + 𝜖) 

Sum of Squares  ∑ ∑ (𝑖 − 𝑢𝑥)
2𝑝(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Cluster Prominence  ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
4𝑝(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Informal Measure of Correlation 1  
𝐻𝑋𝑌−𝐻𝑋𝑌1

max⁡{𝐻𝑋,𝐻𝑌}
 

Informal Measure of Correlation 2  √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 

Difference Average (DA)  ∑ 𝑘𝑝𝑥−𝑦(𝑘)
𝑁𝑔−1

𝑘=0  

Inverse Difference  ∑ ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Cluster Tendency  ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
2𝑝(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1
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Sum Variance 2  ∑ (𝑘 − 𝑆𝐴)2𝑝𝑥+𝑦(𝑘)
2𝑁𝑔
𝑘=2

 

Average Intensity  ∑ ∑ 𝑝(𝑖, 𝑗)𝑖
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

 
where 𝑝(𝑖, 𝑗) is the normalized co-occurrence matrix, 𝑁𝑔is the number of 

intensity levels, 𝑝𝑥(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

, 𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑖=1

, 𝑢𝑥 =

∑ ∑ 𝑝(𝑖, 𝑗)𝑖
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝑢𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑗
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝜎𝑥and 𝜎𝑦are the standard 

deviation of 𝑝𝑥 and 𝑝𝑦, 𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 where 𝑖 + 𝑗 = 𝑘, 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 where |𝑖 − 𝑗| = 𝑘, 𝐻𝑋 =

−∑ 𝑝𝑥(𝑖) log2(𝑝𝑥(𝑖) + 𝜖)
𝑁𝑔
𝑖=1

, 𝐻𝑌 = −∑ 𝑝𝑦(𝑗) log2(𝑝𝑦(𝑗) + 𝜖)
𝑁𝑔
𝑗=1

, 𝐻𝑋𝑌 =

−∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝐻𝑋𝑌1 =

−∑ ∑ 𝑝(𝑖, 𝑗) log2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, 𝐻𝑋𝑌2 =

−∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

, and 𝜖 is an arbitrary small 

positive number. 

Gray level run length matrix 
(GLRLM) Short Run Emphasis  

∑ ∑
𝑃(𝑖,𝑗|𝜃)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Long Run Emphasis  
∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑗2

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Gray Level Non-uniformity  
∑ (∑ 𝑃(𝑖,𝑗|𝜃)

𝑁𝑟
𝑗=1 )2

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Run Length Non-uniformity  
∑ (∑ 𝑃(𝑖,𝑗|𝜃)

𝑁𝑔
𝑖=1

)2
𝑁𝑟
𝑗=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Low Gray Level Run Emphasis  
∑ ∑

𝑃(𝑖,𝑗|𝜃)

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

High Gray Level Run Emphasis  
∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑖2

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Short Run Low Gray Level Emphasis  
∑ ∑

𝑃(𝑖,𝑗|𝜃)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Short Run High Gray Level Emphasis  
∑ ∑

𝑃(𝑖,𝑗|𝜃)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Long Run Low Gray Level Emphasis  
∑ ∑

𝑃(𝑖,𝑗|𝜃)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Long Run High Gray Level Emphasis  
∑ ∑ 𝑃(𝑖,𝑗|𝜃)𝑖2𝑗2

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Gray Level Variance  ∑ ∑ 𝑃(𝑖, 𝑗|𝜃)(𝑖 − 𝑢)2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 where 𝑢 =

∑ ∑ 𝑃(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1 𝑖

𝑁𝑔
𝑖=1

 

Run Variance  ∑ ∑ 𝑃(𝑖, 𝑗|𝜃)(𝑗 − 𝑢)2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 where 𝑢 = ∑ ∑ 𝑃(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1 𝑗

𝑁𝑔
𝑖=1

 

Run Entropy  −∑ ∑ 𝑃(𝑖, 𝑗|𝜃) log2(𝑃(𝑖, 𝑗|𝜃) + 𝜖)
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Run Percentage  ∑ ∑
𝑃(𝑖,𝑗|𝜃)

𝑁𝑝

𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

Gray Level Non-uniformity Normalized  
∑ (∑ 𝑃(𝑖,𝑗|𝜃)

𝑁𝑟
𝑗=1 )2

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1
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Run Length Non-uniformity Normalized  
∑ (∑ 𝑃(𝑖,𝑗|𝜃)

𝑁𝑔
𝑖=1

)2
𝑁𝑟
𝑗=1

∑ ∑ 𝑃(𝑖,𝑗|𝜃)2
𝑁𝑟
𝑗=1

𝑁𝑔
𝑖=1

 

 
where 𝑃(𝑖, 𝑗|𝜃) is the run length matrix for direction 𝜃, 𝑁𝑔 is the number of 

intensity levels, 𝑁𝑟 is the number of run lengths, 𝑁𝑝 is the number of 

voxels, and 𝜖 is an arbitrary small positive number. 

