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Figure S1. (a) Experimental design and analytical pipelines for calling somatic variants, Related to Figure 1.  
DNA from three intra-tumor biopsies plus an additional technical replicate from each of six breast tumors was 
sequenced using whole exome sequencing. Raw DNA reads were processed and aligned to the hg19 or the GRCh37 
human reference genome using BWA. Subsequently, somatic SNVs and INDELs were identified by three independent 
pipelines: 1) tumor-only using only the tumor DNA, 2) cohort-normal using the tumor DNA and a reference germline 
DNA pooled from ten unrelated blood DNA samples, and 3) matched-normal using the tumor DNA and blood DNA 
from the same patients. Each pipeline used different filters to exclude false positive somatic variants as described in 
the Supplemental Experimental Procedures. The identified somatic variants were subsequently validated by high-
depth amplicon sequencing. Further details are provided in Supplemental Experimental Procedures. 
(b-c) Comparison of technical variation in somatic variants identified from the three WES pipelines, Related 
to Figure 1; Figure 2.  Comparison of the number of somatic (b) SNVs and (c) INDELs identified in the technical 
replicate pairs from each tumor using the tumor-only, cohort- normal, and matched-normal WES pipelines. Each bar 
corresponds to a technical replicate. The x-axis of these graphs is the total number of somatic variants identified by 
each pipeline in the pair of technical replicates from each tumor. The number above each bar is the Jaccard distance 
for the set of variants identified in each pair of technical replicates from a given tumor, which is a measure of the 
technical variation of the pipelines. 
(d-e) Intratumor heterogeneity in somatic SNVs and INDELS detected by whole exome sequencing relative to 
deep sequencing, Related to Figure 1; Figure 2.  Comparison of the number of somatic (d) SNVs and (e) INDELs 
identified in the intratumor biopsies from each tumor using the three WES pipelines (left) and their validation status 
according to high-depth amplicon sequencing (right). All putative WES somatic variants in the intratumor biopsies 
were validated by high-depth amplicon sequencing and classified as low depth (<50x), absent (VAF<1%), germline 
(tumor VAF<5x germline VAF), somatic and somatic (low VAF, Table S3). Homogeneous somatic variants were 
those identified in all three intratumor biopsies and heterogeneous were those detected in one or two biopsies. 
Pathogenicity of variants was assessed as described in Supplemental Experimental Procedures. The extent of 
intratumor heterogeneity in the somatic variant calls was quantified as the Jaccard distance for each case and is shown 
next to each bar. 
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Figure S2. (a) Relationship between tumor purity and performance characteristics of the three WES analysis 
pipelines, Related to Figure 2. Precision and sensitivity are defined as in Fig. 2c. Each dot represents a tumor biopsy, 
color coded by the patients. Tumor purity was estimated using FACETS. Correlation was computed as Pearson 
correlation (r). The estimated purity for Case 2 biorep C, for which purity could not be estimated by FACETS, was 
set to 0.2.  
(b) Relationship between tumor purity and intratumor genetic heterogeneity, Related to Figure 2. The 
proportion of private mutations (i.e. mutations found only in a given biopsy as a proportion of the union of all validated 
somatic mutations in a given patient, left) and absent/missed mutations (i.e. mutations found in at least one other 
biopsy but not the biopsy of interest) are plotted against estimated purity as defined by FACETS (top) and estimated 
purity relative to the mean purity of all intratumor biopsies of a given patient (bottom). Each dot represents a tumor 
biopsy, color coded by patients. Correlation was computed as Pearson correlation (r). The estimated purity for Case 2 
biorep C, for which purity could not be estimated by FACETS, was set to 0.2.  
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Figure S3. (a) Coverage characteristics of true somatic variants and false positive mutations in the WES data 
for individual patients, using the matched-normal WES pipeline, Related to Figure 3. Total coverage in the tumor 
is plotted against the coverage in the matched normal sample of somatic mutations identified in all the specimens of 
a given patient. The validation status categories are the same as in panels Figure 3. Density kernel plots of the marginal 
distributions are included above and to the right of the scatter plots for each of the four categories of mutations.   
(b) Coverage characteristics of true somatic variants and false positive mutations in the WES data for 
individual patients, using the matched-normal WES pipeline, Related to Figure 3. WES alternative allele 
coverage is plotted against VAF of somatic mutations identified in all the specimens of a given patient. The validation 
status categories are the same as in panels Figure 3. Density kernel plots of the marginal distributions are included 
above and to the right of the scatter plots for each of the four categories of mutations.   
