S1 - Partitioning beta diversity

We used the procedure of Baselga [1], where Sørensen beta diversity for multiple-sites can be expressed as:

$$\beta_{SOR} = \frac{\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right] + \left[\sum_{i < j} \max(b_{ij}, b_{ji})\right]}{2\left[\sum_{j} S_{i} - S_{T}\right] + \left[\sum_{i < j} \min(b_{ij}, b_{ji})\right] + \left[\sum_{i < j} \max(b_{ij}, b_{ji})\right]}$$
(1)

Where S_i is the richness in each site, b_{ij} is the number of species in site i not in site j and b_{ji} is the number of species in site j not in site i and S_T is total richness across all sites. Sørensen dissimilarity (β_{SOR}) accounts for both species turnover and nestedness. Beta diversity accounting only for pure spatial turnover is (β_{SIM}):

$$\beta_{SIM} = \frac{\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]}{2\left[\sum_{j} S_{i} - S_{T}\right] + \left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]}$$
(2)

Therefore we can use Sørensen dissimilarity (β_{SOR}) and spatial turnover (β_{SIM}) to calculate the total nestedness of species assemblages (β_{NES}):

$$\beta_{NFS} = \beta_{SOR} - \beta_{SIM} \tag{3}$$

Therefore,

$$\beta_{NES} = \frac{\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right] + \left[\sum_{i < j} \max(b_{ij}, b_{ji})\right]}{2\left[\sum_{j} S_{i} - S_{T}\right] + \left[\sum_{i < j} \min(b_{ij}, b_{ji})\right] + \left[\sum_{i < j} \max(b_{ij}, b_{ji})\right]} - \frac{\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]}{2\left[\sum_{j} S_{i} - S_{T}\right] + \left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]}$$
(4)

References

1. Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 2009;19: 134–143.