Gray level size zone matrix 
(GLSZM) Small Area Emphasis  

∑ ∑
𝑃(𝑖,𝑗)

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Large Area Emphasis  
∑ ∑ 𝑃(𝑖,𝑗)𝑗2

𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Gray Level Non-uniformity  
∑ (∑ 𝑃(𝑖,𝑗)

𝑁𝑠
𝑗=1 )2

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Size Zone Non-uniformity  
∑ (∑ 𝑃(𝑖,𝑗)

𝑁𝑔
𝑖=1 )2

𝑁𝑠
𝑗=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Zone Percentage  ∑ ∑
𝑃(𝑖,𝑗)

𝑁𝑝

𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Low Gray Level Zone Emphasis  
∑ ∑

𝑃(𝑖,𝑗)

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

High Gray Level Zone Emphasis  
∑ ∑ 𝑃(𝑖,𝑗)𝑖2

𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Small Area Low Gray Level Emphasis  
∑ ∑

𝑃(𝑖,𝑗)

𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Small Area High Gray Level Emphasis   
∑ ∑

𝑃(𝑖,𝑗)𝑖2

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Large Area Low Gray Level Emphasis  
∑ ∑

𝑃(𝑖,𝑗)𝑗2

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Large Area High Gray Level Emphasis  
∑ ∑ 𝑃(𝑖,𝑗)𝑖2𝑗2

𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Gray Level Variance  ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑢)2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 where 𝑢 = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑠
𝑗=1 𝑖

𝑁𝑔
𝑖=1

 

Zone Variance  ∑ ∑ 𝑃(𝑖, 𝑗)(𝑗 − 𝑢)2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 where 𝑢 = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑠
𝑗=1 𝑗

𝑁𝑔
𝑖=1

 

Gray Level Non-uniformity Normalized  
∑ (∑ 𝑃(𝑖,𝑗)

𝑁𝑠
𝑗=1 )2

𝑁𝑔
𝑖=1

∑ ∑ 𝑃(𝑖,𝑗)2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Size Zone Non-uniformity Normalized  
∑ (∑ 𝑃(𝑖,𝑗)

𝑁𝑔
𝑖=1 )2

𝑁𝑠
𝑗=1

∑ ∑ 𝑃(𝑖,𝑗)2
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

Zone Entropy  −∑ ∑ 𝑃(𝑖, 𝑗) log2(𝑃(𝑖, 𝑗) + 𝜖)
𝑁𝑠
𝑗=1

𝑁𝑔
𝑖=1

 

 
where 𝑃(𝑖, 𝑗) is the size zone matrix, 𝑁𝑔 is the number of intensity levels, 

𝑁𝑠 is the number of zone sizes, 𝑁𝑝 is the number of voxels, and 𝜖 is an 

arbitrary small positive number. 
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Unsupervised two-way clustering 
The clustering result with 3 clusters regarding patients and 10 clusters regarding features 
obtained by the unsupervised two-way clustering results is illustrated in Fig. S1. As shown in the 
Fig. S1 (bottom left and right), highly correlated features and subjects with similar radiomic 
features were grouped into the same clusters simultaneously, and blocks along the diagonal 
demonstrated high correlation coefficients within the same cluster. The meta-features obtained 
by the two-way clustering were weighted combination representations of the original features 
within the same feature clusters, which reduced the feature dimensionality without losing 
discriminative information of the original features. The clustering result regarding subjects was 
obtained based on the meta-features, which was more robust to feature noise and could lead to 
better subject stratification than simple clustering methods, such as k-means. As both the 
clustering results of features and subjects were optimized jointly, they could benefit from each 
other and lead to better subject stratification at a group level and generate more discriminative 
meta-features for survival prediction analyses at an individual subject level. 
 

 
Fig. S1. Clustering results obtained by the unsupervised two-way clustering method, with 3 
clusters regarding subjects and 10 clusters regarding features. Clustering results overlaid on the 
original feature matrix of all the subjects (top), Pearson correlation matrix between all the 
features (bottom left), and Pearson correlation matrix between all the subjects (bottom right). 
Different clusters are separated by red lines. 
 
Patient stratification based on T stages 
Patient stratification has also been carried out based on their T stages. Three subgroups of T1a, 
T1b, and T2 were obtained, and no significant difference was observed between different 
subgroups. Kaplan–Meier plots of survival and nodal failure are shown in Fig. S2. 
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Fig. S2. Kaplan–Meier plots of subgroups with different T stages regarding survival and freedom 
from nodal failure. 
 