(c-e) Characteristics of variants called by WES pipelines in the intratumor biopsies, Related to Figure 3. 
Alternative allele coverage from WES versus variant allele fraction (log10 scale) for variants identified by (c) tumor-
only, (d) cohort-normal or (e) matched-normal WES analysis pipelines in the intratumor biopsies from all cases. These 
calls include all putative somatic variants as defined by each of the pipelines prior to validation by amplicon 
sequencing. Variants are labeled as concordant in the technical replicates, discordant in the technical replicates, 
homogeneous if they were identified in all three biopsies, and heterogeneous if they were identified in one or two of 
the biopsies. 
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Figure S4. (a) Clonality as defined by ABSOLUTE of true and artifactual somatic variants identified by the 
matched-normal WES pipeline for individual patients, Related to Figure 4. In each panel, the first two sets of 
bars enumerate the putative somatic variants identified as concordant or discordant in the technical replicates, whereas 
the bottom four sets of bars enumerate the somatic variants identified in intratumor biopsies and subsequently 
validated by high-depth amplicon sequencing. 
(b) Mappability of true and artifactual somatic variants identified by the matched-normal WES pipeline for 
individual patients, Related to Figure 4. In each panel, the first two sets of bars enumerate the putative somatic 
variants identified as concordant or discordant in the technical replicates, whereas the bottom four sets of bars 
enumerate the somatic variants identified in intratumor biopsies and subsequently validated by high-depth amplicon 
sequencing. High mappability regions are regions with mappability score of 1.  
(c) Mappability of somatic variants identified by the matched-normal WES pipeline, comparing the effects of 
alignment algorithms and read length, using 10 breast cancer cases from TCGA, Related to Figure 4. 
Comparison of mappability of somatic variants identified (left) between paired-end 75bp reads aligned with BWA aln 
and BWA mem and (right) between paired-end 75bp reads and paired-end 100bp reads aligned with BWA mem. 
Comparisons were performed using WES data from 10 tumor-normal pairs from the TCGA breast cancer cohort, 
originally sequenced using 100bp paired-end sequencing. To obtain 75bp reads, reads were trimmed to 75bp prior to 
alignment. For the 100bp reads, reads were aligned as is, then downsampled to 75% to match the overall sequencing 
depth of the trimmed 75bp reads. Somatic mutations were called using the matched-normal WES pipeline. Statistical 
comparisons were performed using Fisher exact tests. 
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Figure S5. (a) Mutational spectra of true and artifactual somatic variants identified by the matched-normal 
WES pipeline for individual patients, Related to Figure 4. Comparison of the mutational spectra of validated 
somatic heterogenous mutations and artifactual somatic mutations that failed validation in all samples for individual 
patients. The reference base listed (C or T) includes the corresponding reverse complement (G or A). 
(b) Mutational spectra of true and artifactual somatic variants identified by the matched-normal WES pipeline 
stratified by VAF, Related to Figure 4. Comparison of the mutational spectra of validated somatic, validated somatic 
homogeneous, validated somatic heterogenous and artifactual somatic mutations that failed validation in all samples. 
Mutations are stratified into VAF>10% and VAF<=10%. The reference base listed (C or T) includes the corresponding 
reverse complement (G or A).  
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Figure S6. Impact of sequencing depth on clonal inference, Related to Figure 4. Boxplot showing clonal inference 
error at various degrees of downsampling sequencing depth. Clonal inference was performed using PyClone and clonal 
inference error was calculated in relation to no downsampling (i.e. 100% in the figure). Clonal inference error was 
calculated as 1-(the number of mutations in the same clusters as no downsampling/the total number of mutations). 
Downsampling was performed at 2.5% increments up to 25%, then at 5% increments, for 20 iterations. All somatic 
mutations were included, regardless if they would have been considered somatic at the reduced depth. Boxplots are 
colored according to the median number of clusters identified in the 20 runs. The minimum median tumor coverage 
refers to the minimum sample-level median depth of the mutations that were somatic in at least one sample in a given 
case (i.e. homogeneous or heterogeneous mutations). The median effective coverage refers to the sample-level median 
depth (as above) multiplied by its estimated tumor purity. Case 2 biorep C, for which purity could not be estimated by 
FACETS, was set to 0.2. The grey dotted line indicates 5% clustering error. Note the overlap between the minimum 
median tumor coverage and the minimum median effective coverage between the 4 cases with stable clonal inference 
(Cases 1, 3, 5, and 6) vs the 2 cases with unstable clonal inference (Cases 2 and 4). 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Tumor sample collection 
 
Breast cancer samples were collected in the context of a prospective study to assess within-tumor genomic 
heterogeneity as previously published (Qi et al., 2015). Patients with newly diagnosed invasive breast cancer with 
tumor size > 2 cm were eligible and were recruited between 9th of January 2012 and 13th of November 2013 at the 
Yale Cancer Center. Tumor tissues were obtained with 2-3 punch biopsies at least 1 cm apart from 3 different regions 
of a tumor after pathologic gross examination had been completed. One biopsy from each location was formalin fixed 
and embedded in paraffin and the remaining biopsies were collected into RNAlater™ and stored at -80°C until DNA 
extraction. Tumor cellularity of each biopsy was assessed on the hematoxylin-and-eosin stained formalin-fixed sister 
biopsy from a given tumor location. We processed DNA for WES only if the biopsy cellularity was ≥50%. This study 
was approved by the Yale Cancer Center human investigations committee and all patients signed informed consent. 
Six tumors from this cohort with high quality DNA from all three biopsies and matched blood DNA were selected in 
this study to represent different breast cancer subtypes and disease spectra (Table 1). 
 
Whole-exome sequencing  
 
DNA from the three biopsies and matched blood from each of the six cases was extracted using the AllPrep Universal 
Kit (Qiagen). 1 µg genomic DNA was sheared to mean fragment length of 140 bp using the Covaris E210 instrument 
and purified by Magnetic AMPure XP beads (Beckman Coulter), and subsequently labeled with 6 base barcode during 
PCR amplification. The NimbleGen SeqCap EZ Human Exome Kit v2.0 (Roche) was used for exome capture 
following manufacturer’s instructions. Intratumor biopsies and technical replicates were assigned uninformative 
identifiers to allow blinded sample processing, and subsequent library preparation and sequencing. Libraries were 
sequenced on Illumina HiSeq 2000 in paired-end 75-cycles mode at the Yale Center for Genome Analysis to a median 
depth of coverage of tumor samples and normal samples of 184 (range 92–211) and 90 (range 80–138), respectively 
(Table S2). 
 
Whole-exome sequencing (WES) analysis pipelines 
 
We used three different analytical pipelines for WES analysis (Fig. S1a). The single-sample “tumor-only” pipeline 
used only the reads derived from the tumor samples to define likely somatic mutations. Sequence reads were aligned 
to the human genome reference sequence version hg19 using the Burrows-Wheeler Aligner (Li and Durbin, 2009) 
(BWA, v0.6.2). PCR duplicates were removed using MarkDuplicates algorithm from Picard (version 1.47, 
http://picard.sourceforge.net/). Local realignment was performed using GATK (v3.1-1) (McKenna et al., 2010) around 
novel and known variant sites followed by GATK base quality recalibration. The overlap between the GATK 
HaplotypeCaller and UnifiedGenotyper algorithms was used to define mutations. Those identified by both callers 
were annotated by ANNOVAR (Yang and Wang, 2015) and non-exonic variants in regions with low mappability 
(Zook et al., 2014) or those outside the exome capture regions were excluded. We further excluded as putative 
germline SNPs those present in 1000Genomes phase1 (2014 Oct. http://www.1000genomes.org/), ESP6500 
(http://evs.gs.washington.edu/EVS/), ExAC01 (http://exac.broadinstitute.org/about) or dbSNP (Build 138; variants 
not flagged as somatic or clinical or as having a minor allele frequency >1%). 