Identification of the number of meta-features used for survival analysis at group level 
The number of meta-features was set to 10 according to its cross-validation performance for 
survival prediction. Specifically, a grid searching was adopted to evaluate survival models with 
the number of patient clusters set to 2 or 3, and the number of meta-features ranging from 5 to 
11 with an increment of 1. Cox regression, Cox_lasso model, and RSF model were trained and 
evaluated regarding survival and nodal failure under the same 3-fold cross-validation setting. 
The cross-validation procedure was repeated 100 times, and the number of meta-features (i.e., 
10) most frequently selected with the best prediction performance was adopted to evaluate the 
performance of patient stratification. 
 
Parameters in the random survival forests based model 
We have tested different settings for the RSF model, with different number of trees including 
100, 250, 500, and 750, and leaf sizes varying from 3 to 9 with an increment of 2. The prediction 
performance with different parameter settings regarding survival and nodal failure is shown in 
Fig. S3, indicating that the prediction was stable in terms of both survival and nodal failure. 

  
(a) Survival (b) Nodal failure 

Fig. S3. Prediction performance using random survival forests with different parameter settings 
regarding survival (a) and nodal failure (b). The left matrix shows the mean c-index measures of 
100 repetitions of cross-validation, and the right matrix shows their standard deviations. 
 
Prediction models built upon the tumor volume and SUVmax measures 
We have built Cox regression models to explore whether the tumor volume and SUVmax 
measures are correlated with survival and nodal failure. The resulting Cox models indicated that 

the tumor volume was significantly correlated with survival (p < 0.05) and nodal failure (p <
0.0005), but the SUVmax measure was not significantly correlated with survival or nodal failure 

(p > 0.5).  
We have further investigated the performance of prediction models built upon the tumor 

volume and SUVmax measures using the same 3 fold cross-validation. For the survival 
prediction, c-index values obtained by the Cox model, Cox_lasso, and the RSF model were 
0.551±0.047, 0.560±0.081, and 0.562±0.033 respectively. For the prediction of nodal failure, c-
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index values of these models were 0.663±0.044, 0.604±0.059, and 0.637±0.044 respectively. 
These prediction models had worse performance than those built upon more complex radiomic 
features (0.640±0.029 and 0.664±0.063 for survival and nodal failure, respectively).  
 
Prediction models built upon radiomic features obtained with alternative gray-level 
discretization scheme 
Max-Lloyd algorithm [1] was adopted as an alternative discretization method for extracting 
radiomic features, in order to investigate its prediction performance regarding survival and nodal 
failure. Particularly, different numbers of gray levels were adopted (32 and 64) to extract 
radiomic features, and prediction models for survival and local nodal failure were then built upon 
meta-features extracted using different methods and evaluated using the same cross-validation 
setting as described in the main document.  
 With the number of gray levels set to 32, the Cox, Cox_lasso, and RSF models built 
upon the meta-features extracted using the two-way clustering method for predicting survival 

obtained c-index values of 0.566 ± 0.043, 0.531 ± 0.059, and 0.493 ± 0.046 respectively. The 
Cox, Cox_lasso, and RSF models built upon the two-way clustering based meta-features for 

predicting nodal failure obtained c-index values of 0.688 ± 0.043, 0.675 ± 0.047, and 0.640 ±
0.047 respectively. The Cox, Cox_lasso, and RSF models built upon the PCA based meta-

features for predicting survival obtained c-index values of 0.558 ± 0.047, 0.518 ± 0.056, and 
0.495 ± 0.042 respectively. The Cox, Cox_lasso, and RSF models built upon the PCA based 
meta-features for predicting nodal failure obtained c-index values of 0.681 ± 0.052, 0.661 ±
0.046, and 0.577 ± 0.054 respectively. 
 With the number of gray level set to 64, the Cox, Cox_lasso, and RSF models built upon 
the meta-features extracted using the two-way clustering method for predicting survival obtained 
c-index values of 0.572 ± 0.048, 0.545 ± 0.057, and 0.496 ± 0.042 respectively. The Cox, 
Cox_lasso, and RSF models built upon the two-way clustering based meta-features for 
predicting nodal failure obtained c-index values of 0.688 ± 0.047, 0.677 ± 0.047, and 0.638 ±
0.044 respectively. The Cox, Cox_lasso, and RSF models built upon the PCA based meta-
features for predicting survival obtained c-index values of 0.565 ± 0.042, 0.526 ± 0.047, and 
0.484 ± 0.039 respectively. The Cox, Cox_lasso, and RSF models built upon the PCA based 

meta-features for predicting nodal failure obtained c-index values of 0.684 ± 0.041, 0.659 ±
0.051, and 0.556 ± 0.049 respectively. 
 Overall, the prediction models built upon the meta-features extracted using the two-way 
clustering method obtained better prediction performance than models built upon the PCA 
based meta-features when Max-Lloyd algorithm was adopted as an alternative discretization 
method for extracting radiomic features. 
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