The cohort-normal pipeline used an in-house normal reference obtained from 10 unrelated normal blood 
DNA samples sequenced using the same protocol, each downsampled to 20% and then pooled. Sequence reads were 
aligned to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner (BWA, v0.6.2), followed by 
PCR duplicate removal, local realignment and base quality recalibration as described above. Somatic SNVs and small 
somatic insertions and deletions (INDELs) were defined by MuTect (Cibulskis et al., 2013) (v.1.1.4) and Strelka 
(Saunders et al., 2012) (v.1.0.14), respectively, using the pool of normal reads as reference and annotated by 
ANNOVAR (Yang and Wang, 2015). Recurrent variants with five or more occurrences in COSMIC (v.64) or ClinVar 
(http://www.ncbi.nlm.nih.gov/clinvar/) were whitelisted. Variants outside the target region were excluded. Low 
confidence somatic calls, defined as those with total coverage of fewer than 15 reads in the tumor, were present in at 
least five normal breast samples from the TCGA cohort (Koboldt et al., 2012a), considered likely germline in dbSNP 
(Build 138), or were present in ESP6500, 1000Genomes or ExAC01 were also excluded. We further removed variants 
with tumor variant allele fraction (VAF) < 5 times of that in the pooled normal DNA or with tumor VAF between 
0.45 and 0.55. All remaining variants were manually inspected in the Integrative Genomics Viewer (Robinson et al., 
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2011).  
The “matched-normal” pipeline is considered the best-practice pipeline for identifying somatic events. 

Sequence alignment and processing up to base quality recalibration are the same as for the cohort-normal pipeline. 
Somatic SNVs and INDELs were detected using the sequencing reads derived from matched normal DNA from each 
patient as the reference. Somatic SNVs were defined using MuTect (Cibulskis et al., 2013); small INDELs were 
identified by the intersection of Strelka (Saunders et al., 2012) and VarScan 2 (Koboldt et al., 2012b), and further 
curated by manual inspection. Only variants at positions with total read depth >5 in both the tumor and normal were 
considered. Variants outside the target region or those supported by <5 reads were disregarded (De Mattos-Arruda et 
al., 2014; Martelotto et al., 2015). Variants covered by <20 reads in the germline of which more than one supported 
the mutant allele were disregarded. Variants covered by at least 20 reads in the germline were disregarded if the VAF 
in the tumor was < 5 times than that of the VAF in the germline. Variants present at global minor allele frequency 
>1% in dbSNP (version 138) were disregarded. Variants were annotated using SnpEff (Cingolani et al, 2012). 

The identification of allele-specific copy number alterations (CNAs) and the estimation of tumor cellularity 
were performed using FACETS (Shen and Seshan, 2016), which performs a joint segmentation of the total and allelic 
copy ratio and infers allele-specific copy number states, using the reads derived from tumor samples and their matched 
normal counterparts. Regions of loss of heterozygosity were defined as regions having lesser (minor) copy number of 
zero. 
 
Assessing technical variance of tumor cellularity estimated from WES 
 
Estimates of tumor cellularity from technical replicate biopsies were obtained from FACETS (Shen and Seshan, 2016). 
We used a linear mixed-effects model with fixed and random intercept terms to estimate the mean cellularity and 
intratumor standard deviation. The error term provided an estimate of the within tumor or technical standard deviation 
of estimated cellularity. 
 
Validation of putative somatic variants with high-depth amplicon sequencing (Ampliseq) 
 
Variants identified by WES in both the biological and the technical replicates were subjected to validation with high-
depth amplicon sequencing using custom Ampliseq panels on the same DNA on which WES was performed for all 
tumor and matched normal DNA from all six cases. Validation of putative WES somatic variants identified in the 
intratumor biopsies and technical replicates was performed separately. The validation panel for the intratumor biopsies 
included all putative mutations identified from at least one of the three pipelines (tumor-only, cohort-normal and 
matched-normal) described above. The validation panel for the technical replicates included putative mutations 
identified by the matched-normal pipeline only. Amplicons were successfully designed for 93.0% (1401/1508, range 
91.0%–95.1% per patient) and 93.4% (741/793, range 85.5%–96.9% per patient) of the unique mutations for the 
biological replicates and the technical replicates, respectively. Putative mutations identified from WES for which 
amplicons could not be designed were excluded from further analyses.  

Amplicon sequencing was performed to a median depth of 604x (range 363x–1519x) and 602x (range 460x–
3102x) for the intratumor biopsies and technical replicates respectively (Table S1). Paired-end reads in FASTQ format 
were aligned to the reference human genome GRCh37 using the Torrent Mapping Alignment Program (TMAP, v3.4.1, 
https://github.com/iontorrent/TS/tree/master/Analysis/TMAP). Local realignment was performed using GATK 
(v3.1.1). Putative mutations were interrogated using pileup files generated using samtools mpileup (version 1.2 htslib 
1.2.1)(Li, 2011), using reads with mapping quality of at least 1. For a given sample, mutations sequenced to £ 50x 
total depth were considered “low depth”, and mutations present at VAF £ 1% were considered “absent”. Mutations 
were considered “germline-like” if the VAF in the tumor was < 5 times than that of the VAF in the germline. The 
remaining mutations were considered validated to be “somatic”. These definitions are summarized in Table S2.  

For each pair of technical replicates, variants validated to be somatic in both samples were considered 
“concordant”. Variants classified as low depth in either of the tumor samples were considered “low depth”. Variants 
that were validated to be absent in both samples were considered “absent”. Variants classified as germline-like in both 
tumor samples, or classified as germline-like in one sample and absent in the other sample, were considered “germline-
like. Variants validated to be somatic in one of the two samples and germline or absent in the other sample were 
considered to be “discordant”. Similarly, for the multiple biopsies from the same cancer, variants validated as somatic 
in all three biopsies were considered “homogeneous”. Variants that were validated to be absent from all three biopsies 
were considered as “absent”. Variants classified as low depth in any of the three biopsies were considered as “low 
depth”. Variants that were validated to be germline-like in one of the biopsies and germline-like or absent in the other 
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two were considered “germline-like”. The remaining variants that were validated as somatic in 1 or 2 of the biopsies 
and germline or absent in the other biopsies were considered as “heterogeneous”. These definitions are summarized 
in Table S2. 

 
Assessing technical variance and intra-tumor genetic heterogeneity (ITGH) 
 
Concordance in putative somatic mutations as defined in the technical replicates by each of the three WES pipelines 
prior to validation was assessed using the Jaccard index (Levandowsky et al., 1971). The extent of discordance or 
technical noise involved in calling somatic mutations by a given pipeline was assessed by the Jaccard distance, which 
was defined as 1–Jaccard index, where 0 would indicate identical calls and 1 completely non-overlapping calls within 
each pair. 

ITGH was assessed by comparing the somatic mutations identified in the three intratumor biopsies from the 
same tumor. The extent of ITGH for each case was then estimated by the Jaccard distance considering calls made on 
all three intratumor biopsies (1-homogeneous variants/union of somatic variants). 

 
Identification of pathogenic and potentially pathogenic mutations 
 
All validated non-synonymous mutations were classified as likely pathogenic or passenger mutations using in silico 
methods. For missense SNVs, their potential functional effects were assessed using a combination of MutationTaster 
(Schwarz et al., 2010) and CHASM (breast classifier) (Carter et al., 2009). SNVs defined as non-deleterious/passenger 
by both MutationTaster and CHASM were considered passenger mutations, as this combination was previously shown 
to have the highest negative predictive value (Martelotto et al., 2014). Non-passenger missense SNVs were defined 
as likely pathogenic if they were recurrent hotspot mutations (Chang et al., 2016), or predicted as “driver” or “cancer” 
alterations by CHASM or FATHMM (Shihab et al., 2013), respectively. 

Pathogenicity of somatic in-frame indels was assessed using MutationTaster (Schwarz et al., 2010) and 
Protein Variation Effect Analyzer (PROVEAN) (Choi et al., 2012). In-frame indels predicted to be neutral by either 
were considered as passenger mutations, otherwise in-frame indels were considered likely pathogenic if they were 
associated with haploinsufficient affected genes (Dang et al., 2008), loss of the wild-type allele (based on FACETS 
(Shen and Seshan, 2016), see above), or at least one of the three cancer gene datasets (127 significant mutated genes 
(Kandoth et al., 2013a), the Cancer Gene Census (Futreal et al., 2004a) and Cancer5000-S gene set (Lawrence et al., 
2014a)). Frameshift indels, splice donor/acceptor mutations and truncating mutations were considered potentially 
pathogenic if they were associated with loss of the wild-type allele (based on FACETS (Shen and Seshan, 2016)) or 
haploinsufficient affected genes (Dang et al., 2008), or affected cancer genes (Futreal et al., 2004b; Kandoth et al., 
2013b; Lawrence et al., 2014b). Mutations that did not satisfy the above criteria were considered passenger mutations. 
Lists and characteristics of somatic variants detected by WES and Ampliseq on technical replicates are listed in Table 
S3. Somatic variants detected by WES and Ampliseq on the intratumor biopsies are listed in Table S4. 
 
 
Identification of subclonal mutations 
 
The clonality of putative somatic mutations identified from WES analysis was inferred using ABSOLUTE (Carter et 
al., 2012) using the segmented copy number log ratio from FACETS and the number of reads supporting the reference 
and the alternate alleles of the mutations obtained from WES as previously described (Ng et al., 2017a). The clonality 
of validated somatic mutations by Ampliseq was inferred using the number of reads supporting the reference and the 
alternate alleles of the mutations obtained by Ampliseq. A mutation was classified as clonal if its probability of being 
clonal was >50% or if the upper bound of the 95% confidence interval of its CCF was 100% (Landau et al., 2013). 
 
Mutational signature analysis and mappability 
 
We performed mutational signature analysis using the R package deconstructSigs (Rosenthal et al., 2016) as 
previously described (Ng et al., 2017b). First, the fraction of mutations found in each of the 96 possible trinucleotide 
contexts was calculated to build the mutational profile for each sample, normalized by the number of times each 
trinucleotide context is observed in the sequencing regions. For the pooled analysis, mutations from all samples were 
combined to result in a “pooled sample” profile. Next, the mutation profile was reconstructed with minimum error by 
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iteratively inferring the weighted contribution of each of the 30 reference signatures. Definition and interpretation of 
mutational signatures were obtained from COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures). 

We assessed mappability of SNVs in the GRCh37/hg19 reference genome using the 75bp CRG Alignability 
track available in the UCSC genome browser (http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeMapability). The CRG Alignability track displays how uniquely 75-mer 
sequences align to different regions of the genome (Derrien et al., 2012). The mappability score is defined as the 
reciprocal of the number of matches found in the genome. A mappability score of 1 is considered high as it indicates 
a unique match. 

To assess the effects of sequencing alignment using the newer BWA mem algorithm (http://bio-
bwa.sourceforge.net/bwa.shtml) and of read length on variant identification in regions of low mappability, we obtained 
10 tumor-normal pairs from The Cancer Genome Atlas breast cancer cohort (Kobolt et al., 2012a). These 10 tumor-
normal pairs were sequenced using the 100bp paired-end sequencing. We 1) trimmed the raw sequences to 75bp and 
aligned the data with BWA aln (Li and Durbin, 2009), as we performed for our 6 cases in our manuscript, 2) trimmed 
the raw sequences to 75bp and aligned the data with BWA mem (http://bio-bwa.sourceforge.net/bwa.shtml), and 3) 
aligned the 100bp reads using BWA mem, then downsampled the resulting BAM files to 75% such that the overall 
sequencing depth largely matched the first 2 processing approaches. Mutation calling was performed using the 
matched-normal pipeline. Mappability was computed as described above. 

 
Clonal inference 
 
We performed clonal inference using PyClone (Roth et al., 2014), using the read counts from high-depth Ampliseq 
sequencing for all validated homogeneous and heterogeneous mutations. Major and minor copy numbers for each 
mutation, as well as tumor purity, were defined using FACETS (as described above). Case 2 biorep C, for which purity 
could not be estimated by FACETS, was set to 0.2. 10,000 iterations of Markov Chain Monte Carlo sampling were 
performed with the first 1,000 iterations discarded as “burn-in”. Clusters composed of single mutation were discarded. 
 
To assess the impact of sequencing depth on clonal inference, we performed a downsampling analysis. Specifically, 
we downsampled the number of reads for each mutation, at increments of 2.5% up to 25%, then at 5% up to 95%, of 
the original depth. Each downsampling experiment was performed 20 times. The downsampled number of reads was 
used as input to PyClone and clonal inference performed as described above. Clonal inference error was computed in 
relation to the clusters inferred from no downsampling. Clonal inference error was calculated as 1-(the number of 
mutations in the same clusters as no downsampling/the total number of mutations). All somatic mutations were 
included, regardless if they would have been considered somatic at the reduced depth. 
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